{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 1 - Matrix notation & matrix multiplication" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex:1.3.1 Pg:20" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "x=\n", "[[u]\n", " [v]\n", " [w]]\n", "R2=R2-R1,R3=R3-4*R1\n", "[[1 1 1]\n", " [0 0 3]\n", " [0 2 4]]\n", "R2<->R3\n", "[[1 1 1]\n", " [0 2 4]\n", " [0 0 3]]\n", "The system is now triangular and the equations can be solved by Back substitution\n" ] } ], "source": [ "from sympy.abc import u,v,w\n", "from numpy import array\n", "a =array([[1 ,1 ,1],[2, 2, 5],[4, 6, 8]])\n", "x=[[u],[v],[w]]\n", "x=array(x)\n", "print 'x=\\n',x\n", "print 'R2=R2-R1,R3=R3-4*R1'\n", "a[1,:]=a[1,:]-2*a[0,:]\n", "a[2,:]=a[2,:]-4*a[0,:]\n", "print a\n", "print 'R2<->R3'\n", "def swap_rows(arr, frm, to):\n", " arr[[frm, to],:] = arr[[to, frm],:]\n", "swap_rows(a,1,2)\n", "print a\n", "print 'The system is now triangular and the equations can be solved by Back substitution'" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex:1.3.2 Pg:21" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "a=\n", "[[1 1 1]\n", " [2 2 5]\n", " [4 4 8]]\n", "x=\n", "[[u]\n", " [v]\n", " [w]]\n", "R2=R2-2*R1,R3=R3-4*R1\n", "[[1 1 1]\n", " [0 0 3]\n", " [0 0 4]]\n", "No exchange of equations can avoid zero in the second pivot positon ,therefore the equations are unsolvable\n" ] } ], "source": [ "from sympy.abc import u,v,w\n", "from numpy import array\n", "a =array([[1, 1, 1],[2, 2, 5],[4, 4, 8]])\n", "print 'a=\\n',a\n", "x=[[u],[v],[w]]\n", "x=array(x)\n", "print 'x=\\n',x\n", "print 'R2=R2-2*R1,R3=R3-4*R1'\n", "a[1,:]=a[1,:]-2*a[0,:]\n", "a[2,:]=a[2,:]-4*a[0,:]\n", "print a\n", "print 'No exchange of equations can avoid zero in the second pivot positon ,therefore the equations are unsolvable'" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Ex:1.4.1 Pg:21" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "A = \n", "[[2 3]\n", " [4 0]]\n", "B = \n", "[[ 1 2 0]\n", " [ 5 -1 0]]\n", "AB=\n", "[[17 1 0]\n", " [ 4 8 0]]\n" ] } ], "source": [ "from numpy import array\n", "A=array([[2, 3],[4, 0]])\n", "print 'A = \\n',A\n", "B=array([[1, 2, 0],[5, -1, 0]])\n", "print 'B = \\n',B\n", "print 'AB=\\n',A.dot(B)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex:1.4.2 Pg:22" ] }, { "cell_type": "code", "execution_count": 37, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "A=\n", "[[2 3]\n", " [7 8]]\n", "P(Row exchange matrix)=\n", "[[0 1]\n", " [1 0]]\n", "PA=\n", "[[7 8]\n", " [2 3]]\n" ] } ], "source": [ "from numpy import array\n", "A=array([[2, 3],[7, 8]])\n", "print 'A=\\n',A\n", "P=array([[0, 1],[1, 0]])\n", "print 'P(Row exchange matrix)=\\n',P\n", "print 'PA=\\n',P.dot(A)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex:1.4.3 Pg:24" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "A=\n", "[[1 2]\n", " [3 4]]\n", "I=\n", "[[ 1. 0.]\n", " [ 0. 1.]]\n", "IA=\n", "[[ 1. 2.]\n", " [ 3. 4.]]