{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 8 Analog Multiplier" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 8.1 Pg 267" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "the output voltage of inverting amplifier (V2) is = 3.00 V\n" ] } ], "source": [ "from math import sqrt, pi\n", "from __future__ import division\n", "# to determine the output voltage of inverting amplifier (V2)\n", "Vin = 18 # # V\n", "V1 = -6 # # V\n", "\n", "# in the op-amp due to the infinite i/p resiostance the input current is = 0\n", "# i1+i2 = 0\n", "# it gives relation\n", "Vo = -Vin #\n", "\n", "# the output of multiplier is defined as\n", "#Vo = K*V1*V2\n", "\n", "K = 1 # # we assume\n", "\n", "V2 = (Vo/(K*V1))#\n", "print 'the output voltage of inverting amplifier (V2) is = %0.2f'%(V2),'V'" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 8.2 Pg 267" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "the output voltage of multiplier is = 225.00 V\n" ] } ], "source": [ "from __future__ import division\n", "# to determine the output voltage of multiplier\n", "Vin = 15 # # V\n", "\n", "# the output of multiplier is defined as\n", "#Vo = K*V1*V2\n", "# because of i/p terminal the circuit performs mathematical operation squaring\n", "# i.e V1 = V2 = Vin\n", "K = 1 # # we assume\n", "Vo = K*(Vin)**2#\n", "print 'the output voltage of multiplier is = %0.2f'%(Vo),'V' " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 8.3 Pg 268" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "the output voltage of inverting amplifier is = 4.00 V \n", "the output voltage of multiplier is = 16.00 V \n" ] } ], "source": [ "from math import sqrt, pi\n", "from __future__ import division\n", "# to determine the output voltage of multiplier and inverting amplifier\n", "Vin = 16 #\n", "# the output of the inverting amplifier\n", "K =1 # # we assume\n", "Vos = sqrt(abs(Vin)/K) #\n", "print 'the output voltage of inverting amplifier is = %0.2f'%(Vos),' V '\n", "\n", "# the output of the multiplier\n", "Vo = K*Vos**2 #\n", "print 'the output voltage of multiplier is = %0.2f'%(Vo),' V '" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 8.5 Pg 269" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "output voltage of RMS detector is = 10.00 V \n" ] } ], "source": [ "from __future__ import division\n", "# output voltage of of RMS detector\n", "Vin = 10 # \n", "T = 1 # # we assume that the charging and discharging period of capacitor\n", "\n", "# the output voltage of RMS detector\n", "# Vo =sqrt(1/T*)integrate(Vin**2*(t),t,0,1 [,atol [,rtol]]) #\n", "Vo = 10 #\n", "print 'output voltage of RMS detector is = %0.2f'%(Vo),'V '" ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.9" } }, "nbformat": 4, "nbformat_minor": 0 }