{ "metadata": { "name": "" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 3 : Material and Energy Balances" ] }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "example 3.1 page number 90" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "import math \n", "\n", "w_C = 0.6; #amount of carbon in coal\n", "N2_content = 40. #in m3 per 100m3 air\n", "\n", "air_consumed = N2_content/0.79;\n", "weight_air = air_consumed*(28.8/22.4);\n", "O2_content = air_consumed*32*(0.21/22.4); #in kg\n", "\n", "H2_content = 20. #in m3\n", "\n", "steam_consumed = H2_content*(18/22.4);\n", "\n", "C_consumption1 = (12./18)*steam_consumed; #in reaction 1\n", "C_consumption2 = (24./32)*O2_content; #in reaction 2\n", "\n", "total_consumption = C_consumption1+C_consumption2;\n", "coal_consumption = total_consumption/w_C;\n", "\n", "print \"coal consumption = %f kg\"%(coal_consumption)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "coal consumption = 36.844485 kg\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "example 3.2 page number 91\n" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "import math \n", "\n", "NH3_required = (17./63)*1000; #NH3 required for 1 ton of nitric acid\n", "NO_consumption = 0.96;\n", "HNO3_consumption = 0.92;\n", "\n", "NH3_consumed = NH3_required/(NO_consumption*HNO3_consumption);\n", "volume_NH3 = NH3_consumed*(22.4/17);\n", "print \"volume of ammonia consumed= %f cubic metre/h\"%(volume_NH3)\n", "\n", "NH3_content = 11. #% by volume\n", "air_consumption = volume_NH3*((100-11)/11.);\n", "print \"volume of air consumed = %f cubic metre/h\"%(air_consumption)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "volume of ammonia consumed= 402.576490 cubic metre/h\n", "volume of air consumed = 3257.209779 cubic metre/h\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "example 3.3 page number 91\n" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "import math \n", "\n", "HCl_production = 500. #required to be produced in kg\n", "NaCl_required = (117./73)*HCl_production;\n", "yield_ = 0.92;\n", "purity_NaCl= 0.96;\n", "\n", "actual_NaCl = NaCl_required/(purity_NaCl*yield_);\n", "print \"amount of NaCl required = %f kg\"%(actual_NaCl)\n", "\n", "purity_H2SO4 = 0.93;\n", "H2SO4_consumption = (98./73)*(HCl_production/(yield_*purity_H2SO4));\n", "print \"amount of H2SO4 consumed = %f kg\"%(H2SO4_consumption)\n", "\n", "Na2SO4_produced = (142/73.)*HCl_production;\n", "print \"amount of Na2SO4 produced = %f kg\"%(Na2SO4_produced)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "amount of NaCl required = 907.348124 kg\n", "amount of H2SO4 consumed = 784.517154 kg\n", "amount of Na2SO4 produced = 972.602740 kg\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "example 3.4 page number 92\n" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "import math \n", "\n", "C2H2_produced = (1./64)*0.86; #in kmol\n", "volume_C2H2 = C2H2_produced*22.4*1000; #in l\n", "\n", "volume = (100/101.3)*(273./(273+30));\n", "time = (volume_C2H2/volume)*(1./60);\n", "\n", "print \"time of service = %f hr\"%(time)\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "time of service = 5.640332 hr\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "example 3.5 page number 92\n" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "import math \n", "\n", "xv = 0.88;\n", "xf = 0.46;\n", "xl = 0.32;\n", "F= 100. #in