{ "metadata": { "name": "", "signature": "sha256:6c3e9861fb7b86a80c4d5ca0c3d83de8fac426220f4a72ee4169a76eb0964c4c" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter10, Control of AC drives" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 10.15.1: page 10-42" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import pi\n", "#slip,the air gap power and efficiency\n", "#given data :\n", "w=100 # in rad/sec\n", "F1=50 #in Hz\n", "P=4 \n", "Ns=(120*F1)/P \n", "ws=2*pi*(Ns/60) \n", "s=((ws-w)/ws) \n", "print \"part (1)\"\n", "print \"slip is\", round(s,4),\" or \", round(s*100,2), \" % \"\n", "print \"part (2)\"\n", "T=100 # in N-M\n", "w=100 # in rad/sec\n", "Pag=ws*T \n", "P_slip=s*Pag \n", "P_mech=(1-s)*Pag \n", "print \"(a)the air gap power, pag = %0.f W\" %Pag\n", "print \"(b)slip power = %0.f W\" %P_slip\n", "print \"(c)Mech o/p power, P_mech = %0.f W\" %P_mech\n", "#air gap power is calculated wrong in the textbook\n", "print \"part (3)\"\n", "eta=(P_mech/Pag) \n", "print \"efficiency of the rotor circuit is\", round(eta,4),\" or\", round(eta*100,2),\" % \"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "part (1)\n", "slip is 0.3634 or 36.34 % \n", "part (2)\n", "(a)the air gap power, pag = 15708 W\n", "(b)slip power = 5708 W\n", "(c)Mech o/p power, P_mech = 10000 W\n", "part (3)\n", "efficiency of the rotor circuit is 0.6366 or 63.66 % \n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 10.15.2 :page 10-43" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from __future__ import division\n", "#voltage per phase,slip,slip frequency ,slip and rotor loss\n", "#given data :\n", "V_rms=240 # in volts\n", "F1=50 #in Hz\n", "Vs_rms=240/2 \n", "print \"part (1)\"\n", "print \"supply voltage = %0.2f V\"%Vs_rms\n", "print \"part (2)\"\n", "N=1440 # in rpm\n", "P=4 # pole\n", "Ns=(120*F1)/4 \n", "S=((Ns-N)/Ns) \n", "print \"slip is \", S, \" or\", S*100, \" % \"\n", "print \"part (3)\"\n", "S_frequency=S*F1 \n", "print \"slip frequency = %0.2f Hz\" %S_frequency\n", "print \"part (4)\"\n", "f=2 #Hz\n", "f1=25 #Hz\n", "s=(f/f1) #\n", "print \"slip is\", s, \" or\", s*100, \" % \"\n", "print \"part (5)\"\n", "F2=25 #in Hz\n", "S1=(S_frequency/F2) \n", "rotor_loss=S1/(1-S1) \n", "print \"Rotor loss = %0.4f %%\" %rotor_loss " ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "part (1)\n", "supply voltage = 120.00 V\n", "part (2)\n", "slip is 0.04 or 4.0 % \n", "part (3)\n", "slip frequency = 2.00 Hz\n", "part (4)\n", "slip is 0.08 or 8.0 % \n", "part (5)\n", "Rotor loss = 0.0870 %\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 10.15.6: page 10-45" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#voltage per phase , slip ,slip frequency and percentage rotor loss\n", "Ns1=750 #\n", "V_rms=240 # in volts\n", "f2=25 #Hz\n", "F1=50 #in Hz\n", "Vs_rms=240/2 \n", "N=1440 # in rpm\n", "P=4 # pole\n", "Ns=(120*F1)/4 \n", "S=((Ns-N)/Ns) \n", "S_frequency=S*F1 \n", "fs12=S_frequency/4 #\n", "S1=fs12/f2 \n", "rotor_loss=S1/(1-S1) \n", "n=Ns1-((S1*Ns1)) #\n", "print \"supply voltage = %0.2f V\" %Vs_rms\n", "print \"slip,S = %0.2f %%\"%(1*100)\n", "print \"slip frequency at 50Hz = %0.2f Hz\"%S_frequency\n", "print \"slip frequency at 25Hz = %0.2f Hz\"%fs12\n", "print \"Rotor loss = %0.2f %%\" %rotor_loss \n", "print \"speed = %0.2f rpm\" %n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "supply voltage = 120.00 V\n", "slip,S = 100.00 %\n", "slip frequency at 50Hz = 2.00 Hz\n", "slip frequency at 25Hz = 0.50 Hz\n", "Rotor loss = 0.02 %\n", "speed = 735.00 rpm\n" ] } ], "prompt_number": 3 } ], "metadata": {} } ] }