\n" ] } ], "source": [ "from numpy import array,identity\n", "A=array([[1, 2],[3, 4]])\n", "print 'A=\\n',A\n", "I=identity(2)\n", "print 'I=\\n',I\n", "print 'IA=\\n',I.dot(A)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex:1.4.4 Pg:25" ] }, { "cell_type": "code", "execution_count": 39, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "E=\n", "[[ 1. 0. 0.]\n", " [-2. 1. 0.]\n", " [ 0. 0. 1.]]\n", "F=\n", "[[ 1. 0. 0.]\n", " [ 0. 1. 0.]\n", " [ 1. 0. 1.]]\n", "EF=\n", "[[ 1. 0. 0.]\n", " [-2. 1. 0.]\n", " [ 1. 0. 1.]]\n", "FE=\n", "[[ 1. 0. 0.]\n", " [-2. 1. 0.]\n", " [ 1. 0. 1.]]\n", "Here,EF=FE,so this shows that these two matrices commute\n" ] } ], "source": [ "from numpy import array,identity\n", "E=identity(3)\n", "E[1,:]=E[1,:]-2*E[0,:]\n", "print 'E=\\n',E\n", "F=identity(3)\n", "F[2,:]=F[2,:]+F[0,:]\n", "print 'F=\\n',F\n", "print 'EF=\\n',E.dot(F)\n", "print 'FE=\\n',F.dot(E)\n", "print 'Here,EF=FE,so this shows that these two matrices commute'" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex:1.4.5 Pg:25" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "E=\n", "[[ 1. 0. 0.]\n", " [-2. 1. 0.]\n", " [ 0. 0. 1.]]\n", "F=\n", "[[ 1. 0. 0.]\n", " [ 0. 1. 0.]\n", " [ 1. 0. 1.]]\n", "G=\n", "[[ 1. 0. 0.]\n", " [ 0. 1. 0.]\n", " [ 0. 1. 1.]]\n", "GE= [[ 1. 0. 0.]\n", " [-2. 1. 0.]\n", " [-2. 1. 1.]]\n", "EG=\n", "[[ 1. 0. 0.]\n", " [-2. 1. 0.]\n", " [ 0. 1. 1.]]\n", "Here EG is not equal to GE,Therefore these two matrices do not commute and shows that most matrices do not commute.\n", "GFE=\n", "[[ 1. 0. 0.]\n", " [-2. 1. 0.]\n", " [-1. 1. 1.]]\n", "EFG=\n", "[[ 1. 0. 0.]\n", " [-2. 1. 0.]\n", " [ 1. 1. 1.]]\n", "The product GFE is the true order of elimation.It is the matrix that takes the original A to the upper triangular U.\n" ] } ], "source": [ "from numpy import array,identity\n", "E=identity(3)\n", "E[1,:]=E[1,:]-2*E[0,:]\n", "print 'E=\\n',E\n", "F=identity(3)\n", "F[2,:]=F[2,:]+F[0,:]\n", "print 'F=\\n',F\n", "G=identity(3)\n", "G[2,:]=G[2,:]+G[1,:]\n", "print 'G=\\n',G\n", "print 'GE=',G.dot(E)\n", "print 'EG=\\n',E.dot(G)\n", "print 'Here EG is not equal to GE,Therefore these two matrices do not commute and shows that most matrices do not commute.'\n", "print 'GFE=\\n',G.dot(F.dot(E))\n", "print 'EFG=\\n',E.dot(F.dot(G))\n", "print 'The product GFE is the true order of elimation.It is the matrix that takes the original A to the upper triangular U.'" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex:1.5.1 Pg: 34" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "A= [[1 2]\n", " [3 8]]\n", "L= [[ 1. 0. ]\n", " [ 0.33333333 1. ]]\n", "U= [[ 3. 8. ]\n", " [ 0. -0.66666667]]\n", "LU=\n", "[[ 3. 8.]\n", " [ 1. 2.]]