{ "cells": [ { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "# Chapter 09:Heat transfer in condensation and boiling" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex9.1:pg-392" ] }, { "cell_type": "code", "execution_count": 17, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Introduction to heat transfer by S.K.Som, Chapter 9, Example 1\n", "The properties of condensate(liquid water) are evaluated at the mean film temprature \n", "The mean film temprature in°C is\n", "tf= 95\n", "hfg= 2270000.0\n", "The average heat transfer coefficient over length L in W/(m**2*K)\n", "hbar= 0.745\n", "The rate of heat transfer per unit width in W/m \n", "Q= 3.772\n", "The total rate of condensation in kg/(s*m)\n", "mdotc= 1.66167400881e-06\n", "We have to check whether the flow is laminar or not \n", "Reynolds no. is\n", "Therefore the flow is laminar and hence the use of the equation is justified\n", "ReL= 0.0221556534508\n" ] } ], "source": [ " \n", " \n", " \n", " \n", "import math\n", " \n", "print\"Introduction to heat transfer by S.K.Som, Chapter 9, Example 1\"\n", "#A vertical cooling fin, Approximately a flat plate length,(L)=0.4m high is exposed to saturated steam(temprature,Tg=100°C) at atmospheric pressure.\n", "L=0.4;\n", "Tg=100;\n", "#The fin is maintained at temprature,Tw=90°C by cooling water.\n", "Tw=90;\n", "print\"The properties of condensate(liquid water) are evaluated at the mean film temprature \"\n", "#tf is mean film temprature\n", "print\"The mean film temprature in°C is\"\n", "tf=(Tg+Tw)/2\n", "print\"tf=\",tf\n", "#The properties of condensate are density(rho=962kg/m**3),conductivity(k=0.677W/(m*K)),viscosity(mu=3*10**-4 kg/(m*s))\n", "rho=962;\n", "k=0.677;\n", "mu=3*10**-4;\n", "#The value rhov=0.598kg/m**3 and hfg=2.27*10**6J/kg at 100°C are found from steam table\n", "#g is acceleration due to gravity =9.81m/s**2\n", "g=9.81;\n", "rhov=0.598;#rhov is vapour density\n", "hfg=2.27*10**6;#hfg is enthalpy of vaporisation\n", "print\"hfg=\",hfg\n", "#The average heat transfer coefficient over length L is hbarL=0.943*((rho*(rho-rhov)*g*h*L**3)/(mu*k*(Tg-Tw)))**(1/4)\n", "print\"The average heat transfer coefficient over length L in W/(m**2*K)\"\n", "hbarL=0.943*((rho*(rho-rhov)*g*hfg*k**3)/(mu*L*(Tg-Tw)))**(1/4)\n", "print\"hbar=\",hbar\n", "#The rate of heat transfer per unit width is Q=hbarL*L*(Tg-Tw)\n", "print\"The rate of heat transfer per unit width in W/m \"\n", "Q=hbarL*L*(Tg-Tw)\n", "print\"Q=\",Q\n", "#The rate of condensation is given by mdotc=(Q/hfg)\n", "print\"The total rate of condensation in kg/(s*m)\"\n", "mdotc=(Q/hfg)\n", "print\"mdotc=\",mdotc\n", "print\"We have to check whether the flow is laminar or not \"\n", "#Reynolds no is given by ReL=(4*mdotc)/(mu)\n", "print\"Reynolds no. is\"\n", "ReL=(4*mdotc)/(mu)\n", "print\"Therefore the flow is laminar and hence the use of the equation is justified\"\n", "print\"ReL=\",ReL\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex9.2:pg-393" ] }, { "cell_type": "code", "execution_count": 16, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Introduction to heat transfer by S.K.Som, Chapter 9, Example 2\n", "The mean film temprature in°C is\n", "tf= 95\n", "hfg= 2270000.0\n", "The average heat transfer coefficient in W/(m**2*K)\n", "hbar= 0.745\n", "The total rate of condensation in kg/s\n", "Check for reynolds no.