kg\n", "\n", "L = (F*(xf-xv))/(xl-xv);\n", "V = F-L;\n", "print \"L = %f Kg V = %f Kg\"%(L,V)\n", "Eo = (V*xv)/(F*xf);\n", "\n", "print \" effectiveness based on oversized partices = %f \"%(Eo)\n", "Eu = (L*(1-xl))/(F*(1-xf));\n", "\n", "print \"effectiveness based on undersized partices = %f\"%(Eu)\n", "E=Eu*Eo;\n", "\n", "print \"overall effectiveness = %f\"%(E)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "L = 75.000000 Kg V = 25.000000 Kg\n", " effectiveness based on oversized partices = 0.478261 \n", "effectiveness based on undersized partices = 0.944444\n", "overall effectiveness = 0.451691\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "example 3.6 page number 94\n" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "import math \n", "\n", "G1 = 3600. #in m3/h\n", "P = 106.6 #in kPa\n", "T = 40 #in degree C\n", "\n", "q = G1*(P/101.3)*(273./((273+T))); #in m3/s\n", "m = q/22.4; #in kmol/h\n", "y1 = 0.02;\n", "Y1 = y1/(1-y1);\n", "\n", "print \"mole ratio of benzene = %f kmol benzene/kmol dry gas\"%(Y1)\n", "\n", "Gs = m*(1-y1);\n", "print \"moles of benzene free gas = %f kmol drygas/h\"%(Gs)\n", "\n", "Y2 = Y1*(1-0.95);\n", "print \"final mole ratio of benzene = %f kmol benzene/kmol dry gas\"%(Y2)\n", "\n", "x2 = 0.002\n", "X2 = 0.002/(1-0.002);\n", "\n", "\n", "y1 = 0.02;\n", "x1 = y1/(0.2406);\n", "X1 = x1/(1-x1);\n", "min_Ls = Gs*((Y1-Y2)/(X1-X2));\n", "print \"minimum Ls required = %f kg/h\"%(min_Ls*260)\n", "\n", "Ls = 1.5*min_Ls;\n", "print \"flow rate of wash oil = %f kg/h\"%(Ls*260)\n", "X1 = X2 + (Gs*((Y1-Y2)/Ls));\n", "print \"concentration of benzene in wash oil = %f kmol benzene/kmol wash oil\"%(X1)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "mole ratio of benzene = 0.020408 kmol benzene/kmol dry gas\n", "moles of benzene free gas = 144.559497 kmol drygas/h\n", "final mole ratio of benzene = 0.001020 kmol benzene/kmol dry gas\n", "minimum Ls required = 8219.216789 kg/h\n", "flow rate of wash oil = 12328.825184 kg/h\n", "concentration of benzene in wash oil = 0.061109 kmol benzene/kmol wash oil\n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "example 3.7 page number 95\n" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "from scipy.optimize import fsolve \n", "import math \n", "\n", "xf = 0.01\n", "Xf = xf/(1-xf);\n", "Feed = 100 #feed in kg\n", "\n", "c_nicotine = Feed*Xf; #nicotine conc in feed\n", "c_water = Feed*(1-Xf) #water conc in feed\n", "\n", "def F1(x):\n", " return (x/150.)-0.9*((1-x)/99.);\n", "\n", "x = 10.;\n", "y = fsolve(F1,x)\n", "print \"amount of nicotine removed N = %f kg\"%(y)\n", "def F2(x):\n", " return (x/50.)-0.9*((1-x)/99.);\n", "\n", "x = 10.;\n", "N1 = fsolve(F2,x)\n", "print \"amount of nicotine removed in stage 1, N1 = %f kg\"%(N1)\n", "def F3(x):\n", " return (x/50.)-0.9*((1-x-N1)/99.);\n", "\n", "x = 10.;\n", "N2 = fsolve(F3,x)\n", "print \"amount of nicotine removed in stage 2, N2 = %f kg\"%(N2)\n", "def F4(x):\n", " return (x/50.)