{ "metadata": { "name": "", "signature": "sha256:0edb003d2406dbd42a27924dc90436706150dd4044705ed46aaf76f3c5aa44bf" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 18 : Super Charging" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 18.1 Page no : 327" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\t\t\t\t\t\n", "#Input data\n", "n = 6.\t\t\t\t\t#Number of cylinders\n", "d = 9.\t\t\t\t\t#Bore in cm\n", "l = 10.\t\t\t\t\t#Stroke in cm\n", "N = 2500.\t\t\t\t\t#Speed in r.p.m\n", "Ta = 25.+273\t\t\t\t\t#Temperature of air entering the compressor in K\n", "q = 16800.\t\t\t\t\t#Heat rate in kcal/hour\n", "T = 60.+273\t\t\t\t\t#Temperature of air leaving the cooler in K\n", "p = 1.6\t\t\t\t\t#Pressure of air leaving the cooler in kg/cm**2\n", "t = 14.5\t\t\t\t\t#Engine torque in kg.m\n", "nv = 75.\t\t\t\t\t#Volumetric efficiency in percent\n", "nm = 74.\t\t\t\t\t#Mechanical efficiency in percent\n", "R = 29.27\t\t\t\t\t#Characteristic gas constant in kg.m/kg.K\n", "Cp = 0.24\t\t\t\t\t#Specific heat at constant pressure n kcal/kg.K\n", "\n", "\t\t\t\t\t\n", "#Calculations\n", "BHP = (2*3.14*N*t)/4500\t\t\t\t\t#Brake horse power in B.H.P\n", "IHP = (BHP/(nm/100))\t\t\t\t\t#Indicated horse power in I.H.P\n", "pm = ((IHP*4500)/((l/100)*(3.14/4)*d**2*(N/2)*n))\t\t\t\t\t#Mean effective pressure in kg/cm**2\n", "Vs = (n*(3.14/4)*(d/100)**2*(l/100)*(N/2))\t\t\t\t\t#Swept volume in m**3/min\n", "Va = (Vs*(nv/100))\t\t\t\t\t#Aspirated Volume of air into engine in m**3/min\n", "ma = (p*10**4*Va)/(R*T)\t\t\t\t\t#Aspirated mass flow into the engine in kg/min\n", "mcdT = ((BHP*4500/427)/Cp)\t\t\t\t\t#Product of mass flow rate and change in temperature\n", "msdT = ((q/60)/Cp)\t\t\t\t\t#Product of mass flow rate and change in temperature\n", "x = (mcdT/msdT)\t\t\t\t\t#Ratio\n", "T2 = ((Ta-(x*T)))/(1-x)\t\t\t\t\t#Temperature in K\n", "mc = (msdT/(T2-T))\t\t\t\t\t#Air flow in kg/min\n", "\n", "\t\t\t\t\t\n", "#Output\n", "print 'a) the mean effective pressure is %3.2f kg/cm**2 \\\n", "\\nb) the air consumption is %3.3f kg/min \\\n", "\\nc) the air flow into the compressor is %3.2f kg/min'%(pm,ma,mc)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "a) the mean effective pressure is 6.45 kg/cm**2 \n", "b) the air consumption is 5.871 kg/min \n", "c) the air flow into the compressor is 30.14 kg/min\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 18.2 Page no : 328" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\t\t\t\t\t\n", "#Input data\n", "IMEP = 10.\t\t\t\t\t#Indicated mean effective pressure in kg/cm**2\n", "x = 20.\t\t\t\t\t#Mixture strength 20% richer math.tan chemically correct\n", "pIMEP = 0.41\t\t\t\t\t#Pumping Indicated mean effective pressure in kg/cm**2\n", "p1 = 0.97\t\t\t\t\t#Charge pressure at the beginning of compression in kg/cm**2\n", "T1 = 100.+273\t\t\t\t\t#Charge temperature at the beginning of compression in K\n", "pm = 0.91\t\t\t\t\t#Mean pressure during the conduction stroke in kg/cm**2\n", "bn = 70.\t\t\t\t\t#Blower adiabatic efficiency in percent\n", "T2 = 50.\t\t\t\t\t#Temperature of the charge after delivery by the blower in degree C\n", "dp = 0.07\t\t\t\t\t#Pressure drop in kg/cm**2\n", "pi = 1.47\t\t\t\t\t#Charge pressure in the cylinder during the induction stroke in kg/cm**2\n", "Ta = 15.