\n", "mdotc= 1.54657700017e-06\n", "Reynolds number is\n", "Re= 0.00343683777816\n" ] } ], "source": [ " \n", " \n", " \n", " \n", "import math\n", " \n", "print\"Introduction to heat transfer by S.K.Som, Chapter 9, Example 2\"\n", "#Steam is condensed at temprature(Tg=100°C) on the outer surafce of a horizontal tube of length(L=3m) and diameter(d)=50mm or .05m\n", "Tg=100;\n", "L=3;\n", "D=0.05;\n", "#The Tube surface is maintained at temprature,Tw=90°C \n", "Tw=90;\n", "#tf is mean film temprature\n", "print\"The mean film temprature in°C is\"\n", "tf=(Tg+Tw)/2\n", "print\"tf=\",tf\n", "#The properties of condensate are density(rho=962kg/m**3),conductivity(k=0.677W/(m*K)),viscosity(mu=3*10**-4 kg/(m*s))\n", "rho=962;\n", "k=0.677;\n", "mu=3*10**-4;\n", "#The value rhov=0.598kg/m**3 and hfg=2.27*10**6J/kg at 100°C are found from steam table\n", "#g is acceleration due to gravity =9.81m/s**2\n", "g=9.81;\n", "rhov=0.598;#vapour density\n", "hfg=2.27*10**6;#enthalpy of vaporisation\n", "print\"hfg=\",hfg\n", "#The average heat transfer coefficient hbar=0.745*((rho*(rho-rhov)*g*hfg*k**3)/(mu*D*(Tg-Tw)))**(1/4)\n", "print\"The average heat transfer coefficient in W/(m**2*K)\"\n", "hbar=0.745*((rho*(rho-rhov)*g*hfg*k**3)/(mu*D*(Tg-Tw)))**(1/4)\n", "print\"hbar=\",hbar\n", "#The rate of condensation is given by mdotc=(hbar*(pi*D*L)*(Tg-Tw))/hfg\n", "print\"The total rate of condensation in kg/s\"\n", "mdotc=(hbar*(math.pi*D*L)*(Tg-Tw))/hfg\n", "print\"Check for reynolds no.\"\n", "print\"mdotc=\",mdotc\n", "#For a horizontal tube having length,L,perimeter is P=2L\n", "P=2*L;\n", "#Re is reynolds number\n", "print\"Reynolds number is\"\n", "Re=(4*mdotc)/(mu*P)\n", "print\"Re=\",Re\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex9.3:pg-394" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Introduction to heat transfer by S.K.Som, Chapter 9, Example 3\n", "The mean film temprature in°C is\n", "tf= 80\n", "The average heat transfer coefficient over length L in W/(m**2*K)\n", "hbar= 0.943\n", "The rate of heat transfer in kW \n", "Q= 0.016974\n", "(b)The film thickness at the trailing edges in m is\n", "delta= 1.0\n", "The total rate of condensation in kg/s\n", "mdotc= 7.47753303965e-06\n", "Hence the average flow velocity at the trailing edge in m/s is\n", "v= 2.56431174199e-08\n" ] } ], "source": [ " \n", " \n", " \n", " \n", "import math\n", " \n", "print\"Introduction to heat transfer by S.K.Som, Chapter 9, Example 3\"\n", "#A vertical plate having length,(L)=1.5m is maintained at temprature(Tw) of 60°C in the presence of saturated steam(temprature,Tg=100°C) at atmospheric pressure.