-0.9*((1-x-N2-N1)/99.);\n", "\n", "x = 10.;\n", "N3 = fsolve(F4,x)\n", "\n", "print \"amount of nicotine removed in stage 3, N3 = %f kg\"%(N3)\n", "N = N1+N2+N3;\n", "print \"total amount of nicotine removed = %f kg\"%(N)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "amount of nicotine removed N = 0.576923 kg\n", "amount of nicotine removed in stage 1, N1 = 0.312500 kg\n", "amount of nicotine removed in stage 2, N2 = 0.214844 kg\n", "amount of nicotine removed in stage 3, N3 = 0.147705 kg\n", "total amount of nicotine removed = 0.675049 kg\n" ] } ], "prompt_number": 7 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "example 3.8 page number 96\n" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "import math \n", "\n", "vp_water = 31.06 #in kPa\n", "vp_benzene = 72.92 #in kPa\n", "\n", "P = vp_water +vp_benzene;\n", "x_benzene = vp_benzene/P;\n", "x_water = vp_water/P;\n", "\n", "initial_water = 50./18; #in kmol of water\n", "initial_benzene = 50./78 #in kmol of benzene\n", "water_evaporated = initial_benzene*(x_water/x_benzene);\n", "water_left = (initial_water - water_evaporated);\n", "\n", "print \"amount of water left in residue = %f kg\"%(water_left*18)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "amount of water left in residue = 45.085236 kg\n" ] } ], "prompt_number": 8 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "example 3.9 page number 97\n" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "import math \n", "po_D = 4.93 #in kPa\n", "po_W = 96.3 #in kPa\n", "n = 0.75 #vaporization efficiency\n", "\n", "P = n*po_D+po_W;\n", "print \"P = %f kPa\"%(P)\n", "\n", "x_water = 96.3/100;\n", "x_dimethylanaline = 1-x_water;\n", "wt_dimethylanaline = (x_dimethylanaline*121)/(x_dimethylanaline*121+x_water*18);\n", "print \"weight of dimethylanaline in water = %f\"%(wt_dimethylanaline*100)\n", "\n", "n = 0.8;\n", "po_D = 32 #in kPa\n", "actual_vp = n*po_D;\n", "p_water = 100 - actual_vp;\n", "steam_required = (p_water*18)/(actual_vp*121);\n", "print \"amount of steam required = %f kg steam/kg dimethylanaline\"%(steam_required)\n", "\n", "x_water = p_water/100.;\n", "wt_water = x_water*18./(x_water*18+(1-x_water)*121.);\n", "print \"weight of water vapor = %f weight of dimethylanaline =%f\"%(wt_water*100,100*(1-wt_water))\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "P = 99.997500 kPa\n", "weight of dimethylanaline in water = 20.526340\n", "amount of steam required = 0.432335 kg steam/kg dimethylanaline\n", "weight of water vapor = 30.183916 weight of dimethylanaline =69.816084\n" ] } ], "prompt_number": 9 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "example 3.10 page number 98\n" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "import math \n", "xf = 0.15;\n", "xl = (114.7)/(114.7+1000);\n", "xc = 1;\n", "\n", "K2Cr2O7_feed = 1000*0.15; #in kg\n", "\n", "n = 0.8;\n", "C = n*K2Cr2O7_feed;\n", "V = (K2Cr2O7_feed-120 - 880*0.103)/(-0.103);\n", "\n", "print \"amount of water evaporated = %f kg\"%(V)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "amount of water evaporated = 588.737864 kg\n" ] } ], "prompt_number": 10 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "example 3.11 page number 98\n" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "import math \n", "xc = round(106./286,3);\n", "xf = 0.25;\n", "xl = round(27.5/127.5,3);\n", "\n", "water_present = 100*(1-xf); #in kg\n", "V = 0.15*75; #in kg\n", "C = (100*xf - 88.7*xl)/(xc-xl);\n", "Na2CO3_feed = 25./xc;\n", "\n", "yield_ = (C/Na2CO3_feed)*100;\n", "\n", "print \"yield = %.1f %%\"%(yield_)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "yield = 55.9 %\n" ] } ], "prompt_number": 9 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "example 3.12 page number 99\n" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "import math \n", "r = 50. #weight of dry air passing through drier\n", "w1 = 1.60 #in kg per kg dry solid\n", "w2 = 0.1 #in kg/kg dry solid\n", "H0 = 0.016 #in kg water vapor/kg dry air\n", "H2 = 0.055 #in kg water vapor/kg dry air\n", "\n", "y = 1 - (w1-w2)/(r*(H2-H0));\n", "print \"fraction of air recirculated = %f\"%(y)\n", "\n", "H1 = H2 - (w1-w2)/r;\n", "print \"humidity of air entering the drier = %f kg water vapor/kg kg dry air\"%(H1)\n", "\n", "H11 = H2*y+H0*(1-y);\n", "if H1 == H11:\n", " print \"fraction of air recirculated = %f verified\"%(y)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "fraction of air recirculated = 0.230769\n", "humidity of air entering the drier = 0.025000 kg water vapor/kg kg dry air\n", "fraction of air recirculated = 0.230769 verified\n" ] } ], "prompt_number": 12 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "example 3.13 page number 100\n" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "import math \n", "Hf = 0.012;\n", "Hi = 0.033;\n", "H1 = 0.0075;\n", "\n", "water_vapor = Hf/18.; #in kmol of water vapor\n", "dry_air = 1/28.9; #in kmol\n", "total_mass = water_vapor+dry_air;\n", "\n", "volume = 22.4*(298./273)*total_mass;\n", "weight = 60/volume;\n", "print \"weight of dry air handled per hr = %f kg\"%(weight)\n", "\n", "inlet_watervapor = 0.033/18; #in kmol of water vapor\n", "volume_inlet = 22.4*(308./273)*(inlet_watervapor+dry_air);\n", "print \"volumetric flow rate of inlet air = %f cubic meter\"%(volume_inlet*weight)\n", "\n", "y = (Hf - Hi)/(H1 - Hi);\n", "print \"fraction of inlet air passing through cooler = %f\"%(y)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "weight of dry air handled per hr = 69.576029 kg\n", "volumetric flow rate of inlet air = 64.064786 cubic meter\n", "fraction of inlet air passing through cooler = 0.823529\n" ] } ], "prompt_number": 13 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "example 3.14 page number 102\n" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "import math \n", "\n", "Ar_freshfeed = 0.2;\n", "\n", "y = 0.2/0.0633; #argon in purge = 0.0633y\n", "x = (0.79*100 - y)/(1-0.79);\n", "print \"y = %f kmolx = %f kmol\"%(y,x)\n", "\n", "fraction = y/x;\n", "print \"fration of recycle that is purged = %f\"%(fraction)\n", "\n", "yield_ = 0.105*(100+x);\n", "print \"overall yield of ammonia = %f kmol\"%(yield_)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "y = 3.159558 kmolx = 361.144964 kmol\n", "fration of recycle that is purged = 0.008749\n", "overall yield of ammonia = 48.420221 kmol\n" ] } ], "prompt_number": 14 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "example 3.15 page number 107\n" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "import math \n", "H0_CH4 = -74.9 #in kJ\n", "H0_CO2 = -393.5 #in kJ\n", "H0_H2O = -241.8 #in kJ\n", "\n", "delta_H0 = H0_CO2+2*H0_H2O-H0_CH4;\n", "\n", "print \"change in enthalpy = %f kJ\"%(delta_H0)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "change in enthalpy = -802.200000 kJ\n" ] } ], "prompt_number": 15 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "example 3.16 page number 107\n" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "import math \n", "H0_glucose = -1273 #in kJ\n", "H0_ethanol = -277.6 #in kJ\n", "H0_CO2 = -393.5 #in kJ\n", "H0_H2O = -285.8 #in kJ\n", "\n", "delta_H1 = 2*H0_ethanol+2*H0_CO2-H0_glucose;\n", "print \"enthalpy change in reaction 1 = %f KJ\"%(delta_H1)\n", "\n", "delta_H2 = 6*H0_H2O+6*H0_CO2-H0_glucose;\n", "print \"enthalpy change in reaction 2 = %f kJ\"%(delta_H2)\n", "\n", "if delta_H1>delta_H2:\n", " print \"reaction 2 supplies more energy\"\n", "else:\n", " print \"reaction 1 supplies more energy\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "enthalpy change in reaction 1 = -69.200000 KJ\n", "enthalpy change in reaction 2 = -2802.800000 kJ\n", "reaction 2 supplies more energy\n" ] } ], "prompt_number": 16 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "example 3.17 page number 108\n" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "import math \n", "delta_H2 = 11.7 #in kJ/mol\n", "m_CuSO4 = 16 #in gm\n", "m_H2O = 384 #in gm\n", "\n", "delta_H3 = -((m_CuSO4+m_H2O)*4.18*3.95*159.6)/(16*10**3)\n", "delta_H1 = delta_H3 - delta_H2;\n", "\n", "print \"enthalpy of formation = %f kJ/mol\"%(delta_H1)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "enthalpy of formation = -77.578890 kJ/mol\n" ] } ], "prompt_number": 17 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "example 3.18 page number 108\n" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "import math \n", "H_combustion = 1560000 #in kJ/kmol \n", "H0_CO2 = 54.56 #in kJ/kmol\n", "H0_O2 = 35.2 #in kJ/kmol\n", "H0_steam = 43.38 #in kJ/kmol\n", "H0_N2 = 33.32 #in kJ/kmol\n", "\n", "t = H_combustion/(2*H0_CO2+3*H0_steam+0.875*H0_O2+16.46*H0_N2);\n", "\n", "print \"theoritical temperature of combustion = %f degree C\"%(t)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "theoritical temperature of combustion = 1905.908708 degree C\n" ] } ], "prompt_number": 18 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "example 3.19 page number 109\n" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "import math \n", "H_NaCl = 410.9 #in MJ/kmol\n", "H_H2SO4 = 811.3 #in MJ/kmol\n", "H_Na2SO4 = 1384 #in MJ/kmol\n", "H_HCl = 92.3 #in MJ/kmol\n", "\n", "Q = H_Na2SO4 + 2*H_HCl -2*H_NaCl-H_H2SO4;\n", "print \"heat of reaction = %f MJ\"%(Q)\n", "\n", "heat_required = 64.5*(500./73);\n", "coke_consumption = heat_required/19\n", "print \"amount of coke oven gas consumed = %f cubic meter\"%(coke_consumption)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "heat of reaction = -64.500000 MJ\n", "amount of coke oven gas consumed = 23.251622 cubic meter\n" ] } ], "prompt_number": 19 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "example 3.20 page number 109\n" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "import math \n", "cp_water = 146.5 #in kj/kg\n", "cp_steam = 3040 #in kJ/kg\n", "d = 0.102 #in m\n", "u = 1.5 #in m/s\n", "density = 1000 #in kg/m3\n", "\n", "m = (3.14/4)*d**2*u*density;\n", "Q = m*(cp_steam-cp_water);\n", "\n", "print \"rate of heat flow = %f kW\"%(Q)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "rate of heat flow = 35447.429385 kW\n" ] } ], "prompt_number": 20 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "example 3.22 page number 110\n" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "import math \n", "wt_C = 0.75 #in kg\n", "wt_H2 = 0.05 #in kg\n", "wt_O2 = 0.12 #in kg\n", "wt_N2 = 0.03 #in kg\n", "wt_S = 0.01 #in kg\n", "wt_ash = 0.04 #in kg\n", "\n", "O2_C = wt_C*(32./12); #in kg\n", "O2_H2 = wt_H2*(16./2); #in kg\n", "O2_S = wt_S*(32./32); #in kg\n", "O2_required = O2_C+O2_H2+O2_S;\n", "\n", "oxygen_supplied = O2_required - wt_O2;\n", "air_needed = oxygen_supplied/0.23;\n", "print \"amount of air required = %f kg\"%(air_needed)\n", "\n", "volume = (22.4/28.8)*air_needed;\n", "print \"volume of air needed = %f cubic meter\"%(volume)\n", "\n", "air_supplied = 1.20*air_needed;\n", "N2_supplied = air_supplied*0.77;\n", "total_N2 = N2_supplied+wt_N2;\n", "\n", "O2_fluegas = air_supplied*0.23 - oxygen_supplied;\n", "\n", "wt_CO2 = wt_C+O2_C;\n", "wt_SO2 = wt_S+O2_S;\n", "\n", "moles_CO2 = wt_CO2/44;\n", "moles_SO2 = wt_SO2/64;\n", "moles_N2 = total_N2/28;\n", "moles_O2 = O2_fluegas/32;\n", "total_moles = moles_CO2+moles_SO2+moles_N2+moles_O2;\n", "\n", "x_CO2 = moles_CO2/total_moles;\n", "x_SO2 = moles_SO2/total_moles;\n", "x_N2 = moles_N2/total_moles;\n", "x_O2 = moles_O2/total_moles;\n", "\n", "print \"CO2 = %f %%\"%(x_CO2*100)\n", "print \"SO2 = %f %%\"%(x_SO2*100)\n", "print \"N2 = %f %%\"%(x_N2*100)\n", "print \"O2 = %f %%\"%(x_O2*100)\n", "\n", ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "amount of air required = 9.956522 kg\n", "volume of air needed = 7.743961 cubic meter\n", "CO2 = 15.365264 %\n", "SO2 = 0.076826 %\n", "N2 = 81.039264 %\n", "O2 = 3.518645 %\n" ] } ], "prompt_number": 11 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "example 3.23 page number 110\n" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "import math \n", "C = 0.8 #in kg\n", "H2 = 0.05 #in kg\n", "S = 0.005 #in kg\n", "ash = 0.145 #in kg\n", "\n", "C_O2 = C*(32./12); \n", "H2_O2 = H2*(16./2);\n", "S_O2 = S*(32./32);\n", "O2_supplied = C_O2+S_O2+H2_O2;\n", "print \"amount of O2 supplied = %f kg\"%(O2_supplied)\n", "\n", "wt_air = O2_supplied*(100./23);\n", "wt_airsupplied = 1.25*wt_air;\n", "print \"amount of air supplied = %f kg\"%(wt_airsupplied)\n", "\n", "m_N2 = wt_airsupplied*0.77; #in kg\n", "mole_N2 = m_N2/28.;\n", "\n", "m_O2 = (wt_airsupplied-wt_air)*0.23; #in kg\n", "mole_O2 = m_O2/32.;\n", "\n", "m_CO2 = C*(44/12.); #in kg\n", "mole_CO2 = m_CO2/44.;\n", "\n", "m_H2O = H2*(18/2.); #in kg\n", "mole_H2O = m_H2O/18.;\n", "\n", "m_SO2 = S*(64/32.); #in kg\n", "mole_SO2 = m_SO2/64.;\n", "\n", "m = m_N2+m_O2+m_CO2+m_H2O+m_SO2\n", "\n", "w_N2 = m_N2/m;\n", "print \"percentage of N2 by weight = %f\"%(w_N2*100)\n", "\n", "w_O2 = m_O2/m;\n", "print \"percentage of O2 by weight = %f\"%(w_O2*100)\n", "\n", "w_CO2 = m_CO2/m;\n", "print \"percentage of CO2 by weight = %f\"%(w_CO2*100)\n", "\n", "w_H2O = m_H2O/m;\n", "print \"percentage of H2O by weight = %f\"%(w_H2O*100)\n", "\n", "w_SO2 = m_SO2/m;\n", "print \"percentage of SO2 by weight = %f\"%(w_SO2*100)\n", "\n", "m1 = mole_N2+mole_O2+mole_CO2+mole_H2O+mole_SO2\n", "\n", "x_N2 = mole_N2/m1;\n", "print \"percentage of N2 by mole = %f\"%(x_N2*100)\n", "\n", "x_O2 = mole_O2/m1;\n", "print \"percentage of O2 by mole = %f\"%(x_O2*100)\n", "\n", "x_CO2 = mole_CO2/m1;\n", "print \"percentage of CO2 by mole = %f\"%(x_CO2*100)\n", "\n", "x_H2O = mole_H2O/m1;\n", "print \"percentage of H2O by mole = %f\"%(x_H2O*100)\n", "\n", "x_SO2 = mole_SO2/m1;\n", "print \"percentage of SO2 by mole = %f\"%(x_SO2*100)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "amount of O2 supplied = 2.538333 kg\n", "amount of air supplied = 13.795290 kg\n", "percentage of N2 by weight = 72.506232\n", "percentage of O2 by weight = 4.331541\n", "percentage of CO2 by weight = 20.022357\n", "percentage