{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Appendix A"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Example 1"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "('Temperature T2  =  %.1f K', 556.4270854641527)\n",
      "(' Compressor work  =  %.1f kJ/kg ', 269.2999938060093)\n",
      "(' Temperature T3  =  %.1f K', 1373.2)\n",
      "(' Temperature T4  =  %.1f K', 711.24546295203)\n",
      "(' Turbine work  =  %.1f kJ/kg', 664.6023551961619)\n",
      "(' Net work  =  %.1f kJ/kg', 395.30236139015256)\n",
      "(' Thermal Efficiency of cycle  =  %.1f percent', 48.205253207687875)\n"
     ]
    }
   ],
   "source": [
    "# -*- coding: utf8 -*-\n",
    "from __future__ import division\n",
    "#Example: 12.1\n",
    "'''  '''\n",
    "\n",
    "#Variable Declaration: \n",
    "\n",
    "\n",
    "\t\t#1-Inlet for compressor\n",
    "\t\t#2-Exit for compressor\n",
    "\t\t#T-Temperature at a state\n",
    "\t\t#P-Pressure at a state\n",
    "T1 = 288.2\t\t#K\n",
    "P2 = 1000\t\t#kPa\n",
    "P1 = 100\t\t#kPa\n",
    "k = 1.4\n",
    "T2 = T1*(P2/P1)**(1-1/k)\t\t#K\n",
    "Cp = 1.004\t\t#Specific heat at constant pressure in kJ/kg\n",
    "wc = Cp*(T2-T1)\t\t#compressor work in kJ/kg\n",
    "print ('Temperature T2  =  %.1f K',T2)\n",
    "print (' Compressor work  =  %.1f kJ/kg ',wc)\n",
    "\t\t#3-Turbine Inlet\n",
    "\t\t#4-Turbine Exit\n",
    "P4 = P1\n",
    "P3 = P2\n",
    "T3 = 1373.2\t\t#K\n",
    "T4 = T3*(P4/P3)**(1-1/k)\t\t#K\n",
    "wt = Cp*(T3-T4)\n",
    "wnet = wt-wc\n",
    "print (' Temperature T3  =  %.1f K',T3)\n",
    "print (' Temperature T4  =  %.1f K',T4)\n",
    "print (' Turbine work  =  %.1f kJ/kg',wt)\n",
    "print (' Net work  =  %.1f kJ/kg',wt-wc)\n",
    "\t\t#2-Also high temperature heat exchanger Inlet\n",
    "\t\t#3-(-do-) Exit\n",
    "qh = Cp*(T3-T2)\t\t#Heat of source in kJ/kg\n",
    "\t\t#4-high temp heat exchanger inlet\n",
    "\t\t#1-(-do-) Exit\n",
    "ql = Cp*(T4-T1)\t\t#Heat of sink in kJ/kg\n",
    "nth = wnet/qh\n",
    "print (' Thermal Efficiency of cycle  =  %.1f percent',nth*100)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Example 2"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 14,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "('Temperature T2  =  %.1f K', 623.4838568301909)\n",
      "(' Compressor work  =  %.1f kJ/kg ', 336.6249922575117)\n",
      "(' Temperature T3  =  %.1f K', 1373.2)\n",
      "(' Temperature T4  =  %.1f K', 810.5386435092256)\n",
      "(' Turbine work  =  %.1f kJ/kg', 564.9120019167375)\n",
      "(' Net work  =  %.1f kJ/kg', 228.28700965922582)\n",
      "(' Thermal Efficiency of cycle  =  %.1f percent', 30.32847854912508)\n"
     ]
    }
   ],
   "source": [
    "# -*- coding: utf8 -*-\n",
    "from __future__ import division\n",
    "#Example: 12.2\n",
    "'''  '''\n",
    "\n",
    "#Variable Declaration: \n",
    "\t\t#Standard brayton cycle\n",
    "\n",
    "\n",
    "\t\t#Calculation mistake in book\n",
    "\t\t#1-Inlet for compressor\n",
    "\t\t#2-Exit for compressor\n",
    "\t\t#T-Temperature at a state\n",
    "\t\t#P-Pressure at a state\n",
    "T1 = 288.2\t\t#K\n",
    "P2 = 1000\t\t#kPa\n",
    "P1 = 100\t\t#kPa\n",
    "k = 1.4\n",
    "T2s = T1*(P2/P1)**(1-1/k)\t\t#K\n",
    "nc = .80\t\t#Compressor Efficiency\n",
    "T2 = T1+(T2s-T1)/0.80\n",
    "Cp = 1.004\t\t#Specific heat at constant pressure in kJ/kg\n",
    "wc = Cp*(T2-T1)\t\t#compressor work in kJ/kg\n",
