{ "metadata": { "name": "" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 16 : Integrated Circuits as Analog System Building blocks" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 16.1, Page No 621" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#initialisation of variables\n", "\n", "#Caption:Fourth Order Butterworth Filter\n", "#Given Data\n", "fo=1.0\t\t#Cutoff Frequency in Hz\n", "#For n = 4\n", "k1=0.765\n", "k2=1.848\n", "Av1 = 3-k1\n", "Av2 = 3-k2\n", "\n", "#Calculations\n", "print('For a fourth order Buttworth filter we cacade 2 second order Buttworth filter with parameters R1 R2 R1d R2d R C')\n", "#we arbitrarily choose\n", "R1=10.0 \t#in K\n", "print(\"The value of R1= %.2f K \" %R1)\n", "#Av1=(R1+R1d)/R1\n", "R1d=(Av1*R1)-R1\n", "print(\"The value of R1d= %.2f K \" %R1d)\n", "\n", "R2 = 10.0 #in K\n", "print(\"The value of R2= %.2f K \" %R2)\n", "R2d=(Av2*R2)-R2\n", "print(\"The value of R2d= %.2f K \" %R2d)\n", "\n", "\n", "#Results\n", "#To satisfy fo = 1/(2*math.pi*r*c) = 1kHz\n", "R=1#in K\n", "C = 1/(2*math.pi*R*fo)\n", "print(\"The value of R = %.2f K \" %R)\n", "print(\"The value of C = %.2f microF \" %C)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "For a fourth order Buttworth filter we cacade 2 second order Buttworth filter with parameters R1 R2 R1d R2d R C\n", "The value of R1= 10.00 K \n", "The value of R1d= 12.35 K \n", "The value of R2= 10.00 K \n", "The value of R2d= 1.52 K \n", "The value of R = 1.00 K \n", "The value of C = 0.16 microF \n" ] } ], "prompt_number": 22 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 16.2, Page No 626" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#initialisation of variables\n", "Ao=50.0 #Gain\n", "fo=160.0 #center frequency\n", "B=16.0 #Bandwidth in Hz\n", "C1=0.1 #in microF\n", "C2=0.1 #in microF\n", "\n", "#Required Formulae\n", "\n", "#Calculations\n", "Q=fo/B\n", "R1=(1000*Q)/(Ao*2*math.pi*fo*C1)\n", "R3=(1000*Q)/((2*math.pi*fo)*(C1*C2/(C1+C2)))\n", "#As C is in microFarad to compensate for it 1000 is multiplied\n", "#Let r = R'\n", "r=(10**6)/((2*math.pi*fo)**2*R3*C1*C2)\n", "R2=(R1*r)/(R1-r)\n", "\n", "#Results\n", "print(\"The value of R1= %.2f K \" %R1)\n", "print(\"The value of R3= %.2f K \" %R3)\n", "print(\"The value of r= %.2f ohm \" %(r*10**3))\n", "print(\"The value of R2= %.2f ohm \" %(R2*10**3))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The value of R1= 1.99 K \n", "The value of R3= 198.94 K \n", "The value of r= 497.36 ohm \n", "The value of R2= 663.15 ohm \n" ] } ], "prompt_number": 23 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 16.3 Page No 638" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#initialisation of variables\n", "\n", "Avo=-25.0\n", "Vagc=20.0 #in V\n", "Vcc=6.0 #in V\n", "hfe=50.0 \n", "rbb=50.0 #in ohm\n", "Cs=5.0 #in pF\n", "Cl=5.0 #in pF\n", "Ie1=1.0 #in mA\n", "ft=900.0 #in MHz\n", "Vt=26.0 #in V\n", "n=2.0 #eeta\n", "#re2 = infinity\n", "\n", "#Calculations\n", "#Since Vagc=0 , transistor Q2 is in cut off region and collector current of Q1 flows through Q3....So\n", "Ie2=0\n", "Ie3=1.0 #in mA\n", "re3 = (n*Vt)/Ie3 #in ohm\n", "print(\"The value of re3 = %.2f ohm \" %re3)\n", "gm = (Ie1)/Vt #in ohm^-1\n", "print(\"The value of gm = %.2f ohm^-1 \" %gm)\n", "rbe=hfe/gm\n", "print(\"The value of rbe = %.2f ohm \" %rbe)\n", "Ce=gm/(2*math.pi*ft*10**-6)\n", "print(\"The value of Ce = %.2f pF \" %Ce)\n", "a3=1.0 #we make an assumption that alpha is one\n", "s=0\n", "#Av0 = -((a3*gm)/(re3*rbb))*(1/(((1/rbb)+(1/rbe)+(s*Ce))*((1/re3)+(s*Cs))*((1/Rl)+(s*(Cs+Cl)))))\n", "#From here we can find Rl\n", "k = -((a3*gm)/(re3*rbb))*(1/(((1/rbb)+(1/rbe)+(s*Ce))*((1/re3)+(s*Cs))))\n", "Rl=Avo/k\n", "print(\"The value of Rl = %.2f ohm \" %Rl)\n", "#C is in picoFarad so to compensate the whole equation some constants are multiplied\n", "f1 = 1.0/(2*math.pi*Rl*(Cs+Cl)*10**-6)\n", "\n", "#Results\n", "print(\"The value of f1 = %.2f MHz \" %f1)\n", "f2 = 1.0/(2*math.pi*Ce*10**-6*((rbe*rbb)/(rbe+rbb)))\n", "print(\"The value of f2 = %.2f MHz \" %f2)\n", "f3 = 1.0/(2*math.pi*Cs*re3*10**-6)\n", "print(\"The value of f3 = %.2f MHz \" %f3)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The value of re3 = 52.00 ohm \n", "The value of gm = 0.04 ohm^-1 \n", "The value of rbe = 1300.00 ohm \n", "The value of Ce = 6.80 pF \n", "The value of Rl = 675.00 ohm \n", "The value of f1 = 23.58 MHz \n", "The value of f2 = 486.00 MHz \n", "The value of f3 = 612.13 MHz \n" ] } ], "prompt_number": 24 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 16.4a, Page No 656" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#initialisation of variables\n", "\n", "Vbb = 1.15 #in V\n", "Vee=5.20 #in V\n", "Vbe5=0.7 #in V\n", "R=1.18 #in K\n", "r=300.0 #in ohm\n", "Vbecutin=0.5 #in V\n", "\n", "#Calculations\n", "#If all inputs are low then we assume that Q1,Q2 and Q3 are cutoff and Q4 is conducting\n", "Ve=-Vbb-Vbe5#Voltage at Common Emitter in V\n", "#Current I in 1.18K Resistor\n", "I = (Ve+Vee)/R#in mA\n", "I1=I\n", "print(\"Current in 300 ohm resistance I= %.2f mA \" %I)\n", "#Output Voltage at Y\n", "vy = -(r*I/1000)-Vbe5 #I is in mA so 1000 is multiplied\n", "Vbe = vy-Ve\n", "print(\"The value of Vbe is %.2f v \" %Vbe)\n", "if Vbe<Vbecutin :\n", " print('Input transistors are non conducting as was assumed')\n", " print('If atleast one input is high then it is assumed that curent in 1.18K resistance is switched to R and Q4 is cutoff')\n", " print('Drop in 300 ohm resistance is zero.Since the base aand collector are tied together Q5 now behaves as a diode')\n", " print('Across Q5')\n", " v=0.7#voltage across Q5 in V\n", " rQ5 = 1.5#in K\n", " i = (Vee-v)/rQ5\n", " v = 0.75#from the graph in V\n", " print(\"The value of i is %.2f mA \" %i)\n", " print(\"The value of V is %.2f v \" %v)\n", " Ve = -v-Vbe5\n", " Vbe4=-Vbb-Ve\n", " print(\"The value of Vbe4 is %.2f v \" %Vbe4)\n", "\n", "#Results \n", "print('The total output swing between two logic gates')\n", "vo = -vy-v\n", "print(\"The value of vo is %.2f v \" %vo)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Current in 300 ohm resistance I= 2.84 mA \n", "The value of Vbe is 0.30 v \n", "Input transistors are non conducting as was assumed\n", "If atleast one input is high then it is assumed that curent in 1.18K resistance is switched to R and Q4 is cutoff\n", "Drop in 300 ohm resistance is zero.Since the base aand collector are tied together Q5 now behaves as a diode\n", "Across Q5\n", "The value of i is 3.00 mA \n", "The value of V is 0.75 