{ "metadata": { "name": "", "signature": "sha256:2e4ee2364140e55a3d90d649c8582a33c5c2d95f57ec4b00aa0dee8989c40b8e" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 19 : Two Stroke Engines" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 19.3 Page no : 334" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\t\t\t\t\t\n", "#Input data\n", "d = 11.25\t\t\t\t\t#Bore in cm\n", "l = 15.\t\t\t\t\t#Stroke in cm\n", "r = 7.\t\t\t\t\t#Compression ratio\n", "N = 1800.\t\t\t\t\t#Speed in r.p.m\n", "a = 4.5\t\t\t\t\t#Air supply in kg/min\n", "Ta = 72.+273\t\t\t\t\t#Temperature of air in K\n", "af = 14.3\t\t\t\t\t#Air fuel ratio\n", "ep = 1.\t\t\t\t\t#Exhaust pressure in kg/cm**2\n", "R = 29.27\t\t\t\t\t#Characteristic gas constant in kg.m/kg.degree C\n", "\n", "\t\t\t\t\t\n", "#Calculations\n", "Vc = ((r/(r-1))*(3.14/4)*(d/100)**2*(l/100))\t\t\t\t\t#Swept volume in m**3\n", "Wa = (Vc*N*ep*10**4)/(R*Ta)\t\t\t\t\t#Ideal air capacity in kg/min\n", "sr = (a/Wa)\t\t\t\t\t#Scavenging ratio\n", "sn = (1-math.exp(-sr))\t\t\t\t\t#Scavenging efficiency \n", "nt = (sn/sr)\t\t\t\t\t#Trapping efficiency\n", "\n", "\t\t\t\t\t\n", "#Output\n", "print 'a) Ideal air capacity is %3.2f kg/min \\\n", "\\nb) Scavenging ratio is %3.2f \\\n", "\\nc) Scavenging efficiency is %3.3f \\\n", "\\nd) Trapping efficiency is %3.2f'%(Wa,sr,sn,nt)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "a) Ideal air capacity is 3.10 kg/min \n", "b) Scavenging ratio is 1.45 \n", "c) Scavenging efficiency is 0.766 \n", "d) Trapping efficiency is 0.53\n" ] } ], "prompt_number": 3 } ], "metadata": {} } ] }