    "print ('Temperature T2  =  %.1f K',T2)\n",
    "print (' Compressor work  =  %.1f kJ/kg ',wc)\n",
    "\t\t#3-Turbine Inlet\n",
    "\t\t#4-Turbine Exit\n",
    "P4 = P1\n",
    "P3 = P2\n",
    "T3 = 1373.2\t\t#K\n",
    "T4s = T3*(P4/P3)**(1-1/k)\t\t#K\n",
    "nt = 0.85\t\t#turbine Efficiency\n",
    "T4 = T3-(T3-T4s)*0.85\n",
    "wt = Cp*(T3-T4)\n",
    "wnet = wt-wc\n",
    "print (' Temperature T3  =  %.1f K',T3)\n",
    "print (' Temperature T4  =  %.1f K',T4)\n",
    "print (' Turbine work  =  %.1f kJ/kg',wt)\n",
    "print (' Net work  =  %.1f kJ/kg',wt-wc)\n",
    "\t\t#2-Also high temperature heat exchanger Inlet\n",
    "\t\t#3-(-do-) Exit\n",
    "qh = Cp*(T3-T2)\t\t#Heat of source in kJ/kg\n",
    "\t\t#4-high temp heat exchanger inlet\n",
    "\t\t#1-(-do-) Exit\n",
    "ql = Cp*(T4-T1)\t\t#Heat of sink in kJ/kg\n",
    "nth = wnet/qh\n",
    "print (' Thermal Efficiency of cycle  =  %.1f percent',nth*100)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Example 3"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 15,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "('Thermal efficiency  =  %.1f percent', 59.42413919202417)\n"
     ]
    }
   ],
   "source": [
    "# -*- coding: utf8 -*-\n",
    "from __future__ import division\n",
    "#Example: 12.3\n",
    "'''  '''\n",
    "\n",
    "#Variable Declaration: \n",
    "\n",
    "\n",
    "wnet = 395.2\t\t#kJ/kg from example no 1\n",
    "\t\t#Tx = T4\n",
    "Tx = 710.8\t\t#K from example no 1\n",
    "T3 = 1373.2\t\t#K from example no 1\n",
    "Cp = 1.004\t\t#specific heat in kJ/kg \n",
    "qh = Cp*(T3-Tx)\n",
    "nth = wnet/qh\n",
    "print ('Thermal efficiency  =  %.1f percent',nth*100) "
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Example 4"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 18,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "('Isothermal work in compressor  =  %.1f kJ/kg ', -190.4546418308537)\n",
      "(' Isothermal work in turbine  =  %.1f kJ/kg', 907.4681268637344)\n"
     ]
    }
   ],
   "source": [
    "# -*- coding: utf8 -*-\n",
    "from __future__ import division\n",
    "#Example: 12.4\n",
    "'''  '''\n",
    "from math import log\n",
    "#Variable Declaration: \n",
    "\n",
    "\n",
    "R = 0.287\t\t#gas constant \n",
    "T1 = 288.2\t\t#compressor temperature K\n",
    "T2 = 1373.2\t\t#K turbine temperature K\n",
    "\t\t#Pe/Pi = c = 10, Pi/Pe = 1/c from example 12.1\n",
    "c = 10\n",
    "wc = -R*T1*log(c)\n",
    "print ('Isothermal work in compressor  =  %.1f kJ/kg ',wc)\n",
    "wt = -R*T2*log(1/c)\n",
    "print (' Isothermal work in turbine  =  %.1f kJ/kg',wt) "
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Example 5"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 20,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "('Velocity of air leaving the nozel  =  %.0f m/s', 889.4375751001304)\n"
     ]
    }
   ],
   "source": [
    "# -*- coding: utf8 -*-\n",
    "from __future__ import division\n",
    "#Example: 12.5\n",
    "'''  '''\n",
    "from math import sqrt\n",
    "#Variable Declaration: \n",
    "\n",
    "\n",
    "\t\t#1-compressor inlet\n",
    "\t\t#2-Compressor exit\n",
    "\t\t#P-Pressure at given point\n",
    "\t\t#T-Temperature at given point\n",
    "P1 = 100\t\t#kPa\n",
    "P2 = 1000\t\t#kPa\n",
    "T1 = 288.2\t\t#K\n",
    "T2 = 556.8\t\t#K\n",
    "wc = 269.5\t\t#from ex 12.1 work done in compressor in kJ/kg\n",
