{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 5 Characteristic of Operational Amplifier" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 5.1 Pg 110" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " the output voltage (Vo) of an op-amp circuit due to input offset voltage (Vos) is = 404.00 mV \n", " the output voltage (Vo) of an op-amp circuit due to input offset current (Ios) is = 75.00 mV \n", " the total offset voltage (Vo) of an op-amp circuit is = 479.00 mV \n" ] } ], "source": [ "from __future__ import division\n", "# find the total offset voltage of feedback op-amp\n", "\n", "Vos = 4 # #mV # input offset volt\n", "Ios = 150*10**-3 # # input offset current\n", "R1 = 5 # #kilo ohm # input resistance\n", "R2 = 500 # #kilo ohm # feedback resistance\n", "\n", "# the output voltage (Vo) of an op-amp circuit due to input offset voltage (Vos) is\n", "Vo1 = ((R1+R2)/(R1)*Vos) #\n", "print ' the output voltage (Vo) of an op-amp circuit due to input offset voltage (Vos) is = %0.2f'%Vo1,' mV '#\n", "\n", "# the output voltage (Vo) of an op-amp circuit due to input offset current (Ios) is\n", "Vo2 = R2*Ios #\n", "print ' the output voltage (Vo) of an op-amp circuit due to input offset current (Ios) is = %0.2f'%Vo2,' mV '#\n", "\n", "# the total offset voltage is\n", "Vo = Vo1+Vo2 #\n", "print ' the total offset voltage (Vo) of an op-amp circuit is = %0.2f'%Vo,' mV '#" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 5.2 Pg 111" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " the output voltage (Vo) of an op-amp circuit due to input offset voltage (Vos) is = 52.00 mV \n", " the output voltage (Vo) of an op-amp circuit due to input offset current (Ios) is = 5.00 mV \n", " the total offset voltage (Vo) of an op-amp circuit is = 57.00 mV \n" ] } ], "source": [ "# find the total offset voltage of feedback op-amp\n", "\n", "Vos = 2 # #mV # input offset volt\n", "Ios = 20*10**-3 # # input offset current\n", "R1 = 10 # #kilo ohm # input resistance\n", "R2 = 250 # #kilo ohm # feedback resistance\n", "\n", "# the output voltage (Vo) of an op-amp circuit due to input offset voltage (Vos) is\n", "Vo1 = ((R1+R2)/(R1)*Vos) #\n", "print ' the output voltage (Vo) of an op-amp circuit due to input offset voltage (Vos) is = %0.2f'%Vo1,' mV '#\n", "\n", "# the output voltage (Vo) of an op-amp circuit due to input offset current (Ios) is\n", "Vo2 = R2*Ios #\n", "print ' the output voltage (Vo) of an op-amp circuit due to input offset current (Ios) is = %0.2f'%Vo2,' mV '#\n", "\n", "# the total offset voltage is\n", "Vo = Vo1+Vo2 #\n", "print ' the total offset voltage (Vo) of an op-amp circuit is = %0.2f'%Vo,' mV '#" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 5.3 Pg 111" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "the input offset voltage (Vos) of an op-amp circuit is = 1.187 mV \n" ] } ], "source": [ "from __future__ import division\n", "# find the input offset voltage of an op-amp circuit\n", "\n", "Vo = 90.2 # #mV # output voltage\n", "R1 = 2 # #kilo ohm # input resistence\n", "R2 = 150 # #kilo ohm # feedback resistence\n", "\n", "# the input offset voltage (Vos) of an op-amp circuit is defined as\n", "Vos = ((R1)/(R1+R2)*Vo) #\n", "print 'the input offset voltage (Vos) of an op-amp circuit is = %0.3f'%Vos,' mV '#" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 5.4 Pg 112" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "the output voltage due to the input offset voltage is = 36.00 mV \n" ] } ], "source": [ "from __future__ import division\n", "# find