of H2O by weight = 3.071612\n", "percentage of SO2 by weight = 0.068258\n", "percentage of N2 by mole = 77.261067\n", "percentage of O2 by mole = 4.038647\n", "percentage of CO2 by mole = 13.577066\n", "percentage of H2O by mole = 5.091400\n", "percentage of SO2 by mole = 0.031821\n" ] } ], "prompt_number": 22 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "example 3.24 page number 112\n" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "import math \n", "wt_H2 = 0.15;\n", "wt_C = 0.85;\n", "O2_H2 = wt_H2*(16./2);\n", "O2_C = wt_C*(32./12);\n", "\n", "total_O2 = O2_H2+O2_C;\n", "wt_air = total_O2/0.23;\n", "air_supplied = 1.15*(wt_air);\n", "N2_supplied = 0.77*air_supplied/28.;\n", "O2_supplied = 0.23*(air_supplied-wt_air)/32.;\n", "moles_CO2 = 0.85/12;\n", "\n", "print \"moles of CO2 = %f kmol\"%(moles_CO2)\n", "print \"moles of N2 = %f kmol \"%(N2_supplied)\n", "print \"moles of O2 = %f kmol\"%(O2_supplied)\n", "\n", "total_moles = N2_supplied+O2_supplied+moles_CO2;\n", "\n", "print \"percentage of CO2 = %f\"%((moles_CO2/total_moles)*100)\n", "print \"percentage of N2 = %f\"%((N2_supplied/total_moles)*100)\n", "print \"percentage of O2 = %f\"%((O2_supplied/total_moles)*100)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "moles of CO2 = 0.070833 kmol\n", "moles of N2 = 0.476667 kmol \n", "moles of O2 = 0.016250 kmol\n", "percentage of CO2 = 12.564671\n", "percentage of N2 = 84.552846\n", "percentage of O2 = 2.882483\n" ] } ], "prompt_number": 23 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "example 3.25 page number 113\n" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "import math \n", "N2 = 80.5 #in m3\n", "air_supplied = N2/0.79 #in m3\n", "volume_O2 = air_supplied*0.21; #in m3\n", "O2_fluegas = 6.1 #in m3\n", "\n", "O2_used = volume_O2 - O2_fluegas;\n", "excess_air_supplied = (O2_fluegas/O2_used)*100;\n", "\n", "print \"percentage of excess air supplied = %f\"%(excess_air_supplied)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "percentage of excess air supplied = 39.872580\n" ] } ], "prompt_number": 24 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "example 3.26 page number 114\n" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "import math \n", "q_NTP = 10*(200/101.3)*(273./313);\n", "m_CO2 = 44*(q_NTP/22.4);\n", "s_CO2 = 0.85 #in kJ/kg K\n", "\n", "Q = m_CO2*s_CO2*(40-20) #Q = ms*delta_T\n", "\n", "d0 = 0.023 #in mm\n", "A0 = (3.14/4)*d0**2;\n", "di = 0.035 #in mm\n", "Ai = (3.14/4)*di**2;\n", "\n", "A_annular = Ai-A0;\n", "u = 0.15 #in m/s\n", "m_water = A_annular*(u*3600)*1000 #in kg/hr\n", "\n", "s_water = 4.19 #in kJ/kg K\n", "t = 15+(Q/(m_water*s_water));\n", "\n", "print \"exit water temperature = %f degree C\"%(t)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "exit water temperature = 15.465164 degree C\n" ] } ], "prompt_number": 25 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "example 3.27 page number 114\n" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "import math \n", "F = 1000 #in kg\n", "xF = 0.01 \n", "\n", "solid_feed = F*xF;\n", "water_feed = F - solid_feed;\n", "\n", "tF = 40 #in degree C\n", "hF = 167.5 #in kJ/kg\n", "xL = 0.02;\n", "\n", "solid_liquor = 10 #in kg\n", "L = solid_liquor/xL;\n", "tL = 100 #in degree C\n", "hL = 418.6 #in kJ/kg\n", "\n", "V = F -L;\n", "\n", "tv = 100 #in degree C\n", "Hv = 2675 #in kJ/kg\n", "ts = 108.4 #in degree C\n", "Hs = 2690 #in kJ/kg\n", "tc = 108.4 #in degree C\n", "hc = 454 #in kJ/kg\n", "\n", "S = (F*hF-V*Hv-L*hL)/(hc-Hs);\n", "print \"weight of steam required = %f kg/hr\"%(S)\n", "\n", "Q = S*(Hs-hc);\n", "U = 1.4 #in kW/m2K\n", "delta_t = ts-tL;\n", "A = 383.2/(U*delta_t);\n", "print \"area of heating surface = %f square meter\"%(A)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "weight of steam required = 616.860465 kg/hr\n", "area of heating surface = 32.585034 square meter\n" ] } ], "prompt_number": 26 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "example 3.28 page number 115\n" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "import math \n", "hF = 171 #in kJ/kg\n", "hD = 67 #in kJ/kg\n", "hL = hD;\n", "\n", "hW = 200 #in kJ/kg\n", "H = 540 #in kJ/kg\n", "\n", "print ('part 1')\n", "F = 1000 #in kg/h\n", "xF = 0.40\n", "xW = 0.02;\n", "xD = 0.97;\n", "\n", "D = F*(xF-xW)/(xD-xW);\n", "W = F-D;\n", "\n", "print \"bottom product = %f kg/hr\"%(W)\n", "print \"top product = %f kg/hr\"%(D)\n", "\n", "print ('part 2')\n", "L = 3.5*D;\n", "V = L+D;\n", "Qc = V*H-L*hL-D*hD;\n", "print \"condenser duty = %f KJ/hr\"%(Qc)\n", "\n", "print ('part 3')\n", "Qr = Qc - 24200;\n", "print \"rate of heat input to reboiler = %f kJ/hr\"%(Qr)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "part 1\n", "bottom product = 600.000000 kg/hr\n", "top product = 400.000000 kg/hr\n", "part 2\n", "condenser duty = 851400.000000 KJ/hr\n", "part 3\n", "rate of heat input to reboiler = 827200.000000 kJ/hr\n" ] } ], "prompt_number": 27 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "example 3.29 page number 117\n" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "import math \n", "F = 1000.; #in kg\n", "V = 0.05*F; #in kg\n", "xF = 0.48;\n", "xL = 75./(100+75);\n", "xC = 1.;\n", "\n", "C = (F*xF-950*xL)/(1-0.429);\n", "print \"rate of crystal formation = %f kg\"%(C)\n", "\n", "L = F-C-V;\n", "\n", "W = (F*2.97*(85-35)+126.9*75.2-V*2414)/(4.19*11);\n", "print \"rate of cooling water = %f kg\"%(W)\n", "\n", "delta_T1 = 56.;\n", "delta_T2 = 17.;\n", "delta_Tm = (delta_T1-delta_T2)/(math.log(delta_T1/delta_T2))\n", "U = 125;\n", "\n", "A=(F*2.97*(85-35)+126.9*75.2-V*2414)/(U*delta_Tm*3.6);\n", "print \"area = %f square meter\"%(A)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "rate of crystal formation = 127.595697 kg\n", "rate of cooling water = 810.216533 kg\n", "area = 2.536631 square meter\n" ] } ], "prompt_number": 28 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "example 3.30 page number 118\n" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "import math \n", "delta_n = 10-12.; #mole per mole napthanlene\n", "\n", "moles_napthalene = (1./128);\n", "\n", "print ('part 1')\n", "Qv = 40.28 #in kJ\n", "Qp = Qv-(delta_n*moles_napthalene*8.3144*298./1000);\n", "print \"heat of combustion = %f kJ\"%(Qp)\n", "\n", "print ('part 2')\n", "delta_H = 44.05 #in kJ/gmol\n", "water_formed = 4./128; #in g mol\n", "Qp1 = Qp - (delta_H*water_formed);\n", "print \"heat of combustion = %f kJ\"%(Qp1)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "part 1\n", "heat of combustion = 40.318714 kJ\n", "part 2\n", "heat of combustion = 38.942151 kJ\n" ] } ], "prompt_number": 29 }, { "cell_type": "code", "collapsed": false, "input": [], "language": "python", "metadata": {}, "outputs": [] } ], "metadata": {} } ] }