    "\t\t#2-Burner inlet\n",
    "\t\t#3-Burner exit\n",
    "P3 = 1000\t\t#kPa\n",
    "T3 = 1373.2\t\t#K\n",
    "\t\t#wc = wt\n",
    "Cp = 1.004\t\t#specific enthalpy of heat at constant pressure in kJ/kg\n",
    "k = 1.4\n",
    "T4 = T3-wc/Cp\n",
    "P4 = P3*(T4/T3)**(1-1/k)\n",
    "\t\t#from s4 = s5 and h4 = h5+v2/2 we get\n",
    "T5 = 710.8\t\t#K, from second law\n",
    "v = sqrt(2*Cp*1000*(T4-T5))\t\t#m/s\n",
    "print ('Velocity of air leaving the nozel  =  %.0f m/s',v)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Example 6"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 22,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "('Coefficient of performance  =  %.3f ', 1.712857850240205)\n",
      "(' Rate at which the air enter the compressor  =  %.3f kg/s ', 0.013985866348928795)\n"
     ]
    }
   ],
   "source": [
    "# -*- coding: utf8 -*-\n",
    "from __future__ import division\n",
    "#Example: 12.6\n",
    "'''  '''\n",
    "\n",
    "#Variable Declaration: \n",
    "\n",
    "\n",
    "\t\t#1-compressor inlet\n",
    "\t\t#2-compressor exit\n",
    "P1 = 100\t\t#kPa\n",
    "P2 = 500\t\t#kPa\n",
    "k = 1.4\n",
    "rp = P2/P1\n",
    "cop = (rp**(1-1/k)-1)**-1\n",
    "print ('Coefficient of performance  =  %.3f ',cop)\n",
    "\t\t#3-Expander inlet\n",
    "\t\t#4-Expander exit\n",
    "P3 = P2\n",
    "P4 = P1\n",
    "T3 = 288.23\t\t#K, given and fixed\n",
    "T4 = T3/(P3/P4)**(1-1/k)\n",
    "T1 = 253.2\t\t#K, given\n",
    "Cp = 1.004\t\t#Specific heat at cons pressure in kJ/kg\n",
    "ql = Cp*(T1-T4)\t\t#heat released in kJ/kg\n",
    "P = 1\t\t#power required in kW \n",
    "ms = P/ql\t\t#kg/s\n",
    "print (' Rate at which the air enter the compressor  =  %.3f kg/s ',ms) "
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Example 7"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 23,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Temperature at compressor exit, T2  =  %.1f K  723.925669561\n",
      " Pressure at compressor exit, P2  =  %.3f MPa   2.51188643151\n",
      " Initial Temperature during heat additon process, T3  =  %.0f K  3234.38592061\n",
      " Initial pressure during heat addition process, P3  =  %.3f MPa  11.222713118\n",
      "  Final temperature during heat addition process, T4  =  %.1f K  1287.63222733\n",
      " Final pressure during heat addition process, P4  =  %.4f MPa  0.446784256534\n",
      " Thermal efficiency  =  %.1f percent  96.0189282945\n",
      " Mean effective pressure  =  %.0f kPa  1455.36957602\n"
     ]
    }
   ],
   "source": [
    "# -*- coding: utf8 -*-\n",
    "from __future__ import division\n",
    "#Example: 12.7\n",
    "'''  '''\n",
    "\n",
    "#Variable Declaration: \n",
    "\n",
    "\n",
    "\t\t#1-compressor inlet\n",
    "\t\t#2-compressor exit\n",
    "P1 = 100\t\t#kPa\n",
    "T1 = 288.2\t\t#K\n",
    "R = 0.287\t\t#gas constant\n",
    "v1 = R*T1/P1\t\t#specific volume at inlet in m**3/kg\n",
    "rv = 10\t\t#compression ratio given\n",
    "k = 1.4\t\t#constant\n",
    "T2 = T1*rv**(k-1)\t\t#K\n",
    "print 'Temperature at compressor exit, T2  =  %.1f K ',T2\n",
    "P2 = P1*rv**k\t\t#kPa\n",
    "print ' Pressure at compressor exit, P2  =  %.3f MPa  ',P2/1000\n",
    "v2 = v1/rv\t\t#specific heat at exit in m**3/kg\n",
    "\t\t#23-heat addition process\n",
    "\t\t#q23 = Cv*(T3-T2) = 1800 kJ/kg given\n",
    "q23 = 1800\t\t#kJ/kg heat addition, given\n",
