{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 3 Current Voltage Sources and Differential Amplifiers" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 3.1 Pg 53" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The collector current of difference amplifier Ic1 = Ic2 = 0.50 mA \n", "The collector voltages of transistors Q1 and Q2 are Vc1 = Vc2 = 5.00 volt \n", "For Ve = -0.7 Volt the collector - emitter voltage Vce1 = 5.70 Volt\n", "For Ve = 4.3 Volt the collector - emitter voltage Vce1 = 0.70 Volt\n", "For Ve = -5.7 Volt the collector - emitter voltage Vce1 = 10.70 Volt\n" ] } ], "source": [ "from __future__ import division\n", "# Determine the collector current Ic1 and collector-emitter voltage Vce1 for the difference amplifier circuit\n", "\n", "V1 = 0 # # volt\n", "V2 = -5 # #volt\n", "Vcm = 5 # #volt\n", "Vcc = 10# #volt\n", "Vee = -10 # #volt\n", "Ie = 1 # #mA\n", "Rc = 10 # #kilo ohm\n", "\n", "# Transistor parameters\n", "# base current are negligible\n", "Vbe = 0.7 # # volt\n", "\n", "# The collector current of difference amplifier is\n", "Ic1 = Ie/2 # \n", "print 'The collector current of difference amplifier Ic1 = Ic2 = %0.2f'%Ic1,' mA '\n", "\n", "# The collector voltages of transistors Q1 and Q2 are expressed as\n", "\n", "Vc1 = Vcc-Ic1*Rc #\n", "print 'The collector voltages of transistors Q1 and Q2 are Vc1 = Vc2 = %0.2f'%Vc1,' volt '\n", "\n", "# We know common mode voltage (Vcm) , from this the emitter voltage can be identified as follows\n", "# For the common mode voltage Vcm = 0 V , the emitter voltage is Ve = -0.7 V\n", "# For the common mode voltage Vcm = 5 V , the emitter voltage is Ve = 4.3 V\n", "# For the common mode voltage Vcm = -5 V , the emitter voltage is Ve = -5.7 V\n", "\n", "# For the different emitter voltages the collector-emitter voltage can be calculated as\n", "\n", "Ve = -0.7 # # volt\n", "Vce1 = Vc1-Ve#\n", "print 'For Ve = -0.7 Volt the collector - emitter voltage Vce1 = %0.2f'%Vce1,' Volt'\n", "\n", "Ve = 4.3 # # volt\n", "Vce1 = Vc1-Ve#\n", "print 'For Ve = 4.3 Volt the collector - emitter voltage Vce1 = %0.2f'%Vce1,' Volt'\n", "\n", "Ve = -5.7 # # volt\n", "Vce1 = Vc1-Ve#\n", "print 'For Ve = -5.7 Volt the collector - emitter voltage Vce1 = %0.2f'%Vce1,' Volt'" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 3.2 Pg 54" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " The differential mode gain Ad = 184.6\n", " The common mode gain Acm = -0.237\n" ] } ], "source": [ "# To determine the difference-mode and common-mode gain of the difference amplifier\n", "\n", "Vcc = 10 # # volt\n", "Vee = -10 # #volt\n", "Iq = 0.8 # #mA\n", "Ie = 0.8 # #mA\n", "Rc = 12 # #kilo-Ohm\n", "Vt = 0.026 # # volt\n", "\n", "# Transistor parameter\n", "beta = 100 #\n", "Rs = 0 # #Ohm\n", "Ro = 25 # #kilo-Ohm \n", "# The differential mode gain Ad\n", "gm = (Ie/ 2*Vt) #\n", "# Ad = (gm*r*Rc/r+Rc) # # where r is r-pi\n", "# For Rb=0 , the differential mode gain is\n", "\n", "Ad = (Ie/(2*Vt))*Rc#\n", "#But\n", "print ' The differential mode gain Ad = %0.1f'%Ad\n", "\n", "#The common mode gain Acm\n", "# Acm = - (gm*Rc/1+2*gm*Re+2*Re/r)\n", "Acm =-(Ad/(1+(((1+beta)*Ie*Ro)/(beta*Vt))))\n", "print ' The common mode gain Acm = %0.3f'%Acm" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 3.3 Pg 56" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The output of a difference amplifier is Vo = -47.40 sinwt uV \n" ] } ], "source": [ "# To find the output of a difference amplifier when only common mode signal