the output voltage of an op-amp circuit\n", "\n", "Vos = 1 # #mV # input offset volt\n", "R1 = 10 # #kilo ohm # input resistance\n", "R2 = 350 # #kilo ohm # feedback resistance\n", "\n", "# the output voltage due to the input offset voltage of the op-amp circuit is defined by\n", "Vo1 = ((R1+R2)/(R1)*Vos) #\n", "print 'the output voltage due to the input offset voltage is = %0.2f'%Vo1,' mV '#" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 5.5 Pg 113" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "the output voltage of the circuit due to bias current is = 0.11 V \n", "Bias compensated resistor is = 9.09 kilo ohm \n", "Bias compensated output voltage is = 0.01 V \n" ] } ], "source": [ "from __future__ import division\n", "# Determine the bias current effect with and without current compensation method\n", "\n", "R1 = 10 # #kilo ohm\n", "R2 = 100 # #kilo ohm\n", "Ib1 = 1.1*10**-3 #\n", "Ib2 = 1*10**-3 # \n", "# the output voltage of the circuit due to bias current is\n", "Vo = Ib1*R2 #\n", "print 'the output voltage of the circuit due to bias current is = %0.2f'%Vo,' V '#\n", "\n", "#Bias compensated resistor is given by\n", "R3 = (R1*R2)/(R1+R2) #\n", "print 'Bias compensated resistor is = %0.2f'%R3,' kilo ohm '#\n", "\n", "#Bias compensated output voltage is given by\n", "Vo = R2*(Ib1-Ib2)#\n", "print 'Bias compensated output voltage is = %0.2f'%Vo,' V '#" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 5.6 Pg 113" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "the output voltage (Vo) of an op-amp circuit due to input offset current (Ios) is = 80 nA \n" ] } ], "source": [ "from __future__ import division\n", "# find the input offset current of an op-amp circuit\n", "\n", "Vo = 12*10**-3# # V # output voltage\n", "R1 = 2*10**3 # # ohm # input resistence\n", "R2 = 150*10**3# # ohm # feedback resistence\n", "\n", "# the output voltage (Vo) of an op-amp circuit due to input offset current (Ios) is\n", "# Vo = R2*Ios #\n", "Ios = Vo/R2 *1e9 # nA\n", "print 'the output voltage (Vo) of an op-amp circuit due to input offset current (Ios) is = %0.f'%Ios,'nA '#" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 5.7 Pg 114" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The current in the inverting input terminal is = 27.50 nA \n", "The current in the non-inverting input terminal is= 32.50 nA \n" ] } ], "source": [ "from __future__ import division\n", "# Determine the bias current of inverting and non-inverting\n", "Ios = 5 # #nA # input offset current\n", "Ib = 30 # #nA # input bias current\n", "\n", "# the input bias current of an op-amp is \n", "\n", "#Ib =(Ib1+Ib2)/(2)#\n", "\n", "# the offset current Ios is define as\n", "\n", "#Ios = abs(Ib1-Ib2) #\n", "\n", "Ib1=Ib-(Ios/2)#\n", "print 'The current in the inverting input terminal is = %0.2f'%Ib1,' nA '#\n", "\n", "Ib2 =Ib+(Ios/2)#\n", "print 'The current in the non-inverting input terminal is= %0.2f'%Ib2,' nA '#" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 5.8 Pg 115" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Feedback transfer function is = 0.01 \n", "OR 1/Beta is = 100.10 \n", "Feedback transfer function is = -0.01 \n", "OR 1/Beta is = -100.10 \n" ] } ], "source": [ "from __future__ import division\n", "#determine the feedback transfer function of an op-amp for the following condition\n", "# a) When open loop gain of 10**5 and the closed loop gain of 100\n", "A = 10**5 # # open loop gain\n", "Af = 100 # #closed loop gain\n", "# Feedback transfer function is\n", "beta =(1/Af)-(1/A)#\n", "print 'Feedback transfer function is = %0.2f'%beta,''#\n", "beta = 1/beta #\n", "print 'OR 1/Beta is = %0.2f'%beta,''#\n", "\n", "# For an open loop gain of -10**5 and closed loop gain of -100\n", "A = -10**5 # # open loop gain\n", "Af = -100 # #closed loop gain\n", "# Feedback transfer function is\n", "beta =(1/Af)-(1/A)#\n", "print 'Feedback transfer function is = %0.2f'%beta,''#\n", "beta = 1/beta #\n", "print 'OR 1/Beta is = %0.2f'%beta,''#" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 5.9 Pg 115" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "open loop gain is = 2000.00\n" ] } ], "source": [ "from __future__ import division\n", "#to determine open loop gain\n", "beta = 0.0120 # # Feedback transfer function\n", "Af = 80 # #closed loop gain\n", "A = (Af)/(1-beta*Af) #\n", "print 'open loop gain is = %0.2f'%A" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 5.10 Pg 116" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "close loop gain dAf is = 49.78\n", "the percent change of closed loop gain dAf is = 0.45 %\n" ] } ], "source": [ "from __future__ import division\n", "# To Determine the percent of change in the closed loop gain Af of feedback op-amp circuit\n", "A = 10**5 # # open loop gain\n", "Af = 50 # # close loop gain\n", "beta = 0.01999 # # feedback transfer function\n", "dA = 10**4 # # the change in the open llop gain \n", "\n", "# close loop gain\n", "dAf = ((dA)/(1+dA*beta))#\n", "print 'close loop gain dAf is = %0.2f'%dAf\n", "\n", "# the percent change of closed loop gain \n", "dAf = (((Af-dAf)/(Af))*100)#\n", "print 'the percent change of closed loop gain dAf is = %0.2f'%dAf,'%'#" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 5.11 Pg 116" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "the feedback transfer function beta is = 0.0199\n", "the closed loop bandwidth wfH is = 125600\n" ] } ], "source": [ "from __future__ import division\n", "# To Determine the bandwidth of feedback amplifier\n", "A = 10**4 # # open loop gain\n", "Af = 50 # # close loop gain\n", "wH = 628 # #(2*pi*100) # rad/sec # open loop bandwidth\n", "\n", "# close loop gain of an op-amp is defined as\n", "# Af = ((A)/(1+A*beta))# \n", "\n", "# the feedback transfer function is given as\n", "beta = (1/Af)-(1/A) #\n", "print 'the feedback transfer function beta is = %0.4f'%beta\n", "\n", "# closed loop bandwidth\n", "wfH = wH*(1+beta*A)#\n", "print 'the closed loop bandwidth wfH is = %0.f'%wfH" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 5.12 Pg 117" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "the unity gain bandwidth is = 1e+06 Hz\n", "the maximum close loop gain ACL is = 50.00 \n" ] } ], "source": [ "from __future__ import division\n", "# To calculate unity gain bandwidth and maximum close loop gain\n", "A = 10**5 # # open loop gain\n", "fo = 10 # # Hz # dominant pole frequency\n", "fdb = 20*10**3 # #Hz # 3-db frequency\n", "\n", "# the unity gain bandwidth\n", "f1 = fo*A #\n", "print 'the unity gain bandwidth is = %0.e'%f1,'Hz'#\n", "\n", "# the maximum close loop gain\n", "ACL = (f1/fdb) #\n", "print 'the maximum close loop gain ACL is = %0.2f'%ACL,''#" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 5.13 Pg 117" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "the unity gain bandwidth is = 60 kHz\n", "the maximum close loop gain ACL is = 5.00 \n" ] } ], "source": [ "from __future__ import division\n", "# To calculate unity gain bandwidth and maximum close loop gain\n", "A = 10**3 # # open loop gain\n", "fo = 60 # # Hz # dominant