{ "metadata": { "name": "" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 02 : Transport Phenomena in Semiconductor" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.1, Page No 22" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#initialisation of variables\n", "n=10.0**20\n", "q=1.6*10**-19\n", "mn=800 #cm^3\n", "delta=1 #V/cm\n", "\n", "#Calculations\n", "J=n*q*mn*delta\n", "\n", "\n", "#Results\n", "print(\"The electron current density is= %.2f X 10^4 atom/cm^2 \" %(J/(10**4)))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The electron current density is= 1.28 X 10^4 atom/cm^2 \n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.2a, Page No 27" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#initialisation of variables\n", "ni=10.0**10\n", "Nd=10**12\n", "\n", "#Calculations\n", "n=(Nd+(math.sqrt(Nd+4*ni**2)))\n", "\n", "\n", "#Results\n", "print(\"The free electron is= %.3f X 10^12 cm^3 \" %(n/(10**12)))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The free electron is= 1.020 X 10^12 cm^3 \n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.2b, Page No 27" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#initialisation of variables\n", "ni=10.0**10\n", "Nd=10**18\n", "\n", "#Calculations\n", "n=(Nd+(math.sqrt(Nd+4*ni**2)))\n", "\n", "\n", "#Results\n", "print(\"The free electron is= %.2f X 10^18 cm^3 \" %(n/(10**18)))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The free electron is= 1.00 X 10^18 cm^3 \n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.3a, Page No 29" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#initialisation of variables\n", "Av=6.02*(10**23) #Avogadro No.\n", "m=72.6 #Molar mass of germanium in gm/moles\n", "d=5.32 #density in gm/cm^3\n", "\n", "#Calculations\n", "conc = (Av/m)*d #Concentration of atom in germanium\n", "\n", "#Results\n", "print(\"The concentration of germanium atom is= %.2f X 10^22 atom/cm^3 \" %(conc/(10**22)))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The concentration of germanium atom is= 4.41 X 10^22 atom/cm^3 \n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.3b, Page No 29" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#initialisation of variables\n", "Av=6.02*(10**23) #Avogadro No.\n", "m=72.6 #Molar mass of germanium in gm/moles\n", "d=5.32 #density in gm/cm^3\n", "ni=2.5*(10**13) #in cm^-3\n", "n=ni\n", "p=ni #n=magnitude of free electrons, p=magnitude of holes, ni=magnitude of intrinsic concentration\n", "\n", "#Calculations\n", "q=1.6*(10**-19) #Charge of an Electron\n", "yn=3800.0 #in cm^2/V-s\n", "yp=1800.0 #in cm^2/V-s\n", "\n", "#Required Formula\n", "A=ni*q*(yn+yp) #Conductivity\n", "print(\"Conductivity is = %.2f ohm-cm^-1 \" %A)\n", "R =1.0/A #Resistivity\n", "print(\"Resistivity is = %.2f ohm-cm \" %R)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Conductivity is = 0.02 ohm-cm^-1 \n", "Resistivity is = 44.64 ohm-cm \n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.3c Page No 29" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#initialisation of variables\n", "print('We know that n=p=ni where n is conc of free electron p is conc of holes and ni is conc of intrinsic carriers')\n", "#Resistivity if 1 donor atom per 10^8 germanium atoms\n", "Nd=4.41*(10**14) #in atoms/cm^3\n", "ni=2.5*(10**13) #in cm^3\n", "yn=3800.0 #in cm^2/V-s\n", "\n", "#Calculations\n", "q=1.6*(10**-19)\n", "n=Nd\n", "p=(ni**2)/Nd\n", "\n", "print(\"The concentration of holes is= %.2f holes/cm^3 \" %p)\n", "if n>p:\n", " A=n*q*yn #Conductivity\n", " print(\"The conductivity is = %.2f ohm-cm^-1 \" %A)\n", " \n", "R=1.0/A #Resistivity\n", "\n", "#Results\n", "print(\"The resistivity is = %.2f ohm-cm \" %R)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "We know that n=p=ni where n is conc of free electron p is conc of holes and ni is conc of intrinsic carriers\n", "The concentration of holes is= 1417233560090.70 holes/cm^3 \n", "The conductivity is = 0.27 ohm-cm^-1 \n", "The resistivity is = 3.73 ohm-cm \n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.3d, Page No 29" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#initialisation of variables\n", "\n", "print('We know that n=p=ni where n is conc of free electron p is conc of holes and ni is conc of intrinsic carriers')\n", "#Ratio of Conductivities\n", "Nd=4.41*(10**14) #in atoms/cm^3\n", "ni=2.5*(10**13) #in cm^3\n", "yn=3800.0 #in cm^2/V-s\n", "q=1.6*(10**-19)\n", "\n", "#Calculations\n", "n=Nd\n", "A=n*q*yn #Conductivity\n", "\n", "#If germanium atom were monovalent metal , ratio of conductivity to that of n-type semiconductor\n", "\n", "n=4.41*(10**22) #in electrons/cm^3\n", "\n", "\n", "#Results\n", "print('If germanium atom were monovalent metal')\n", "A1=n*q*yn\n", "print(\"The coductivity of metal is= %.2f ohm=cm^-1 x 10^7 \" %(A1/10**7))\n", "F=A1/A\n", "print(\"The factor by which the coductivity of metal is higher than that of n type semiconductor is %.2f x 10^8 \" %(F/10**8))\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "We know that n=p=ni where n is conc of free electron p is conc of holes and ni is conc of intrinsic carriers\n", "If germanium atom were monovalent metal\n", "The coductivity of metal is= 2.68 ohm=cm^-1 x 10^7 \n", "The factor by which the coductivity of metal is higher than that of n type semiconductor is 1.00 x 10^8 \n" ] } ], "prompt_number": 7 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.4, Page No 35" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#initialisation of variables\n", "g=5*10**21 #Generation rate\n", "tp=2*10**-6 #hole lifetime\n", "\n", "#Calculations\n", "p=g*tp\n", "\n", "#Required Formula\n", "print(\"Hole density is = %.2f cm^3 10^16 \" %(p/10**16))\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Hole density is = 1.00 cm^3 10^16 \n" ] } ], "prompt_number": 8 } ], "metadata": {} } ] }