{
 "metadata": {
  "name": ""
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Chapter 8 : Measuring Devices"
     ]
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "example 8.4 page number 336"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "import math \n",
      "\n",
      "pressure_difference = 3.4          #in mm water\n",
      "pressure = 1.0133*10**5            #in pa\n",
      "temperatue = 293.        #in K\n",
      "mass_of_air = 29.       #in Kg\n",
      "\n",
      "density_air = pressure/(temperatue*8314)*mass_of_air      #in kg/m3\n",
      "print \"Density of air = %f kg/cu m\"%(density_air)\n",
      "\n",
      "delta_p = pressure_difference*9.8           #in pascal, acceleration due to gravity, g=9.8\n",
      "Height=4\n",
      "density_difference = delta_p/(9.8*Height);\n",
      "print \"Density difference = %f kg/cu m\"%(density_difference)\n",
      "\n",
      "density_mixture= density_air-density_difference;      #in kg/m3\n",
      "print \"Density of mixture = %f kg/cu m\"%(density_mixture)\n",
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Density of air = 1.206309 kg/cu m\n",
        "Density difference = 0.850000 kg/cu m\n",
        "Density of mixture = 0.356309 kg/cu m\n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "example 8.5 page number 341\n"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "import math \n",
      "\n",
      "diameter=0.6;     #in m\n",
      "disk_distance=1.25*10**-3;    #in m\n",
      "speed=5.;      #revolutions/min\n",
      "torque=11.5;  #in Joules\n",
      "\n",
      "viscosity=(2*disk_distance*torque)/(3.14*(10*3.14)*(diameter/2)**4);\n",
      "\n",
      "print \"viscosity = %f Pa-s\"%(viscosity)\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "viscosity = 0.035999 Pa-s\n"
       ]
      }
     ],
     "prompt_number": 2
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "example 8.6 page number 342\n"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "import math \n",
      "diameter =10.;               #in mm\n",
      "density_of_solution = 1750.;     #in kg/m3\n",
      "density_of_air = 1.2;           #in kg/m3\n",
      "velocity = 0.9;          #in mm/s\n",
      "\n",
      "viscosity = (density_of_solution-density_of_air)*9.8*(diameter*10**-3)**2/(18*velocity*10**-3);         #expression for finding viscosity\n",
      "\n",
      "print \"viscosity of solution = %f Pa-s\"%(viscosity)\n",
      "\n",
      "\n",
      "v=(0.2*viscosity)/(density_of_solution*diameter*10**-3);\n",
      "if v>0.9 :\n",
      "    print \"system follows stokes law\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "viscosity of solution = 105.791605 Pa-s\n",
        "system follows stokes law\n"
       ]
      }
     ],
     "prompt_number": 3
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "example 8.7 page number 367\n"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "import math \n",
      "\n",
      "density_of_water = 1000.;     #in kg/m3\n",
      "viscosity = 1*10.**-3;         #in Pa-s\n",
      "pipe_diameter = 250.;         #in mm\n",
      "orifice_diameter = 50.;       # in mm\n",
      "density_of_mercury = 13600.;  # in mm\n",
      "manometer_height = 242.;      #in mm\n",
      "\n",
      "height_water_equivalent = (density_of_mercury-density_of_water)*(manometer_height*10**-3)/(density_of_water)     #in m\n",
      "\n",
      "Co = 0.61;\n",
      "velocity = Co*(2*9.8*height_water_equivalent/(1-(orifice_diameter/pipe_diameter)**4))**0.5;     #in m/s\n",
      "\n",
      "Re = (orifice_diameter*10**-3*velocity*density_of_water)/viscosity;\n",
      "print \"reynolds number = %f which is greater than 30000\"%(Re)\n",
      "\n",
      "if Re>30000:\n",
      "    print \"velocity of water = %f m/s\"%(velocity)\n",
      "\n",
      "rate_of_flow = (3.14*(orifice_diameter*10.**-3)**2./4)*velocity*density_of_water;\n",
      "print \"rate of flow = %f litre/s\"%(rate_of_flow)\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "reynolds number = 235976.385359 which is greater than 30000\n",
        "velocity of water = 4.719528 m/s\n",
        "rate of flow = 9.262073 litre/s\n"
       ]
      }
     ],
     "prompt_number": 4
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "example 8.8 page number 368\n"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "import math \n",
      "pipe_diameter=0.15;          #in m\n",
      "venturi_diameter=0.05;       #in m\n",
      "pressure_drop=0.12;           #m of water\n",
      "flow_rate=3.;                 #in kg/s\n",
      "density = 1000.;              #in kg/m3\n",
      "viscosity = 0.001            #in Pa-s\n",
      "\n",