pole frequency\n", "fdb = 12*10**3 # #Hz # 3-db frequency\n", "\n", "# the unity gain bandwidth\n", "f1 = fo*A #\n", "print 'the unity gain bandwidth is = %0.f'%(f1/1e3),'kHz'#\n", "\n", "# the maximum close loop gain\n", "ACL = (f1/fdb) #\n", "print 'the maximum close loop gain ACL is = %0.2f'%ACL,''#" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 5.14 Pg 118" ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "the dominant pole frequency (fPD) of an op-amp is = 2.5 kHz\n" ] } ], "source": [ "from __future__ import division\n", "# To determine the dominant pole frequency of an op-amp\n", "Ao = 2*10**5 # # low frequency open loop gain\n", "f = 5*10**6 # # Hz # pole frequency\n", "ACL = 100 # # low frequency closed lkoop gain\n", "p_margin = 80 # \n", "\n", "# the dominant pole frequency of an op-amp\n", "fPD = (ACL)*(f/Ao)/1e3\n", "print 'the dominant pole frequency (fPD) of an op-amp is = %0.1f'%fPD,'kHz'#" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 5.15 Pg 118" ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "FL = 6.37 KHz \n", "Acom = [ magnitude = 6.3*10**-3 angle = -89.6 degree ]\n", "Ac = [ magnitude = 0.68 angle = 0.4 degree ]\n" ] } ], "source": [ "from __future__ import division\n", "# Determine the loop gain of compensated network\n", "C = 0.0025*10**-6 # # farad\n", "R = 10*10**3 # # ohm\n", "F = 1*10**6 # # Hz\n", "Ac1 = 100 # \n", "angle1 = 90 #\n", "\n", "# the close loop gain of a compensated network is defined as\n", "# Ac = Acl*Acom #\n", "\n", "#Acom = 1/(1+%(F/FL))#\n", "\n", "FL = 1/(2*3.14*R*C)#\n", "print 'FL = %0.2f'%(FL/1000),' KHz '# # Round Off Error\n", "\n", "# Acom = 1/(1+%j(F/FL))#\n", "# After putting value of F ,FL we get\n", "\n", "# Acom = 1/(1+%j(158.7))# # 1+%j(158.7) Rectangular Form where real part is 1 and imaginary part is 158.7\n", "\n", "# After converting rectangular from into polar from we get\n", " \n", "print 'Acom = [ magnitude = 6.3*10**-3 angle = -89.6 degree ]'#\n", "\n", "# Ac = Ac1*Acom # equation 1\n", "\n", "# after putting Ac1 and Acom value in equation 1 we get Ac1 = 100 angle 90 and Acom = 6.3*10**-3 angle = -89.6 \n", "\n", "print 'Ac = [ magnitude = 0.68 angle = 0.4 degree ]'#" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 5.16 Pg 119" ] }, { "cell_type": "code", "execution_count": 16, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "FL = 1.1 KHz \n", "Acom = [ magnitude = 0.68 angle = -47.7 degree ]\n" ] } ], "source": [ "from __future__ import division\n", "# Determine the loop gain of compensated network\n", "\n", "C = 0.01*10**-6 # # farad\n", "R = 15*10**3 # # ohm\n", "F = 1*10**6 # # Hz\n", "\n", "# the close loop gain of a compensated network is defined as\n", "# Ac = Acl*Acom #\n", "\n", "#Acom = 1/(1+%(F/FL))#\n", "\n", "FL = 1/(2*3.14*R*C)#\n", "print 'FL = %0.1f'%(FL/1000),' KHz '# # Round Off Error\n", "\n", "# Acom = 1/(1+%j(F/FL))#\n", "# After putting value of F ,FL we get\n", "\n", "# Acom = 1/(1+%j(0.9))# # 1+%j(0.9) Rectangular Form where real part is 1 and imaginary part is 0.9\n", "\n", "# After converting rectangular from into polar from we get\n", " \n", "print 'Acom = [ magnitude = 0.68 angle = -47.7 degree ]'#" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 5.18 Pg 123" ] }, { "cell_type": "code", "execution_count": 17, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The compensating resistor value is = 15.92 ohm \n" ] } ], "source": [ "from __future__ import division\n", "# to design compensating network\n", "fp = 500*10**3 # # pole frequency\n", "C = 