{ "metadata": { "name": "", "signature": "sha256:6bef06309f2dc6c34cb3f6505e0a7b5381887b6e742832b02487100464da77a5" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter5, Inverters" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.3.1: page 5-8" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import pi, sqrt\n", "#Maximum frequency\n", "#given data :\n", "T_off=100 # in micro-sec\n", "L=40 # in micro-H\n", "C=5 # in micro-farad\n", "R=4 #in ohm\n", "Tr=((2*pi)/sqrt((1/(C*10**-6*L*10**-6))-(R**2/(4*(L*10**-6)**2))))*10**6 \n", "f=(1/(Tr+T_off))*10**3 \n", "print \"maximum frequency, f = %0.3f kHz \" %f" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "maximum frequency, f = 4.431 kHz \n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.12.1: page 5-37" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from __future__ import division\n", "from numpy import arange, pi, sqrt, nditer, array\n", "#rms output voltage,output power, average and peak currents,peak reverse blocking voltage,\n", "#THD,DF,harmonic factor and distortion factor of the lowest order harmonic\n", "print \"part (a)\"\n", "v=24 #in volts\n", "V=v #\n", "r=3 #in ohms\n", "v1rms=(2*v)/(sqrt(2)*pi) #in volts\n", "print \"rms output voltage at fundamental frequency = %0.2f V\" %v1rms\n", "print \"part (b)\"\n", "po=((v/2)**2)/r #in watts\n", "print \"output power = %0.2f Watt\" %po\n", "print \"part (c)\"\n", "itav=(v/(4*r)) #in amperes\n", "itp=((v/2)/r) #in amperes\n", "print \"average transistor current = %0.2f A\" %itav\n", "print \"transistor peak current = %0.2f A\" %itp\n", "print \"part (d)\"\n", "vbr=2*(v/2) #in volts\n", "print \"peak reverse blocking voltage = %0.2f V\" %vbr\n", "print \"part (e)\"\n", "vo=v/2 #\n", "THD1=((vo)**2-(v1rms)**2)**(1/2) #in volts\n", "THD=THD1/v1rms #\n", "print \"Total Hramonic distortion = %0.2f %%\" %(THD*100)\n", "print \"part (f)\"\n", "n=array([0,0,(1/3),0,(1/5),0,(1/7),0,(1/9),0,(1/11),0,(1/13)]) #\n", "i = arange(3,15,2)\n", "def fun1(n):\n", " it = nditer([n, None])\n", " for x,y in it:\n", " y[...] = 2*V*x/pi/sqrt(2)\n", " return it.operands[1]\n", "v = fun1(n)\n", "x=sqrt((((v[2])/(3**2))**2)+(((v[4])/(5**2))**2)+(((v[6])/(7**2))**2)+(((v[8])/(9**2))**2)+(((v[10])/(11**2))**2)+(((v[12])/(13**2))**2)) #\n", "DF=x/v1rms #\n", "print \"distortion factor = %0.2f %%\" %(DF*100)\n", "#distortion factor is calculated wrong in the textbook\n", "print \"part (g)\"\n", "HF3=v[2]/v1rms #\n", "DF3=((v[2]/(3**2)))/v1rms\n", "print \"HF for the third harmonic = %0.2f %%\" %(HF3*100)\n", "print \"DF the third harmonic = %0.2f %%\" %(DF3*100)\n", "# answer for part f is wrong in the textbook." ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "part (a)\n", "rms output voltage at fundamental frequency = 10.80 V\n", "part (b)\n", "output power = 48.00 Watt\n", "part (c)\n", "average transistor current = 2.00 A\n", "transistor peak current = 4.00 A\n", "part (d)\n", "peak reverse blocking voltage = 24.00 V\n", "part (e)\n", "Total Hramonic distortion = 48.34 %\n", "part (f)\n", "distortion factor = 3.80 %\n", "part (g)\n", "HF for the third harmonic = 33.33 %\n", "DF the third harmonic = 3.70 %\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.12.2: page 5-39" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#rms output voltage,output power,average and peak currents,peak reverse blocking voltage,\n", "#THD,DF,harmonic factor and distortion factor of the lowest order harmonic\n", "v=48 #in volts\n", "V=v #\n", "r=2.4 #in ohms\n", "v1rms=(4*v)/(sqrt(2)*pi) #in volts\n", "print \"part (a)\"\n", "print \"rms output voltage at fundamental frequency = %0.2f V\" %v1rms\n", "print \"part (b)\"\n", "po=((v)**2)/r #in watts\n", "print \"output power = %0.2f Watt\" %po\n", "print \"part (c)\"\n", "itav=(v/(r)) #in amperes\n", "itp=((v/2)/r) #in amperes\n", "print \"average transistor current = %0.2f A\" %itp\n", "print \"transistor peak current = %0.2f A\" %itav\n", "print \"part (d)\"\n", "vbr=2*(v/2) #in volts\n", "print \"peak reverse bloacking voltage = %0.2f V\" %vbr\n", "print \"part (e)\"\n", "vo=v #\n", "THD1=((vo)**2-(v1rms)**2)**(1/2) #in volts\n", "THD=THD1/v1rms #\n", "print \"Total Hramonic distortion = %0.2f %%\" %(THD*100)\n", "print \"part (f)\"\n", "n=array([0, 0, (1/3), 0, (1/5), 0, (1/7), 0, (1/9), 0, (1/11), 