\n", "L=1.5;\n", "Tg=100;\n", "Tw=60;\n", "#Consider the width of plate to be (B)=0.3m\n", "B=0.3;\n", "#tf is the mean film temprature\n", "print\"The mean film temprature in°C is\"\n", "tf=(Tg+Tw)/2\n", "print\"tf=\",tf\n", "#The relevant properties are desity(rho=972kg/m**3),conductivity(k=0.670W/(m*K)),viscosity(mu=3.54*10**-4 kg/(m*s))\n", "#specific heat(cp=4.2J/(kg*K)),vapur density(rhov(100°C)=0.598k/m**3),Enthalpy of vaporisation(hfg(100°C)=2.27*10**6J/kg)\n", "#g is acceleration due to gravity =9.81m/s**2\n", "g=9.81;\n", "rho=972;\n", "k=0.670;\n", "mu=3.54*10**-4;\n", "cp=4.2;\n", "rhov=0.598;\n", "hfg=2.27*10**6;\n", "#The average heat transfer coefficient over length L is hbar=0.943*((rho*(rho-rhov)*g*h*L**3)/(mu*k*(Tg-Tw)))**(1/4)\n", "print\"The average heat transfer coefficient over length L in W/(m**2*K)\"\n", "hbar=0.943*((rho*(rho-rhov)*g*hfg*k**3)/(mu*L*(Tg-Tw)))**(1/4)\n", "print\"hbar=\",hbar\n", "#The rate of heat transfer Q=hbarL*A*(Tg-Tw)\n", "#Area(A)=L*B\n", "A=L*B;\n", "print\"The rate of heat transfer in kW \"\n", "Q=(hbar*A*(Tg-Tw))/1000\n", "print\"Q=\",Q\n", "#The film thickness at the trailing edges is found out by delta=((4*mu*k*x*(Tg-Tw))/(g*hfg*rho*(rho-rhov)))**(1/4)\n", "print\"(b)The film thickness at the trailing edges in m is\"\n", "#at trailing edges x=1.5m\n", "x=1.5;\n", "delta=((4*mu*k*x*(Tg-Tw))/(g*hfg*rho*(rho-rhov)))**(1/4)\n", "print\"delta=\",delta\n", "#The rate of condensation is given by mdotc=(Q/hfg)\n", "print\"The total rate of condensation in kg/s\"\n", "mdotc=((Q*1000)/hfg)\n", "print\"mdotc=\",mdotc\n", "#v is the average flow velocity\n", "print\"Hence the average flow velocity at the trailing edge in m/s is\"\n", "v=(mdotc)/(rho*delta*B)\n", "print\"v=\",v\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex9.4:pg-396" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Introduction to heat transfer by S.K.Som, Chapter 9, Example 4\n", "The mean film temprature in°C is\n", "tf= 30\n", " Modified enthalpy in J/kg is\n", "hfgdash= 131330.0\n", "The average heat transfer coefficient over length L in W/(m**2*K)\n", "hbar= 0.555\n", "The total rate of condensation in kg/hr\n", "mdotc= 0.00716923260703\n" ] } ], "source": [ " \n", " \n", " \n", " \n", "import math\n", " \n", "print\"Introduction to heat transfer by S.K.Som, Chapter 9, Example 4\"\n", "#Saturated freon-012 at Temprature(Tg)=35°C is condensed horizontal tube of diameter(D)=15mm or.015m at a lower vapour velocity.\n", "#length,L=1m,Since per meter of tube is considered.\n", "L=1;\n", "Tg=35;\n", "D=0.015;\n", "#The tube wall is maintained at temprature(Tw)=25°C\n", "Tw=25;\n", "#For freon-12 at 35°C,enthalpy of vaporisation(hfg=131.33kJ/kg) and vapour density(rhov=42.68kg/m**3)\n", "hfg=131.33*10**3;\n", "rhov=42.68;\n", "#tf is mean film temprature\n", "print\"The mean film temprature in°C is\"\n", "tf=(Tg+Tw)/2\n", "print\"tf=\",tf\n", "#The relevant properties at 30°C are density(rho=1.29*10**3kg/m**3),conductivity(k=0.071W/(mK)),viscosity(mu=2.50*10**-4kg/(m*s)),specific heat(cp=983J/(kg*°C))\n", "rho=1.29*10**3;\n", "k=0.071;\n", "mu=2.50*10**-4;\n", "cp=983;\n", "#g is acceleration due to gravity =9.81m/s**2\n", "g=9.81;\n", "#we found the modified enthalpy by using following equation hfgdash=hfg+(3/8)*cp*(Tg-Tw)\n", "print\" Modified enthalpy in J/kg is\"\n", "hfgdash=hfg+((3/8)*cp*(Tg-Tw))\n", "print\"hfgdash=\",hfgdash\n", "#The average heat transfer coefficient over length L is hbar=0.555*((rho*(rho-rhov)*g*hfgdash*k**3)/(mu*D*(Tg-Tw)))**(1/4)\n", "print\"The average heat transfer coefficient over length L in W/(m**2*K)\"\n", "hbar=0.555*((rho*(rho-rhov)*g*hfgdash*k**3)/(mu*D*(Tg-Tw)))**(1/4)\n", "print\"hbar=\",hbar\n", "#The