0.02*10**-6 # # F # we choose\n", "# loop gain of compensated network\n", "\n", "# ACom =(1)/(1+j(f/fp))\n", "# fp = (1/2*pie*R*C)\n", "R = (1/(2*3.14*C*fp))#\n", "print 'The compensating resistor value is = %0.2f'%R,' ohm '#" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 5.19 Pg 123" ] }, { "cell_type": "code", "execution_count": 18, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "FH = 6.37 KHz \n", "FL = 2.12 KHz \n", "Acom = [ magnitude = 0.34 angle = -0.24 degree ]\n", "Ac = [ magnitude = 34 angle = 89.76 degree ]\n" ] } ], "source": [ "from __future__ import division\n", "# Determine the loop gain of compensated network\n", "\n", "C = 0.0025*10**-6 # # farad\n", "R1 = 10*10**3 # # ohm\n", "R2 = 20*10**3 # # ohm\n", "F = 1*10**6 # # Hz\n", "Ac1 = 100 # \n", "angle1 = 90 #\n", "\n", "# the close loop gain of a compensated network is defined as\n", "\n", "# Ac = Acl*Acom #\n", "\n", "#Acom = (1+%(F/FH))/(1+%(F/FL))#\n", "\n", "FH = 1/(2*3.14*R1*C)#\n", "print 'FH = %0.2f'%(FH/1000),' KHz '# # Round Off Error\n", "\n", "\n", "FL = 1/(2*3.14*(R1+R2)*C)#\n", "print 'FL = %0.2f'%(FL/1000),' KHz '# # Round Off Error\n", "\n", "\n", "#Acom = (1+%(F/FH))/(1+%(F/FL))#\n", "\n", "# After putting value of FH ,FL we get\n", "\n", "# Acom = (1+%j(158.7))/(1+%j(471.7) \n", "\n", "# After converting rectangular from into polar from we get\n", " \n", "print 'Acom = [ magnitude = 0.34 angle = -0.24 degree ]'#\n", "\n", "# Ac = Ac1*Acom # equation 1\n", "\n", "# after putting Ac1 and Acom value in equation 1 we get Ac1 = 100 angle 90 and Acom = 0.34 angle = -0.24 \n", "\n", "print 'Ac = [ magnitude = 34 angle = 89.76 degree ]'#" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 5.20 Pg 124" ] }, { "cell_type": "code", "execution_count": 19, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "FH = 1.59 KHz \n", "FL = 0.64 KHz \n", "Acom = [magnitude = 0.4] \n" ] } ], "source": [ "from __future__ import division\n", "# Determine the loop gain of compensated network\n", "C = 0.01*10**-6 # # farad\n", "R1 = 10*10**3 # # ohm\n", "R2 = 15*10**3 # # ohm\n", "F = 1*10**6 # # Hz\n", "\n", "\n", "# the close loop gain of a compensated network is defined as\n", "\n", "#Acom = (1+%(F/FH))/(1+%(F/FL))#\n", "\n", "FH = 1/(2*3.14*R1*C)#\n", "print 'FH = %0.2f'%(FH/1000),' KHz '# # Round Off Error\n", "\n", "\n", "FL = 1/(2*3.14*(R1+R2)*C)#\n", "print 'FL = %0.2f'%(FL/1000),' KHz '# # Round Off Error\n", "\n", "\n", "#Acom = (1+%(F/FH))/(1+%(F/FL))#\n", "\n", "# After putting value of FH ,FL we get\n", "\n", "# Acom = (1+%j(658.9))/(1+%j(1.56*10**3) \n", "\n", "# After converting rectangular from into polar from we get\n", " \n", "print 'Acom = [magnitude = 0.4] '#" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 5.21 Pg 125" ] }, { "cell_type": "code", "execution_count": 20, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The compensating first resistor R1 value is = 0.80 K ohm \n", "The compensating second resistor R2 value is = 7.17 K ohm \n" ] } ], "source": [ "from __future__ import division\n", "# to design compensating network\n", "fH = 10 # #k ohm # break frequency initiated by a zero\n", "fL = 1 # #k ohm # break frequency initiated by a pole\n", "C = 0.02# # uF # we choose\n", "# loop gain of compensated network\n", "\n", "# ACom =(1+j(f/fH))/(1+j(f/fL))\n", "# fH = (1/2*pie*R1*C)\n", "# fL = (1/2*pie*(R1+R2)*C)\n", "R1 = (1/(2*3.14*C*fH))#\n", "print 'The compensating first resistor R1 value is = %0.2f'%R1,' K ohm '#\n", "R2 = ((1)/(2*3.14*C*fL))-(R1)#\n", "print 'The compensating