v \n", "The value of Vbe4 is 0.30 v \n", "The total output swing between two logic gates\n", "The value of vo is 0.80 v \n" ] } ], "prompt_number": 25 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 16.4b Page No 656" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#initialisation of variables\n", "Vbb = 1.15 #in V\n", "Vee=5.20 #in V\n", "Vbe5=0.7 #in V\n", "R=1.18 #in K\n", "r=300 #in ohm\n", "Vbecutin=0.5 #in V\n", "\n", "#Calculations\n", "#If all inputs are low then we assume that Q1,Q2 and Q3 are cutoff and Q4 is conducting\n", "Ve=-Vbb-Vbe5 #Voltage at Common Emitter in V\n", "#Current I in 1.18K Resistor\n", "I = (Ve+Vee)/R#in mA\n", "I1=I\n", "#Output Voltage at Y\n", "vy = -(r*I/1000)-Vbe5 #I is in mA so 1000 is multiplied\n", "Vbe = vy-Ve\n", "if Vbe<Vbecutin :\n", " v=0.7 #voltage across Q5 in V\n", " rQ5 = 1.5#in K\n", " i = (Vee-v)/rQ5\n", " v = 0.75 #from the graph in V\n", " Ve = -v-Vbe5\n", " Vbe4=-Vbb-Ve\n", "\n", "vo = -vy-v\n", "\n", "#Results\n", "#Calculation of noise margin\n", "vn = Vbecutin-Vbe4\n", "print('Positive noise spike which will cause the gate to malfunction')\n", "print(\"The value of vn is %.2f v \" %vn)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Positive noise spike which will cause the gate to malfunction\n", "The value of vn is 0.20 v \n" ] } ], "prompt_number": 26 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 16.4c Page No 656" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#initialisation of variables\n", "\n", "#Verify that conducting transistor is in active region\n", "#Given Data\n", "Vbb = 1.15 #in V\n", "Vee=5.20 #in V\n", "Vbe5=0.7 #in V\n", "R=1.18 #in K\n", "r=300.0 #in ohm\n", "Vbecutin=0.5 #in V\n", "\n", "#Calculations\n", "#If all inputs are low then we assume that Q1,Q2 and Q3 are cutoff and Q4 is conducting\n", "Ve=-Vbb-Vbe5#Voltage at Common Emitter in V\n", "#Current I in 1.18K Resistor\n", "I = (Ve+Vee)/R #in mA\n", "I1=I\n", "#Output Voltage at Y\n", "vy = -(r*I/1000)-Vbe5 #I is in mA so 1000 is multiplied\n", "Vbe = vy-Ve\n", "if Vbe<Vbecutin :\n", " v=0.7 #voltage across Q5 in V\n", " rQ5 = 1.5 #in K\n", " i = (Vee-v)/rQ5\n", " v = 0.75 #from the graph in V\n", " Ve = -v-Vbe5\n", " Vbe4=-Vbb-Ve\n", " \n", "vo = -vy-v\n", "\n", "Vb4 = Vbb\n", "Vc4 = -(I*r)/1000 #in V\n", "Vcb4 = Vc4+Vb4\n", "print(\"The value of Vcb4 is %.2f v \" %Vcb4)\n", "if Vcb4>0 :\n", " print('For on npn transistor this represents a reverse bias and Q4 must be in active region')\n", "\n", "Vb1 = v\n", "Vc1 = vy+Vbe5\n", "Vcb1 = Vc1 + Vb1\n", "\n", "#Results\n", "print(\"The value of Vc1 is %.2f v \" %Vc1)\n", "print(\"The value of Vcb1 is %.2f v \" %Vcb1)\n", "if Vcb1<0 :\n", " print('For an npn transistor this represents a forward bias.... therefore Q1 is in saturation region')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The value of Vcb4 is 0.30 v \n", "For on npn transistor this represents a reverse bias and Q4 must be in active region\n", "The value of Vc1 is -0.85 v \n", "The value of Vcb1 is -0.10 v \n", "For an npn transistor this represents a forward bias.... therefore Q1 is in saturation region\n" ] } ], "prompt_number": 27 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 16.4d, Page No 656" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#initialisation