rate of condensation is given by mdotc=(hbar*(pi*D*L)*(Tg-Tw))/hfg\n", "print\"The total rate of condensation in kg/hr\"\n", "mdotc=((hbar*(math.pi*D*L)*(Tg-Tw))/hfg)*3600\n", "print\"mdotc=\",mdotc\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex9.5:pg-397" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Introduction to heat transfer by S.K.Som, Chapter 9, Example 5\n", "Heat transfer coefficient in W/m**2 is\n", "h= 105042.262441\n" ] } ], "source": [ " \n", " \n", " \n", " \n", "import math\n", " \n", "print\"Introduction to heat transfer by S.K.Som, Chapter 9, Example 5\"\n", "#A nickel wire of length(L)=0.1m,Diameter(D)=1mm or .001m \n", "#Submerged horizontally in water at pressure=1 atm(101kPa) requires current,I=150A at voltage ,E=2.2V to maintain wire at temprature(T1)=110°C\n", "L=0.1;\n", "T1=110;\n", "D=0.001;\n", "I=150;\n", "E=2.2;\n", "#Area(A)=(math.pi*D*L)\n", "A=math.pi*D*L;\n", "#The saturation temprature of water at one atmospheric pressure(101kPa) is T2=100°C.\n", "T2=100;\n", "#We can write from energy balance E*I=h*A*(T1-T2),we can find heat transfer coefficient from it.\n", "#h is heat transfer coefficient\n", "print\"Heat transfer coefficient in W/m**2 is\"\n", "h=(E*I)/(A*(T1-T2))\n", "print\"h=\",h\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex9.6:pg-398" ] }, { "cell_type": "code", "execution_count": 18, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Introduction to heat transfer by S.K.Som, Chapter 9, Example 6\n", "Critical Heat flux in W/m**2 is\n", "qc= 202044.0\n", "The burn out voltage in Volts is \n", "E= 1.90421983831\n" ] } ], "source": [ " \n", " \n", " \n", " \n", "import math\n", " \n", "print\"Introduction to heat transfer by S.K.Som, Chapter 9, Example 6\"\n", "#In a laboratory experiment,A current(I)=100A burns out a nickel wire having Diameter(D)=1mm or 0.001mm,length(L)=0.3m\n", "I=100;\n", "D=.001;\n", "L=0.3;\n", "#It is submerged horizontally in water at one atmospheric pressure.\n", "#For saturated water at one atmospheric pressure,density(rhol=960kg/m**3),vapour density(rhov=0.60kg/m**3),enthalpy of vaporisation(hfg=2.26*10**6J/kg),surface tension(sigma=0.055N/m).\n", "rhol=960;\n", "rhov=0.60;\n", "hfg=2.26*10**6;\n", "sigma=0.055;\n", "#Area(A)=(pi*D*L)\n", "A=math.pi*D*L;\n", "#g is acceleration due to gravity =9.81m/s**2\n", "g=9.81;\n", "#The wire is burnt out when heat reaches its peak\n", "#We use following expression to determine critical heat flux qc=0.149*hfg*rhov*((sigma*g*(rhol-rhov))/rhov**2)**(1/4)*((rhol+rhov)/rhol)**(1/2) \n", "print\"Critical Heat flux in W/m**2 is\"\n", "qc=0.149*hfg*rhov*((sigma*g*(rhol-rhov))/rhov**2)**(1/4)*((rhol+rhov)/rhol)**(1/2) \n", "print\"qc=\",qc\n", "#From the energy balance E*I=qc*A\n", "#E is the burn out voltage\n", "print\"The burn out voltage in Volts is \"\n", "E=(qc*A)/I\n", "print\"E=\",E\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex9.7:pg-399" ] }, { "cell_type": "code", "execution_count": 19, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Introduction to heat transfer by S.K.Som, Chapter 9, Example 7\n", "Heat flux q in W/m**2 is\n", "The peak heat flux for water at one atmospheric pressure is qc=1.24*10**6(found in example 9.6).Since q