second resistor R2 value is = %0.2f'%R2,' K ohm '#" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 5.22 Pg 126" ] }, { "cell_type": "code", "execution_count": 21, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The input miller capacitance Cin value is = 10.10 uF \n", "The output miller capacitance Cout value is = 0.10 uF \n" ] } ], "source": [ "from __future__ import division\n", "# To determine input output miller capacitances\n", "A = 100 # #gain\n", "Cm = 0.1 # # uF # compensated capacitor\n", "\n", "# the input output miller capacitance are defined as\n", "Cin = Cm*(A+1)#\n", "print 'The input miller capacitance Cin value is = %0.2f'%Cin,'uF '#\n", "Cout = (Cm*((A+1)/A))# \n", "print 'The output miller capacitance Cout value is = %0.2f'%Cout,'uF '#" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 5.23 Pg 127" ] }, { "cell_type": "code", "execution_count": 22, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The input miller capacitance Cin value is = 3.02 uF \n", "The output miller capacitance Cout value is = 0.02 uF \n", "The initiated frequency of miller compensating network by pole is = 7.91 KHz \n" ] } ], "source": [ "from __future__ import division\n", "from math import pi\n", "# To determine input output miller capacitances\n", "A = 150 # #gain\n", "Cm = 0.02 # # uF # compensated capacitor\n", "\n", "# the input output miller capacitance are defined as\n", "Cin = Cm*(A+1)#\n", "print 'The input miller capacitance Cin value is = %0.2f'%Cin,'uF '#\n", "Cout = (Cm*((A+1)/A))# \n", "print 'The output miller capacitance Cout value is = %0.2f'%Cout,'uF '#\n", "\n", "# In the miller compensating network input capacitance introduce a pole . The initiated frequency of miller compensating network by pole is define as\n", "\n", "# fp = 1/(2*pi*R*Cin)#\n", "R = 1 # # K ohm\n", "fp = 1/(2*pi*R*Cout)#\n", "print 'The initiated frequency of miller compensating network by pole is = %0.2f'%fp,' KHz '#" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 5.24 Pg 128" ] }, { "cell_type": "code", "execution_count": 23, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "the slew rate of an op-amp is = 17.58 V/u sec \n", "The compansated capacitance value is = 1.12 pF \n" ] } ], "source": [ "from __future__ import division\n", "# To determine the slew rate of an op-amp\n", "f = 1 # # MHz # unity frequency\n", "Ic = 1*10**-6 # # uA # capacitor current\n", "Vt = 0.7 # # V # threshold voltage\n", "\n", "# the slew rate of an op-amp is defined as\n", "# Slew rate = (dVo/dt)\n", "Slewrate = 8*3.14*Vt*f #\n", "print 'the slew rate of an op-amp is = %0.2f'%Slewrate,' V/u sec '#\n", "\n", "# The compansated capacitance Cm is\n", "gm = (Ic/Vt)#\n", "Cm = (gm/4*3.14*f)*1e6 # pF\n", "print 'The compansated capacitance value is = %0.2f'%Cm,'pF '#" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 5.25 Pg 129" ] }, { "cell_type": "code", "execution_count": 24, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Cut -off frequency of an op-amp is = 5.00 Hz \n" ] } ], "source": [ "from __future__ import division\n", "# To determine the cut off frequency of an op-amp\n", "f = 1*10**3 # # Hz # unity frequency\n", "Av = 200 # # V/mV # dc gain\n", "\n", "# the unity gain frequency of an op-amp is defined as\n", "# f = Av*fc #\n", "\n", "# cut off frequency\n", "fc = (f/Av)#\n", "print 'Cut -off frequency of an op-amp is = %0.2f'%fc,' Hz '#" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 5.26 Pg 129" ] }, { "cell_type": "code", "execution_count": 25, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "the closed loop gain ACL is = 35.00 \n", "The output gain factor K is = 0.88 V\n", "The maximum frequency of an op-amp fmax = 145.59 KHz\n" ] } ], "source": [ "from __future__ import division\n", "# To find the maximum frequency of input signal in op-amp circuit\n", "Vin = 25*10**-3 # # V # input voltage\n", "Slewrate = 0.8/10**-6 # # V/uV # Slew rate of an op-amp\n", "R2 = 350*10**3 # # ohm # feedback resistance\n", "R1 = 10*10**3 # # ohm # input resistance\n", "\n", "# the closed loop gain\n", "# ACL = (mod (Vo/Vin)) = (mod(R2/R1))#\n", "ACL = abs(R2/R1)#\n", "print 'the closed loop gain ACL is = %0.2f'%ACL,' '#\n", "\n", "# the output gain factor K is given as\n", "K = ACL*Vin #\n", "print 'The output gain factor K is = %0.2f'%K,' V'#\n", "\n", "# the maximum frequency of an op-amp is\n", "wmax = (Slewrate/K)#\n", "fmax = wmax/(2*3.14)#\n", "print 'The maximum frequency of an op-amp fmax = %0.2f'%(fmax/1000),' KHz'#" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 5.27 Pg 129" ] }, { "cell_type": "code", "execution_count": 26, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "the closed loop gain ACL is = 24.00 \n", "The output gain factor K is = 0.36 V\n", "The wmax is = 2.22 *10**6 rad/sec\n" ] } ], "source": [ "from __future__ import division\n", "# To find the maximum frequency of op-amp circuit\n", "Vin = 0.015 # # V # input voltage\n", "Slewrate = 0.8 # # V/uV # Slew rate of an op-amp\n", "R2 = 120*10**3 # # ohm # feedback resistance\n", "R1 = 5*10**3 # # ohm # input resistance\n", "\n", "# the closed loop gain\n", "# ACL = (mod (Vo/Vin)) = (mod(R2/R1))#\n", "ACL = abs(R2/R1)#\n", "print 'the closed loop gain ACL is = %0.2f'%ACL,' '#\n", "\n", "# the output gain factor K is given as\n", "K = ACL*Vin #\n", "print 'The output gain factor K is = %0.2f'%K,' V'#\n", "\n", "# the maximum frequency of an op-amp is\n", "wmax = (Slewrate/K)#\n", "print 'The wmax is = %0.2f'%wmax,'*10**6 rad/sec'# # *10**6 because Slewrate is V/uV \n", "\n", "# the signal frequency may be w = 500*10**3 rad/sec that is less than the maximum frequency value" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 5.28 Pg 130" ] }, { "cell_type": "code", "execution_count": 27, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "the unity frequency f is = 568.70 kHz \n", "The compansated capacitance Cm value is = 0.2 nF \n" ] } ], "source": [ "from __future__ import division\n", "# To determine the compensated capacitance of an op-amp\n", "Slewrate = 10 # # V/u sec\n", "Ic = 1*10**-3 # # mA # capacitor current\n", "Vt = 0.7 # # V # threshold voltage\n", "\n", "# the slew rate of an op-amp is defined as\n", "# Slew rate = (dVo/dt)\n", "# the unity frequency f is\n", "f =(Slewrate/(8*3.14*Vt))#\n", "f = f*10**6# # *10**6 because Slew rate is V/uV \n", "print 'the unity frequency f is = %0.2f'%(f/1e3),'kHz '#\n", "\n", "# The compansated capacitance Cm is\n", "gm = (Ic/Vt)#\n", "Cm = (gm)/(4*3.14*f)*1e9 #\n", "print 'The compansated capacitance Cm value is = %0.1f'%Cm,'nF '#" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 5.29 Pg 131" ] }, { "cell_type": "code", "execution_count": 28, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "the Slew rate of an op-amp is = 0.50 V/u sec\n" ] } ], "source": [ "from __future__ import division\n", "# To find Slew rate of an op-amp\n", "Iq = 15 # # uA # bias current\n", "Cm = 30 # # pF # internal frequency compensated capacitor\n", "Slewrate = (Iq/Cm)\n", "print 'the Slew rate of an op-amp is = %0.2f'%Slewrate,' V/u