\n" ] } ], "source": [ "from numpy import mat,dot\n", "from scipy.linalg import lu\n", "A=mat([[1, 2],[3, 8]])\n", "print 'A=',A\n", "L=lu(A)[1]\n", "U=lu(A)[2]\n", "print 'L=',L\n", "print 'U=',U\n", "L=mat(L);U=mat(U)\n", "print 'LU=\\n',dot(L,U)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex:1.5.2 Pg: 34" ] }, { "cell_type": "code", "execution_count": 42, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "A= [[0 2]\n", " [3 4]]\n", "Here this cannot be factored into A=LU,(Needs a row exchange)\n" ] } ], "source": [ "from numpy import mat\n", "A=[[0, 2],[3, 4]]\n", "print 'A=',mat(A)\n", "print 'Here this cannot be factored into A=LU,(Needs a row exchange)'" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex:1.5.3 Pg: 34" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Given Matrix:\n", "A= [[1, 1, 1], [1, 2, 2], [1, 2, 3]]\n", "\n", "L= [[ 1. 0. 0.]\n", " [ 1. 1. 0.]\n", " [ 1. 1. 1.]]\n", "\n", "U= [[ 1. 1. 1.]\n", " [ 0. 1. 1.]\n", " [ 0. 0. 1.]]\n", "\n", "LU=\n", "[[ 1. 1. 1.]\n", " [ 1. 2. 2.]\n", " [ 1. 2. 3.]]\n", "Here LU=A,from A to U there are subtraction of rows.Frow U to A there are additions of rows\n" ] } ], "source": [ "from numpy import mat\n", "from scipy.linalg import lu\n", "print 'Given Matrix:'\n", "A=[[1, 1 ,1],[1, 2, 2],[1, 2, 3]]\n", "print 'A=',A\n", "L=lu(A)[1]\n", "U=lu(A)[2]\n", "print '\\nL=',L\n", "print '\\nU=',U\n", "print '\\nLU=\\n',mat(L)*mat(U)\n", "print 'Here LU=A,from A to U there are subtraction of rows.Frow U to A there are additions of rows'\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex:1.5.4 Pg: 34" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "L=\n", "[[ 1. 0. 0. ]\n", " [ 0.74342501 1. 0. ]\n", " [ 0.97556591 0.5785538 1. ]]\n", "U=\n", "[[ 1. 0. 0.]\n", " [ 0. 1. 0.]\n", " [ 0. 0. 1.]]\n", "E=\n", "[[ 1. 0. 0. ]\n", " [-0.74342501 1. 0. ]\n", " [ 0. 0. 1. ]]\n", "F=\n", "[[ 1. 0. 0. ]\n", " [ 0. 1. 0. ]\n", " [-0.97556591 0. 1. ]]\n", "G=\n", "[[ 1. 0. 0. ]\n", " [ 0. 1. 0. ]\n", " [ 0. -0.5785538 1. ]]\n", "A=inv(E)*inv(F)*inv(G)*U\n", "A=\n", "[[ 1. 0. 0. ]\n", " [ 0.74342501 1. 0. ]\n", " [ 0.97556591 0.5785538 1. ]]\n", "When U is identity matrix then L is same as A\n" ] } ], "source": [ "from numpy.random import random\n", "from numpy import mat,eye\n", "a=random()\n", "b=random()\n", "c=random()\n", "L=mat([[1, 0, 0],[a, 1, 0],[b, c, 1]])\n", "print 'L=\\n',L\n", "U=eye(3)\n", "print 'U=\\n',U\n", "E=mat([[1, 0, 0],[-a, 1, 0],[0, 0, 1]])\n", "print 'E=\\n',E\n", "F=mat([[1, 0, 0],[0, 1, 0],[-b, 0, 1]])\n", "print 'F=\\n',F\n", "G=mat([[1, 0, 0],[0, 1, 0],[0, -c, 1]])\n", "print 'G=\\n',G\n", "print 'A=inv(E)*inv(F)*inv(G)*U'\n", "A=(E**-1)*(F**-1)*(G**-1)*U#\n", "print 'A=\\n',A\n", "print 'When U is identity matrix then L is same as A'" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex:1.5.5 Pg: 39" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "A=\n", "[[ 1 -1 0 0]\n", " [-1 2 -1 0]\n", " [ 0 -1 2 -1]\n", " [ 0 0 -1 2]]\n", "U=\n", "[[ 1. -1. 0. 0.]\n", " [ 0. 1. -1. 0.]\n", " [ 0. 0. 1. -1.]\n", " [ 0. 0. 0. 1.]]\n", "L=\n", "[[ 1. 0. 0. 0.]\n", " [-1. 1. 0. 0.]\n", " [ 0. -1. 1. 0.]\n", " [ 0. 0. -1. 1.]]\n", "This shows how a matrix A with 3 diagnols has factors L and U with two diagnols.