    "Cv = 0.717\t\t#specific heat at constant volume in kJ/kg\n",
    "T3 = T2+q23/Cv\t\t#K\n",
    "print ' Initial Temperature during heat additon process, T3  =  %.0f K ',T3\n",
    "P3 = P2*(T3/T2)\t\t#kPa\n",
    "print  ' Initial pressure during heat addition process, P3  =  %.3f MPa ',P3/1000\n",
    "r = 10\t\t#k = V4/V3 = P3/P4\n",
    "T4 = T3*(1/r)**(k-1)\n",
    "print '  Final temperature during heat addition process, T4  =  %.1f K ',T4\n",
    "P4 = P3/r**k\t\t#kPa\n",
    "print ' Final pressure during heat addition process, P4  =  %.4f MPa ',P4/1000\n",
    "nth = 1-1/r**k\t\t#thermal efficiency\n",
    "print ' Thermal efficiency  =  %.1f percent ',nth*100\n",
    "q41 = Cv*(T1-T4)\t\t#/heat for process 4-1 in kJ/kg\n",
    "wnet = q23+q41\n",
    "mep = wnet/(v1-v2)\t\t#effective mean pressure n kPa\n",
    "print ' Mean effective pressure  =  %.0f kPa ',mep"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Example 8"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 24,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Temperature at compressor exit, T2  =  %.1f K  955.225647797\n",
      " Pressure at compressor exit, P2  =  %.3f MPa   6.62890803468\n",
      " Initial Temperature during heat addition process, T3  =  %.0f K  2748.05433306\n",
      " Final temperature during heat addition process, T4  =  %.0f K  1265.26371322\n",
      " Thermal efficiency  =  %.1f percent  61.0802954233\n",
      " Mean effective pressure  =  %.0f kPa  1399.18182622\n"
     ]
    }
   ],
   "source": [
    "# -*- coding: utf8 -*-\n",
    "from __future__ import division\n",
    "#Example: 12.8\n",
    "'''  '''\n",
    "\n",
    "#Variable Declaration: \n",
    "\n",
    "\n",
    "\t\t#1-compressor inlet\n",
    "\t\t#2-compressor exit\n",
    "P1 = 100\t\t#kPa\n",
    "T1 = 288.2\t\t#K\n",
    "R = 0.287\t\t#gas constant\n",
    "v1 = R*T1/P1\t\t#specific volume at inlet in m**3/kg\n",
    "rv = 20\t\t#compression ratio given\n",
    "k = 1.4\t\t#constant\n",
    "T2 = T1*rv**(k-1)\t\t#K\n",
    "print 'Temperature at compressor exit, T2  =  %.1f K ',T2\n",
    "P2 = P1*rv**k\t\t#kPa\n",
    "print ' Pressure at compressor exit, P2  =  %.3f MPa  ',P2/1000\n",
    "v2 = v1/rv\t\t#specific heat at exit in m**3/kg\n",
    "\t\t#23-heat addition process\n",
    "\t\t#q23 = Cv*(T3-T2) = 1800 kJ/kg given\n",
    "q23 = 1800\t\t#kJ/kg heat addition, given\n",
    "Cv = .717\n",
    "Cp = 1.004\t\t#specific heat at constant pressure in kJ/kg\n",
    "T3 = T2+q23/Cp\t\t#K\n",
    "print ' Initial Temperature during heat addition process, T3  =  %.0f K ',T3\n",
    "r = T3/T2\t\t#T3/T2 = V3/V2 = r\n",
    "v3 = r*v2\n",
    "T4 = T3/(v1/v3)**(k-1)\n",
    "print ' Final temperature during heat addition process, T4  =  %.0f K ',T4\n",
    "q41 = Cv*(T1-T4)\t\t#/heat for process 4-1 in kJ/kg\n",
    "wnet = q23+q41\n",
    "mep = wnet/(v1-v2)\t\t#effective mean pressure in kPa\n",
    "qh = 1800\t\t#heat transfer in kJ/kg\n",
    "nth = wnet/qh\t\t#thermal efficiency\n",
    "\n",
    "print ' Thermal efficiency  =  %.1f percent ',nth*100\n",
    "print ' Mean effective pressure  =  %.0f kPa ',mep"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 2",
   "language": "python",
   "name": "python2"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 2
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython2",
   "version": "2.7.6"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 0
}