sec'#" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 5.30 Pg 131" ] }, { "cell_type": "code", "execution_count": 29, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "the Slew rate of an op-amp is = 0.68 V/u sec\n" ] } ], "source": [ "from __future__ import division\n", "# To find Slew rate of an op-amp\n", "Iq = 21 # # uA # bias current\n", "Cm = 31 # # pF # internal frequency compensated capacitor\n", "Slewrate = (Iq/Cm)#\n", "print 'the Slew rate of an op-amp is = %0.2f'%Slewrate,' V/u sec'#" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 5.31 Pg 131" ] }, { "cell_type": "code", "execution_count": 30, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The full power bandwidth FPBW is = 8.12 kHz \n", "The 3-db frequency or small signal band width f3db is = 10 kHz \n" ] } ], "source": [ "from __future__ import division\n", "# To determine full power and small signal bandwidth of an op-amp with unity gain\n", "f = 100*10**6 # # Hz unity gain bandwidth\n", "ACL = 10**4 # # maximum closed loop gain\n", "Slewrate = 0.51 # # V/u sec\n", "Vp = 10 # # V peak volt\n", "\n", "# The full power bandwidth\n", "FPBW = (Slewrate/(2*3.14*Vp))#\n", "FPBW = FPBW*10**6 # # *10**6 because Slew rate is V/uV \n", "print 'The full power bandwidth FPBW is = %0.2f'%(FPBW/1e3),'kHz '#\n", "\n", "# the 3-db frequency or small signal band width \n", "f3db = (f/ACL)#\n", "print 'The 3-db frequency or small signal band width f3db is = %0.f'%(f3db/1e3),'kHz '#" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 5.32 Pg 132" ] }, { "cell_type": "code", "execution_count": 31, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The full power bandwidth FPBW is = 8.12 kHz \n", "The 3-db frequency or small signal band width f3db is = 10 kHz \n" ] } ], "source": [ "from __future__ import division\n", "# To determine full power and small signal bandwidth of an op-amp with unity gain\n", "f = 100*10**6 # # Hz unity gain bandwidth\n", "ACL = 10**4 # # maximum closed loop gain\n", "Slewrate = 0.51 # # V/u sec\n", "Vp = 10 # # V peak volt\n", "\n", "# The full power bandwidth\n", "FPBW = (Slewrate/(2*3.14*Vp))#\n", "FPBW = FPBW*10**6 # # *10**6 because Slew rate is V/uV \n", "print 'The full power bandwidth FPBW is = %0.2f'%(FPBW/1e3),'kHz '#\n", "\n", "# the 3-db frequency or small signal band width \n", "f3db = (f/ACL)#\n", "print 'The 3-db frequency or small signal band width f3db is = %0.f'%(f3db/1e3),'kHz '#" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 5.33 Pg 132" ] }, { "cell_type": "code", "execution_count": 32, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "the Slew rate of an op-amp is = 0.31 V/u sec \n", "The closed loop gain ACL is = 83.33 \n" ] } ], "source": [ "from __future__ import division\n", "# To find Slew rate and closed loop gain of an op-amp\n", "fu = 1*10**6 # # Hz # unity gain bandwidth\n", "fmax = 5*10**3 # # KHz # full power bandwidth\n", "F3db = 12*10**3 # # Hz # small signal bandwidth\n", "Vp = 10 # # V # peak volt\n", "\n", "# the full power bandwidth of an op-amp\n", "# fmax=FPBW = (Slew rate/2*3.14*Vp)#\n", "Slewrate = 2*3.14*Vp*fmax#\n", "Slewrate = Slewrate*(10**-6)# # *10**-6 because Slewrate is V/u \n", "print 'the Slew rate of an op-amp is = %0.2f'%Slewrate,' V/u sec '#\n", "\n", "# # the 3-db frequency or small signal band width \n", "#f3db = (f/ACL)#\n", "#the closed loop gain ACL\n", "ACL = fu/F3db #\n", "print 'The closed loop gain ACL is = %0.2f'%ACL,' '#" ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.9" } }, "nbformat": 4, "nbformat_minor": 0 }