+273\t\t\t\t\t#Atomspheric temperature in K\n", "pa = 1.03\t\t\t\t\t#Atmospheric pressure in kg/cm**2\n", "g = 1.4\t\t\t\t\t#Ratio of specific heats\n", "\n", "\t\t\t\t\t\n", "#Calculations\n", "T2x = ((((pi/pa)**((g-1)/g)-1)/(bn/100))+1)*Ta+T2\t\t\t\t\t#Temperature in K\n", "rIMEP = ((pi/pa)*(T1/T2x))\t\t\t\t\t#Ratio of I.M.E.P\n", "gIMEP = (rIMEP*IMEP)\t\t\t\t\t#Gross I.M.E.P in kg/cm**2\n", "nsIMEP = (gIMEP+(pi-pa))\t\t\t\t\t#Net I.M.E.P supercharged in kg/cm**2\n", "nuIMEP = (IMEP-pIMEP)\t\t\t\t\t#Net I.M.E.P unsupercharged in kg/cm**2 \n", "iIMEP = (nsIMEP-nuIMEP)\t\t\t\t\t#Increase in I.M.E.P in kg/cm**2\n", "pei = (iIMEP*100)/nuIMEP\t\t\t\t\t#Percentage increase\n", "\n", "\t\t\t\t\t\n", "#Output\n", "print 'Percentage increase in the net I.M.E.P due to supercharging is %3.1f percent'%(pei)\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Percentage increase in the net I.M.E.P due to supercharging is 49.9 percent\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 18.3 Page no : 331" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\t\t\t\t\t\n", "#Input data\n", "l = 4.5\t\t\t\t\t#Capacity in litres\n", "P = 20.\t\t\t\t\t#Power in H.P per m**3 of free air induced per minute\n", "N = 1700.\t\t\t\t\t#Speed in r.p.m\n", "nv = 75.\t\t\t\t\t#Volumetric efficiency in percent\n", "Ta = 27.+273\t\t\t\t\t#Atomspheric temperature in K\n", "pa = 1.03\t\t\t\t\t#Atmospheric pressure in kg/cm**2\n", "pr = 1.75\t\t\t\t\t#Pressure ratio\n", "ie = 70.\t\t\t\t\t#Isentropic efficiency in percent\n", "nm = 75.\t\t\t\t\t#Mechanical efficiency in percent\n", "g = 1.4\t\t\t\t\t#Ratio of specific heats\n", "nb = 80.\t\t\t\t\t#Efficiency of blower in percent\n", "R = 29.27\t\t\t\t\t#Characteristic gas constant in kg.m/kg.K\n", "Cp = 0.24\t\t\t\t\t#Specific heat at constant pressure in kJ/kg.K\n", "J = 427.\t\t\t\t\t#Mechanical equivalent of heat in kg.m/kcal\n", "\n", "\t\t\t\t\t\n", "#Calculations\n", "Vs = (l/1000*(N/2))\t\t\t\t\t#Swept volume in m**3/min\n", "uVs = ((nm/100)*Vs)\t\t\t\t\t#Unsupercharged swept volume in m**3/min\n", "dp = (pr*pa)\t\t\t\t\t#Blower delivery pressure in kg/cm**2\n", "Tc = (Ta*pr**((g-1)/g))\t\t\t\t\t#Temperature after isentropic compression in K\n", "dT = (Ta+(Tc-Ta)/(ie/100))\t\t\t\t\t#Blow delivery temperature in K\n", "Va = (Vs*(dp*Ta)/(pa*dT))\t\t\t\t\t#Equivalent volume at free air condition in m**3/min\n", "iiv = (Va-uVs)\t\t\t\t\t#Increase in the induced volume in m**3/min\n", "iIHP = (P*iiv)\t\t\t\t\t#ncrease in I.H.P \n", "iBHP = (iIHP*(nm/100))\t\t\t\t\t#Increase in B.H.P\n", "ma = (dp*10**4*Vs)/(R*dT)\t\t\t\t\t#Mass of air delivered by blower in kg/min\n", "HP = (ma*Cp*(dT-Ta)*J)/(4500*(80./100))\t\t\t\t\t#H.P required for blower\n", "nibhp = (iBHP-HP)\t\t\t\t\t#Net increse in engine b.h.p\n", "pei = (nibhp/(P*uVs))*100\t\t\t\t\t#Percentage increase\n", "\n", "\t\t\t\t\t\n", "#Output\n", "print 'Percentage net increase in B.H.P is %3.1f percent'%(pei)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Percentage net increase in B.H.P is 42.1 percent\n" ] } ], "prompt_number": 5 } ], "metadata": {} } ] }