\n" ] } ], "source": [ "from numpy import mat\n", "from scipy.linalg import lu\n", "\n", "A=mat([[1, -1, 0, 0],[-1, 2 ,-1, 0],[0, -1, 2 ,-1],[0, 0 ,-1 ,2]])\n", "print 'A=\\n',A\n", "L=lu(A)[1]\n", "U=lu(A)[2]\n", "print 'U=\\n',U\n", "print 'L=\\n',L\n", "print 'This shows how a matrix A with 3 diagnols has factors L and U with two diagnols.'" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex:1.5.6 Pg: 36" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "a=\n", "[[ 1 -1 0 0]\n", " [-1 2 -1 0]\n", " [ 0 -1 2 -1]\n", " [ 0 0 -1 2]]\n", "b=\n", "[[1]\n", " [1]\n", " [1]\n", " [1]]\n", "Given Equation ,ax=b\n", "U=\n", "[[ 1. -1. 0. 0.]\n", " [ 0. 1. -1. 0.]\n", " [ 0. 0. 1. -1.]\n", " [ 0. 0. 0. 1.]]\n", "L=\n", "[[ 1. 0. 0. 0.]\n", " [-1. 1. 0. 0.]\n", " [ 0. -1. 1. 0.]\n", " [ 0. 0. -1. 1.]]\n", "Augmented Matrix of L and b=\n", "[[ 1. 0. 0. 0. 1. -1. 0. 0.]\n", " [-1. 1. 0. 0. 0. 1. -1. 0.]\n", " [ 0. -1. 1. 0. 0. 0. 1. -1.]\n", " [ 0. 0. -1. 1. 0. 0. 0. 1.]]\n", "c=\n", "[[ 1.]\n", " [ 2.]\n", " [ 2.]\n", " [ 2.]]\n", "Augmented matrix of U and c=\n", "[[ 1. -1. 0. 0. 1.]\n", " [ 0. 1. -1. 0. 2.]\n", " [ 0. 0. 1. -1. 2.]\n", " [ 0. 0. 0. 1. 2.]]\n", "x=\n", "[[ 0.]\n", " [ 6.]\n", " [ 4.]\n", " [ 2.]]\n" ] } ], "source": [ "from numpy import mat,hstack,zeros,arange\n", "from scipy.linalg import lu\n", "\n", "a=mat([[1, -1, 0 ,0],[-1, 2, -1, 0],[0, -1, 2, -1],[0, 0, -1, 2]])\n", "print 'a=\\n',a\n", "b=mat([[1],[1],[1],[1]])\n", "print 'b=\\n',b\n", "print 'Given Equation ,ax=b'\n", "\n", "L=lu(a)[1]\n", "U=lu(a)[2]\n", "print 'U=\\n',U\n", "print 'L=\\n',L\n", "print 'Augmented Matrix of L and b='\n", "A=hstack([L,U])\n", "print A\n", " \n", "\n", "c=zeros([4,1])#\n", "n=4\n", "#Algorithm Finding the value of c\n", "c[0]=A[0,n]/A[0,0]\n", "for i in range(1,n):\n", " sumk=0#\n", " for k in range(0,n-1):\n", " sumk=sumk+A[i,k]*c[k]\n", " \n", " c[i]=(A[i,n+1]-sumk)/A[i,i]\n", "\n", "print 'c=\\n',c\n", "x=zeros([4,1])\n", "print 'Augmented matrix of U and c='\n", "B=hstack([U,c])\n", "print B\n", "#Algorithm for finding value of x\n", "x[n-1]=B[n-1,n]/B[n-1,n-1]\n", "for i in arange(n-1-1,-1+1,-1):\n", " sumk=0#\n", " for k in range(i+1-1,n):\n", " sumk=sumk+B[i,k]*x[k]\n", " \n", " x[i]=(B[i,n+1-1]-sumk)/B[i,i]\n", "\n", "print 'x=\\n',x\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex:1.5.7 Pg: 39" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "A=\n", "[[1 1 1]\n", " [1 1 3]\n", " [2 5 8]]\n", "L=\n", "[[ 1. 0. 0. ]\n", " [ 0.5 1. 0. ]\n", " [ 0.5 1. 1. ]]\n", "U=\n", "[[ 2. 5. 8. ]\n", " [ 0. -1.5 -1. ]\n", " [ 0. 0. -2. ]]\n", "P=\n", "[[ 0. 0. 1.]\n", " [ 0. 1. 0.]\n", " [ 1. 0. 0.]]\n", "PA=\n", "[[ 2. 5. 8.]\n", " [ 1. 1. 3.]\n", " [ 1. 1. 1.]]\n", "LU=\n", "[[ 2. 0. 0. ]\n", " [ 0. -1.5 -0. ]\n", " [ 0. 