0, (1/13)]) #\n", "i = arange(3,15,2)\n", "def fun1(n):\n", " it = nditer([n, None])\n", " for x,y in it:\n", " y[...] = 2*V*x/pi/sqrt(2)\n", " return it.operands[1]\n", "v = fun1(n)\n", "x=sqrt((((v[2])/(3**2))**2)+(((v[4]/(5**2))**2)+(((v[6]/(7**2))**2)+(((v[8]/(9**2))**2)+\n", "(((v[10]/(11**2))**2)+(((v[12])/(13**2))**2)))))) #\n", "vorms=0.9\n", "DF=x/vorms #\n", "print \"distor factor = %0.2f %%\" %(DF*100)\n", "#distortion factor is calculated wrong in the textbook\n", "print \"part (g)\"\n", "HF3=2*v[2]/v1rms #\n", "DF3=2*((v[2]/(3**2)))/v1rms\n", "print \"HF for the third harmonic = %0.2f %%\" %(HF3*100)\n", "print \"DF the third harmonic = %0.2f %%\" %(DF3*100)\n", "# Answer not accurate for some part." ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "part (a)\n", "rms output voltage at fundamental frequency = 43.22 V\n", "part (b)\n", "output power = 960.00 Watt\n", "part (c)\n", "average transistor current = 10.00 A\n", "transistor peak current = 20.00 A\n", "part (d)\n", "peak reverse bloacking voltage = 48.00 V\n", "part (e)\n", "Total Hramonic distortion = 48.34 %\n", "part (f)\n", "distor factor = 91.32 %\n", "part (g)\n", "HF for the third harmonic = 33.33 %\n", "DF the third harmonic = 3.70 %\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.12.3: page 5-40" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#amplitude of the first three lower order harmonis\n", "#given data :\n", "v=200 #in volts\n", "n=array([(1/3), (1/5), (1/7)]) #\n", "def fun1(n):\n", " it = nditer([n, None])\n", " for x,y in it:\n", " y[...] = 4*v*x/pi/sqrt(2)\n", " return it.operands[1]\n", "vn = fun1(n)\n", "print \"Rms value of third harmonic component of output voltage = %0.2f V\" %round(vn[0])\n", "print \"Rms value of fifth harmonic component of output voltage = %0.2f V\" %round(vn[1])\n", "print \"Rms value of seventh harmonic component of output voltage = %0.2f V\" %(vn[2])" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Rms value of third harmonic component of output voltage = 60.00 V\n", "Rms value of fifth harmonic component of output voltage = 36.00 V\n", "Rms value of seventh harmonic component of output voltage = 25.72 V\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.12.4: page 5-42" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#amplitude of the first three lower order harmonis\n", "#given data :\n", "v=200 #in volts\n", "n=array([(1/3), (1/5), (1/7)]) #\n", "vo1rms=(2*v)/(sqrt(2)*pi) #in volts\n", "def fun1(n):\n", " it = nditer([n, None])\n", " for x,y in it:\n", " y[...] = 2*v*x/pi/sqrt(2)\n", " return it.operands[1]\n", "vn = fun1(n)\n", "print \"Vo1rms for half bridge circuit = %0.2f V\" %round(vo1rms)\n", "print \"Rms value of third harmonic component for half bridge circuit = %0.2f V\" %round(vn[0])\n", "print \"Rms value of fifth harmonic component for half bridge circuit = %0.2f V\" %round(vn[1])\n", "print \"Rms value of seventh harmonic component for half bridge circuit = %0.2f V\" %vn[2]\n", "print \"for bridge inverter\"\n", "vo1rms1=(4*v)/(sqrt(2)*pi) #in volts\n", "def fun2(n):\n", " \n", " it = nditer([n, None])\n", " for x,y in it:\n", " y[...] = 4*v*x/pi/sqrt(2)\n", " return it.operands[1]\n", "vn1 = fun2(n)\n", "print \"Vo1rms for half bridge circuit = %0.2f V\" %round(vo1rms1)\n", "print \"Rms value of third harmonic component for bridge inverter circuit = %0.2f V\" %round(vn1[0])\n", "print \"Rms value of fifth harmonic component for half bridge inverter circuit = %0.2f V\" %round(vn1[1])\n", "print \"Rms value of seventh harmonic component for half bridge inverter circuit = %0.2f V\" %vn1[2]" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Vo1rms for half bridge circuit = 90.00 V\n", "Rms value of third harmonic component for half bridge circuit = 30.00 V\n", "Rms value of fifth harmonic component for half bridge circuit = 18.00 V\n", "Rms value of seventh harmonic component for half bridge circuit = 12.86 V\n", "for bridge inverter\n", "Vo1rms for half bridge circuit = 180.00 V\n", "Rms value of third harmonic component for bridge inverter circuit = 60.00 V\n", "Rms value of fifth harmonic component for half bridge inverter circuit = 36.00 V\n", "Rms value of seventh harmonic component for half bridge inverter circuit = 25.72 V\n" ] } ], "prompt_number": 5 } ], "metadata": {} } ] }