{ "metadata": { "name": "" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 07 : Integrated Circuit Fabrication and Characteristic" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 7.1, Page No 215" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#initialisation of variables\n", "\n", "print('At distance equal to x=xi at which N = concentration n of doped silicon wafers , the net impurity density is zero. Thus xi is the distance at which junction is formed')\n", "q = 1.6*(10**-19) #Charge of electron\n", "yn=1300.0 #mobility of silicon\n", "p = 0.5 #resistivity in ohm=cm\n", "y=2.2\n", "\n", "#Calculations\n", "t=2.0*3600 #in sec.\n", "xi = 2.7*(10**-4) #Junction Depth in cm.\n", "n = 1/(p*yn*q) #Concentration of doped silicon wafer\n", "print(\"The concentration n = %.2f cm^-3 x 10^16\" %(n/10**16))\n", "print('The junction is formed when N = n')\n", "\n", "#y = xi/(2*(D*t)^0.5)\n", "D=((xi)**2/((2*y)**2*t)) #Diffusion Constant\n", "\n", "#Results\n", "print(\"The value of Diffusion Constant for Boron = %.2f cm^2/sec X 10^-13\" %(D*10**13))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "At distance equal to x=xi at which N = concentration n of doped silicon wafers , the net impurity density is zero. Thus xi is the distance at which junction is formed\n", "The concentration n = 0.96 cm^-3 x 10^16\n", "The junction is formed when N = n\n", "The value of Diffusion Constant for Boron = 5.23 cm^2/sec X 10^-13\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 7.2, Page No 215" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#initialisation of variables\n", "d=5.2*10**-13 #from previous example\n", "depth=1.7*10**-4\n", "t=2*3600.0\n", "c=2.5*10**17 # boron concentration cm^3\n", "\n", "#Calculations\n", "y = depth/(2*(math.sqrt(d*t)))\n", "q=(c*(math.sqrt(math.pi*4*10**-13*3420)))/(math.exp(-((depth**2)/(4*4*10**-13*3420))))\n", "\n", "\n", "#Results\n", "print(\"The value of Y is = %.2f \" %(y))\n", "print(\"The value of Q is = %.2f cm2 X 10^15 \" %(q/10**15))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The value of Y is = 1.39 \n", "The value of Q is = 3.22 cm2 X 10^15 \n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 7.3, Page No 222" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#initialisation of variables\n", "y=100.0*10**-4 #mm\n", "h=500.0 #cm^2/V-s\n", "p=10.0**16 #boron of concentration\n", "\n", "\n", "#Calculations\n", "Rs=1.0/(1.6*10**-19*h*p*y)\n", "\n", "#Results\n", "print(\"The value of Rs sheet resistance is = %.2f ohm/sqare\" %(Rs))\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The value of Rs sheet resistance is = 125.00 ohm/sqare\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 7.4, Page No 223" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#initialisation of variables\n", "Rs=100.0 #ohm/square\n", "l=50.0 #mm\n", "w=10 #mm\n", "\n", "\n", "#Calculations\n", "R=Rs*(l/w)\n", "\n", "#Results\n", "print(\"The resistance of defused resistor is = %.2f ohm\" %(R))\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The resistance of defused resistor is = 500.00 ohm\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 7.5, Page No 225" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#initialisation of variables\n", "A=100*10**-8 #mm^2\n", "q=1.6*10**-19\n", "Nd=10**16 #donor concentration /cm^3\n", "e=11.9*8.85*10**-14\n", "Vj=0.82 #v\n", "\n", "\n", "#Calculations\n", "C=A*math.sqrt((q*Nd*e)/(2*Vj))\n", "\n", "#Results\n", "print(\"The capacitance is = %.f fF\" %(C*10**15))\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The capacitance is = 32 fF\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 7.6, Page No 225" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#initialisation of variables\n", "A=100*10*10**-8 #mm^2\n", "q=1.6*10**-19\n", "e=11.9*8.85*10**-14\n", "Vj=0.98 #v\n", "Mn=1300.0\n", "pn=0.01\n", "\n", "\n", "\n", "#Calculations\n", "Nd=1/(q*Mn*pn) #donor concentration /cm^3\n", "C=A*math.sqrt((q*Nd*e)/(2*Vj))\n", "\n", "#Results\n", "print(\"The capacitance is = %.f pF\" %(C*10**12))\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The capacitance is = 2 pF\n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 7.7, Page No 226" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#initialisation of variables\n", "e=3.9*8.85*10**-14\n", "d=20*10**-8\n", "\n", "\n", "#Calculations\n", "C=(e/d)*(10**9/10**8)\n", "\n", "#Results\n", "print(\"The capacitance per unit area is = %.2f fF/mM^2\" %(C*10**6))\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The capacitance per unit area is = 17.26 fF/mM^2\n" ] } ], "prompt_number": 7 } ], "metadata": {} } ] }