{ "metadata": { "name": "" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 10 : Field Effect Transistor" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 10.1a, Page No 337" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#initialisation of variables\n", "VGG = -2.5 #v\n", "Id = 3.0 #mA\n", "Vds = 10.0 #v\n", "\n", "\n", "#Calculations\n", "Rd=Vds/Id\n", "\n", "\n", "#Results\n", "print(\"The value of Rd is = %.2f kOhm \" %Rd)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The value of Rd is = 3.33 kOhm \n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 10.1b, Page No 337" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#initialisation of variables\n", "VGG = -2.5 #v\n", "VDD = 20.0\n", "Id = 2.0 #mA drain current\n", "Vds = 2.5 #v\n", "\n", "\n", "#Calculations\n", "Rd=(VDD-Vds)/Id\n", "\n", "\n", "#Results\n", "print(\"The value of Rd is = %.2f kOhm \" %Rd)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The value of Rd is = 8.75 kOhm \n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 10.2a, Page No 338" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#initialisation of variables\n", "\n", "a=3*(10**-4) #in cm\n", "Nd=10**15 #in electrons/cm^3\n", "q=1.6*(10**-19) #in C\n", "eo=8.85*(10**-12) #Permittivity of free space\n", "e=12*eo #Relative Permittivity\n", "\n", "#Calculations\n", "Vp=(q*Nd*a*a*10**6*10**-4)/(2*e) #in V\n", "#a is in cm so 10^-4 is multiplied and Nd is in electrons/cm^3 so 10^6 is multiplied\n", "\n", "#Results\n", "print(\"Pinch off Voltage = %.2f v \" %Vp)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Pinch off Voltage = 6.78 v \n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 10.2b, Page No 338" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#initialisation of variables\n", "#Given Values\n", "a=3.0*(10**-4) #in m\n", "Nd=10.0**15 #in electrons/m**3\n", "q=1.6*(10**-19) #in C\n", "eo=8.85*(10**-12) #Permittivity of free space\n", "e=12*eo #Relative Permittivity\n", "\n", "#Calculations\n", "Vp=(q*Nd*a*a*10**6*10**-4)/(2*e)#in V\n", "#a is in cm so 10**-4 is multiplied and Nd is in electrons/cm**3 so 10**6 is multiplied\n", "Vgs= Vp/2\n", "b=a*(1-((Vgs/Vp)**(0.5)))#in cm\n", "\n", "#Results\n", "print(\"Channel Half Width = %.2f cm x 10^-4\" %(b*10**4))\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Channel Half Width = 0.88 cm x 10^-4\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 10.3a Page No 348" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#initialisation of variables\n", "VG=0.5 #v\n", "Rd=1.0 #Kohm\n", "Vdd =3.3 #v\n", "\n", "#Calculations\n", "# If VG=0.5vv hen Vgs-Vt = 0.5-1=-.05 which is less than zero and therfore the transistor will be off then\n", "#ID=0\n", "Id=0\n", "Vd=Vdd\n", "\n", "#Results\n", "print(\"The drain current = %.2f mA\" %(Id))\n", "print(\"The drain Voltage = %.2f V\" %(Vd))\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The drain current = 0.00 mA\n", "The drain Voltage = 3.30 V\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 10.3b Page No 348" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#initialisation of variables\n", "Vg=2.0 #v\n", "Rd=1.0 #Kohm\n", "Vdd =3.3 #v\n", "Vt=1.0\n", "\n", "#Calculations\n", "# If VG=2v hen Vgs-Vt = 2-1=-2 which is more than zero and therfore the transistor will be on then\n", "Id=(1.0/2)*(Vg-Vt**2)\n", "Vd=Vdd-(Rd*Id)\n", "\n", "#Results\n", "print(\"The drain current = %.2f mA\" %(Id))\n", "print(\"The drain Voltage = %.2f V\" %(Vd))\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The drain current = 0.50 mA\n", "The drain Voltage = 2.80 V\n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 10.4a Page No 363" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#initialisation of variables\n", "Vp=-2#in V\n", "Idss=1.65#in mA\n", "#it is desired to bias the circut at Id=0.8mA\n", "Ids=0.8#in mA\n", "Vdd=24#in V\n", "#Assumption: rd>Rd\n", "\n", "#Calculations\n", "Vgs=Vp*(1-(Ids/Idss)**0.5)#in V\n", "\n", "#Results\n", "print(\"Vgs= %.2f v \" %Vgs)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Vgs= -0.61 v \n" ] } ], "prompt_number": 7 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 10.4b, Page No 363" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#initialisation of variables\n", "Vp=-2#in V\n", "Idss=1.65#in mA\n", "#it is desired to bias the circut at Id=0.8mA\n", "Ids=0.8#in mA\n", "Vdd=24#in V\n", "#Assumption: rd>Rd\n", "\n", "#Calculations\n", "Vgs=Vp*(1-(Ids/Idss)**0.5)#in V\n", "\n", "gmo=-(2*Idss/Vp)\n", "\n", "#Results\n", "print(\"gmo= %.2f mA/V \" %gmo)\n", "gm=gmo*(1-(Vgs/Vp))\n", "print(\"gm= %.2f mA/V \" %gm)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "gmo= 1.65 mA/V \n", "gm= 1.15 mA/V \n" ] } ], "prompt_number": 8 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 10.4c Page No 363" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#initialisation of variables\n", "Vp=-2#in V\n", "Idss=1.65#in mA\n", "#it is desired to bias the circut at Id=0.8mA\n", "Ids=0.8#in mA\n", "Vdd=24#in V\n", "#Assumption: rd>Rd\n", "\n", "#Calculations\n", "Vgs=Vp*(1-(Ids/Idss)**0.5)#in V\n", "\n", "gmo=-(2*Idss/Vp)\n", "gm=gmo*(1-(Vgs/Vp))\n", "\n", "Rs=-(Vgs/Ids)#in ohm\n", "\n", "#Results\n", "print(\"Rs= %.2f K \" %Rs)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Rs= 0.76 K \n" ] } ], "prompt_number": 9 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 10.4d Page No 363" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#initialisation of variables\n", "Vp=-2#in V\n", "Idss=1.65#in mA\n", "#it is desired to bias the circut at Id=0.8mA\n", "Ids=0.8#in mA\n", "Vdd=24#in V\n", "#Assumption: rd>Rd\n", "\n", "#Calculations\n", "Vgs=Vp*(1-(Ids/Idss)**0.5)#in V\n", "gmo=-(2*Idss/Vp)\n", "gm=gmo*(1-(Vgs/Vp))\n", "Rs=-(Vgs/Ids)#in ohm\n", "print('20dB corresponds to voltage gain of i0')\n", "Av=10\n", "Rd=Av/gm#in ohm\n", "\n", "#Results\n", "print(\"Rd= %.2f ohm\" %Rd)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "20dB corresponds to voltage gain of i0\n", "Rd= 8.70 ohm\n" ] } ], "prompt_number": 10 } ], "metadata": {} } ] }