{ "metadata": { "name": "" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 01 : Energy Band in Solid" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 1.2, Page No 55" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#initialisation of variables\n", "\n", "d=0.001 #distance between parallel plate in m\n", "V=1000.0 #applied voltage\n", "q=1.6*(10**-19) #charge on an electron\n", "m = 9.1*(10**-31) #mass of electron in kg\n", "#Time taken by electron to reach other side of parallel plate capacitor\n", "E=V/d #Electric Field in V/m\n", "#Formulae : s = u*t + (a*t^2)/2\n", "\n", "#Calculations\n", "a = (q*E)/m #acceleration on electron in m/s^2\n", "t = (2*d/a)**0.5 #time taken to reach the other side of plate\n", "print(\"Time taken to reach other side = %.2f sec \" %t)\n", "\n", "#Magnitude of force exerted on electron\n", "print('Since the potential is constant the force will be constant between the paltes of capacitor')\n", "F=q*E #force\n", "print(\"Force on electron = %.2f N \" %F)\n", "#Velocity of electron at the other plate\n", "#Formulae: v = u + a*t\n", "v = a*t #velocity at the end of other plate\n", "\n", "#Results\n", "print(\"V = %.2f m/sec \" %V)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Time taken to reach other side = 0.00 sec \n", "Since the potential is constant the force will be constant between the paltes of capacitor\n", "Force on electron = 0.00 N \n", "V = 1000.00 m/sec \n" ] } ], "prompt_number": 1 } ], "metadata": {} } ] }