0. -2. ]]\n" ] } ], "source": [ "from numpy import mat\n", "from scipy.linalg import lu\n", "\n", "A=mat([[1, 1, 1],[1, 1, 3],[2, 5, 8]])\n", "print 'A=\\n',A\n", "P=lu(A)[0]\n", "L=lu(A)[1]\n", "U=lu(A)[2]\n", "print 'L=\\n',L\n", "print 'U=\\n',U\n", "print 'P=\\n',P\n", "print 'PA=\\n',(P*A)\n", "print 'LU=\\n',(L*U)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex:1.6.1 Pg: 47" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Given matrix:\n", "[[ 2 1 1]\n", " [ 4 -6 0]\n", " [-2 7 2]]\n", "Augmented matrix :\n", "[[ 2. 1. 1. 1. 0. 0.]\n", " [ 4. -6. 0. 0. 1. 0.]\n", " [-2. 7. 2. 0. 0. 1.]]\n", "R2=R2-2*R1,R3=R3-(-2)*R1\n", "[[ 2. 1. 1. 1. 0. 0.]\n", " [ 8. -4. 2. 2. 1. 0.]\n", " [ 0. 8. 3. 1. 0. 1.]]\n", "R3=R3-(-1)*R2\n", "a=\n", "[[ 2. 1. 1. 1. 0. 0.]\n", " [ 8. -4. 2. 2. 1. 0.]\n", " [ 8. 4. 5. 3. 1. 1.]]\n", "[U inv(L)] :\n", "[[ 2. 1. 1. 1. 0. 0.]\n", " [ 8. -4. 2. 2. 1. 0.]\n", " [ 8. 4. 5. 3. 1. 1.]]\n", "R2=R2-(-2)*R3,R1=R1-R3\n", "[[ 10. 5. 6. 4. 1. 1.]\n", " [ 24. 4. 12. 8. 3. 2.]\n", " [ 8. 4. 5. 3. 1. 1.]]\n", "R1=R1-(-1/8)*R2)\n", "[[ 13. 5.5 7.5 5. 1.375 1.25 ]\n", " [ 24. 4. 12. 8. 3. 2. ]\n", " [ 8. 4. 5. 3. 1. 1. ]]\n", "[I inv(A)]:\n", "[[ 1. 0.42307692 0.57692308 0.38461538 0.10576923 0.09615385]\n", " [ 6. 1. 3. 2. 0.75 0.5 ]\n", " [ 1.6 0.8 1. 0.6 0.2 0.2 ]]\n", "inv(A):\n", "[[ 0.38461538 0.10576923 0.09615385]\n", " [ 2. 0.75 0.5 ]\n", " [ 0.6 0.2 0.2 ]]\n" ] } ], "source": [ "from numpy import mat,shape,nditer,hstack,eye,nditer\n", "\n", "print 'Given matrix:'\n", "A=mat([[2, 1, 1],[4, -6, 0],[-2, 7, 2]])\n", "print A\n", "m=int(shape(A)[0])\n", "n=int(shape(A)[1])\n", "print 'Augmented matrix :'\n", "a=hstack([A,eye(n)])\n", "print a\n", "print 'R2=R2-2*R1,R3=R3-(-2)*R1'\n", "def fun1(a,x,y,n):\n", " import numpy as np\n", " z=[]\n", " for xx,yy in nditer([a[x-1],a[y-1]]):\n", " z.append(xx-n*yy)\n", " a[x-1]=z\n", " return a \n", "\n", " \n", "a=fun1(a,2,1,-2)\n", "a=fun1(a,3,1,-1)\n", "print a\n", "print 'R3=R3-(-1)*R2'\n", "a=fun1(a,3,2,-1) # a(3,:)-(-1)*a(2,:)#\n", "print 'a=\\n',a\n", "print '[U inv(L)] :\\n',a\n", "print 'R2=R2-(-2)*R3,R1=R1-R3'\n", "a=fun1(a,2,3,-2)\n", "a=fun1(a,1,3,-1)\n", "print a\n", "print 'R1=R1-(-1/8)*R2)'\n", "a=fun1(a,1,2,-1./8)\n", "print a\n", "\n", "a[0]=a[0]/a[0,0]\n", "a[1]=a[1]/a[1,1]\n", "print '[I inv(A)]:'\n", "a[2]=a[2]/a[2,2]\n", "print a\n", "print 'inv(A):'\n", "print a[:,range(3,6)]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex:1.6.2 Pg:51" ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "R= [[1 2]]\n", "Transpose of the given matrix is : [[1]\n", " [2]]\n", "The product of R & transpose(R)is : [[5]]\n", "The product of transpose(R)& R is : [[1 2]\n", " [2 4]]\n", "Rt*R and R*Rt are not likely to be equal even if m==n.\n" ] } ], "source": [ "from numpy import mat,transpose\n", "R=mat([1, 2])\n", "print 'R=',R\n", "Rt=transpose(R)\n", "print 'Transpose of the given matrix is :',Rt\n", "print 'The product of R & transpose(R)is :',(R*Rt)\n", "print 'The product of transpose(R)& R is :',(Rt*R)\n", "print 'Rt*R and R*Rt are not likely to be equal even if m==n.'" ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.9" } }, "nbformat": 4, "nbformat_minor": 0 }