      "velocity = ((4./3.14)*flow_rate)/(venturi_diameter**2*density);\n",
      "print \"velociy = %f m/s\"%(velocity)\n",
      "\n",
      "Cv=velocity*((1-(venturi_diameter/pipe_diameter)**4)/(2*9.8*pressure_drop))**0.5;\n",
      "print \"coefficient of discharge = %f\"%(Cv)\n",
      "\n",
      "Re = velocity*(venturi_diameter/pipe_diameter)**2*pipe_diameter*density/viscosity;\n",
      "print \"reynolds No = %f\"%(Re)\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "velociy = 1.528662 m/s\n",
        "coefficient of discharge = 0.990593\n",
        "reynolds No = 25477.707006\n"
       ]
      }
     ],
     "prompt_number": 5
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "example 8.9 page number 369\n"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "import math \n",
      "h1=0.66;       #in m\n",
      "h2=0.203;      #in m\n",
      "h3=0.305      #in m\n",
      "density=1000.;  #in kg/m3\n",
      "pB=68900.;      #in Pa\n",
      "s1=0.83;\n",
      "s2=13.6;\n",
      "\n",
      "print (\"part 1\")\n",
      "pA=pB+(h2*s2-(h1-h3)*s1)*density*9.81;    #in Pa\n",
      "print \"pressure at A = %f Pa\"%(pA)\n",
      "\n",
      "print (\"part 2\")\n",
      "pA1=137800.      #in Pa\n",
      "pressure=735.   #mm Hg\n",
      "pB1=pA1-(h2*s2-(h1-h3)*s1)*density*9.81;\n",
      "pressure_B=(pB1-pressure*133.3)/9810.;        #m of water\n",
      "print \"pressure at B = %f m of water\"%(pressure_B)\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "part 1\n",
        "pressure at A = 93092.931500 Pa\n",
        "part 2\n",
        "pressure at B = 1.593432 m of water\n"
       ]
      }
     ],
     "prompt_number": 6
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "example 8.10 page number 370\n"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "import math \n",
      "density_oil=900.;       #in kg/m3\n",
      "viscosity_oil=38.8*10**-3;    #in Pa-s\n",
      "density_water = 1000.;       #in kg/m3\n",
      "diameter=0.102              #in m\n",
      "manometer_reading=0.9;       #m of water\n",
      "\n",
      "delta_H=manometer_reading*(density_water-density_oil)/density_oil;\n",
      "print \"manometer reading as m of oil = %f m\"%(delta_H)\n",
      "\n",
      "maximum_velocity=(2*9.8*delta_H)**0.5;\n",
      "print \"maximum_velocityVmax) = %f m/s\"%(maximum_velocity)\n",
      "\n",
      "Re=diameter*maximum_velocity*density_oil/viscosity_oil;\n",
      "print \"if Re<4000 then v=0.5*Vmax Re = %f\"%(Re)\n",
      "if Re<4000 :\n",
      "    velocity=maximum_velocity*0.5;\n",
      "\n",
      "print \"velocity = %f m/s\"%(velocity)\n",
      "\n",
      "flow_rate=(3.14/4)*diameter**2*velocity*1000;\n",
      "print \"flow rate =%f litre/s\"%(flow_rate)\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "manometer reading as m of oil = 0.100000 m\n",
        "maximum_velocityVmax) = 1.400000 m/s\n",
        "if Re<4000 then v=0.5*Vmax Re = 3312.371134\n",
        "velocity = 0.700000 m/s\n",
        "flow rate =5.716998 litre/s\n"
       ]
      }
     ],
     "prompt_number": 7
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "example 8.11 page number 372\n"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "import math \n",
      "flow_rate_steel=1.2;     #l/s\n",
      "density_steel=7.92;\n",
      "density_kerosene=0.82;\n",
      "density_water=1;\n",
      "\n",
      "flow_rate_kerosene =(((density_steel-density_kerosene)/density_kerosene)/((density_steel-density_water)/density_water))**0.5*flow_rate_steel\n",
      "\n",
      "\n",
      "print \"maximum_flow rate of kerosene = %f litre/s\"%(flow_rate_kerosene)\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "maximum_flow rate of kerosene = 1.342303 litre/s\n"
       ]
      }
     ],
     "prompt_number": 8
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "example 8.12 page number 373\n"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "from scipy.optimize import fsolve \n",
      "import math \n",
      "initial_CO2 = 0.02;       #weight fraction\n",
      "flow_rate_CO2 = 22.5;     #gm/s\n",
      "final_CO2=0.031;          #weight fraction\n",
      "\n",
      "\n",
      "def f(x): \n",
      "\t return initial_CO2*x+0.0225 - 0.031*(x+0.0225)\n",
      "\n",
      "flow_rate_flue_gas=fsolve(f,0)\n",
      "\n",
      "print \"flow rate of flue gas = %f kg/s\"%(flow_rate_flue_gas)\n",
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "flow rate of flue gas = 1.982045 kg/s\n"
       ]
      }
     ],
     "prompt_number": 9
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [],
     "language": "python",
     "metadata": {},
     "outputs": []
    }
   ],
   "metadata": {}
  }
 ]
}