of variables\n", "Vbb = 1.15 #in V\n", "Vee=5.20 #in V\n", "Vbe5=0.7 #in V\n", "R=1.18 #in K\n", "r=300.0 #in ohm\n", "Vbecutin=0.5 #in V\n", "\n", "#Calculations\n", "\n", "#If all inputs are low then we assume that Q1,Q2 and Q3 are cutoff and Q4 is conducting\n", "Ve=-Vbb-Vbe5#Voltage at Common Emitter in V\n", "#Current I in 1.18K Resistor\n", "I = (Ve+Vee)/R#in mA\n", "I1=I\n", "#Output Voltage at Y\n", "vy = -(r*I/1000.0)-Vbe5#I is in mA so 1000 is multiplied\n", "Vbe = vy-Ve\n", "if Vbe<Vbecutin :\n", " v=0.7#voltage across Q5 in V\n", " rQ5 = 1.5#in K\n", " i = (Vee-v)/rQ5\n", " v = 0.75#from the graph in V\n", " Ve = -v-Vbe5\n", " Vbe4=-Vbb-Ve\n", "\n", "vo = -vy-v\n", "\n", "#Verify that conducting transistor is in active region\n", "Vb4 = Vbb\n", "Vc4 = -(I*r)/1000#in V\n", "Vcb4 = Vc4+Vb4\n", "Vb1 = v\n", "Vc1 = vy+Vbe5\n", "Vcb1 = Vc1 + Vb1\n", "\n", "Vbe1 = Vbe5\n", "Ve = -(Vb1+Vbe1)\n", "\n", "#Results\n", "\n", "print(\"The value of Ve is %.2f v \" %Ve)\n", "I = (Ve + Vee)/R\n", "I2=I\n", "R = -Vc1/I\n", "print(\"The value of R is %.2f ohm \" %R)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The value of Ve is -1.45 v \n", "The value of R is 0.27 ohm \n" ] } ], "prompt_number": 28 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 16.4e Page No 656" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\n", "#initialisation of variables\n", "\n", "Vbb = 1.15#in V\n", "Vee=5.20#in V\n", "Vbe5=0.7#in V\n", "R=1.18#in K\n", "r=300.0 #in ohm\n", "Vbecutin=0.5#in V\n", "\n", "#Calculations\n", "#If all inputs are low then we assume that Q1,Q2 and Q3 are cutoff and Q4 is conducting\n", "Ve=-Vbb-Vbe5#Voltage at Common Emitter in V\n", "#Current I in 1.18K Resistor\n", "I = (Ve+Vee)/R#in mA\n", "I1=I\n", "#Output Voltage at Y\n", "vy = -(r*I/1000.0)-Vbe5#I is in mA so 1000 is multiplied\n", "Vbe = vy-Ve\n", "if Vbe<Vbecutin :\n", " v=0.7#voltage across Q5 in V\n", " rQ5 = 1.5#in K\n", " i = (Vee-v)/rQ5\n", " v = 0.75#from the graph in V\n", " Ve = -v-Vbe5\n", " Vbe4=-Vbb-Ve\n", "\n", "vo = -vy-v\n", "\n", "Vb4 = Vbb\n", "Vc4 = -(I*r)/1000.0#in V\n", "Vcb4 = Vc4+Vb4\n", "Vb1 = v\n", "Vc1 = vy+Vbe5\n", "Vcb1 = Vc1 + Vb1\n", "\n", "Vbe1 = Vbe5\n", "Ve = -(Vb1+Vbe1)\n", "I = (Ve + Vee)/R\n", "I2=I\n", "\n", "I =(I1+I2)/2.0\n", "\n", "#Results\n", "print(\"The value of I is %.2f mA \" %I)\n", "I2 = (Vee-v)/rQ5\n", "I3 = (Vee+vy)/rQ5\n", "I = I + I2 + I3\n", "P = Vee*I\n", "print(\"Power dissipated is %.2f mW \" %P)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The value of I is 3.01 mA \n", "Power dissipated is 43.72 mW \n" ] } ], "prompt_number": 29 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 16.5 Page No 668" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "#initialisation of variables\n", "C=50.0 #nF\n", "Ra=10.0 #kOhm\n", "Vcc=5.0 #V\n", "beta=20.0 \n", "\n", "#Calculations\n", "T=1.1*Ra*C\n", "Ib=(Vcc-0.7)/100\n", "Ic=beta*Ib\n", "dt=C*(Vcc/Ic)\n", "\n", "#Results\n", "print(\"Another pulse can be generated at hte output after time period of = %.2f ns \" %dt)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Another pulse can be generated at hte output after time period of = 290.70 ns \n" ] } ], "prompt_number": 30 } ], "metadata": {} } ] }