is applied\n", "\n", "# V1 = V2 = Vcm = 200*sin(wt) # # micro volt (uV)\n", "Acm = -0.237 #\n", "\n", "# When the common mode input signal is applied to the difference amplifier , the difference mode gain is zero\n", "Vcm = 200 #\n", "Vo = Acm*Vcm #\n", "print 'The output of a difference amplifier is Vo = %0.2f'%Vo,'sinwt uV ' # multiply by sinwt because it is in Vcm" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 3.4 Pg 56" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The differential mode gain Ad = 184.6\n", "The common mode gain Acm = -0.237\n", "The CMRR of difference amplifier is = 389\n", "In decibel CMRR is = 51.80\n" ] } ], "source": [ "from math import log10\n", "#Determine the common mode rejection ratio(CMRR) of the difference amplifier\n", "\n", "Vcc = 10 # # volt\n", "Vee = -10 # #volt\n", "Iq = 0.8 # #mA\n", "Ie = 0.8 # #mA\n", "Rc = 12 # #kilo-Ohm\n", "Vt = 0.026 # # volt\n", "\n", "# Transistor parameter\n", "beta = 100 #\n", "Rs = 0 # #Ohm\n", "Ro = 25 # #kilo-Ohm\n", " \n", "# The differential mode gain Ad\n", "gm = (Ie/ 2*Vt) #\n", "# Ad = (gm*r*Rc/r+Rc) # # where r is r-pi\n", "# For Rb=0 , the differential mode gain is\n", "\n", "Ad = (Ie/(2*Vt))*Rc#\n", "#But\n", "print 'The differential mode gain Ad = %0.1f'%Ad\n", "\n", "#The common mode gain Acm\n", "# Acm = - (gm*Rc/1+2*gm*Re+2*Re/r)\n", "Acm =-(Ad/(1+(((1+beta)*Ie*Ro)/(beta*Vt))))\n", "print 'The common mode gain Acm = %0.3f'%Acm\n", "\n", "# The CMRR of difference amplifier is given as\n", "Ad = Ad/2 #\n", "CMRR = abs(Ad/Acm)\n", "print 'The CMRR of difference amplifier is = %0.f'%CMRR\n", "\n", "# In decibel it can be expressed as\n", "CMRRdb = 20*log10(CMRR)\n", "print 'In decibel CMRR is = %0.2f'%CMRRdb" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 3.5 Pg 58" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " The CMRR of difference amplifier is = 3.16e+04\n", " The value of resistance RE is = 2.04 Mohm \n" ] } ], "source": [ "# To determine emitter resistance of the difference amplifier\n", "\n", "Vcc = 10 # # volt\n", "Vee = -10 # #volt\n", "Iq = 0.8 # #mA\n", "Ie = 0.8 # #mA\n", "CMRRdb = 90 # #dB\n", "Vt = 0.026 #\n", "\n", "# Transistor parameter\n", "beta = 100 #\n", "\n", "# CMRR = abs(Ad/Acm)\n", "# the CMRR of the difference amplifier is defined as\n", "#CMRR = ((1/2)*(1+((1+beta)*Ie*Re)/beta*Vt))\n", "\n", "# CMRRdb = 20*log10(CMRR)\n", "CMRR = 10**(CMRRdb/20)\n", "print ' The CMRR of difference amplifier is = %0.2e'%CMRR\n", "\n", "# The resistance RE is calculated as\n", "\n", "RE = (((2*CMRR)-1)/((1+beta)*Ie))*(beta*Vt)/1e3\n", "print ' The value of resistance RE is = %0.2f'%RE,' Mohm '" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 3.6 Pg 59" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " The differential mode gain Ad is = 321\n" ] } ], "source": [ "from __future__ import division\n", "# determine the differential mode gain when load resistance RL = 100 k ohm\n", "\n", "RL = 100*10**3 # # k ohm # load resistance\n", "IE = 0.20*10**-3 # # mA # biasing current\n", "VA = 100 # # V # early voltage\n", "VT = 0.026 # # threshold volt\n", "\n", "# the differential gain of differential amplifier with an active load circuit\n", "#Ad = Vo/Vd = gm(ro2 || ro4 || RL )\n", "ro2 = (2*VA)/IE#\n", "ro4 = ro2 #\n", "gm = IE/(2*VT) #\n", "\n", "Ad = gm/((1/ro2)+(1/ro4)+(1/RL))\n", "print ' The differential mode gain Ad is = %0.f'%Ad" ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.9" } }, "nbformat": 4, "nbformat_minor": 0 }