{ "metadata": { "name": "" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter : 13 - Integrated Circuit Timer" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 13.1 : Page No - 496\n" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Given data\n", "C = 0.01 # in \u00b5F\n", "C = C *10**-6 # in F\n", "R_A = 2 # in k ohm\n", "R_A = R_A * 10**3 # in ohm\n", "R_B = 100 # in k ohm\n", "R_B = R_B * 10**3 # in ohm\n", "T_HIGH = 0.693*(R_A+R_B)*C # in s\n", "T_HIGH = T_HIGH # in sec\n", "T_LOW = 0.693*R_B*C # in s\n", "T_LOW = T_LOW # in sec\n", "T = T_HIGH + T_LOW # in sec\n", "f = 1/T # in Hz\n", "print \"The value of frequency = %0.1f Hz\" %f \n", "D = (T_HIGH/T)*100 # in %\n", "print \"Duty cycle = %0.1f %%\" %D" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The value of frequency = 714.4 Hz\n", "Duty cycle = 50.5 %\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 13.2 : Page No - 497\n" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Given data\n", "C = 1 # in \u00b5F\n", "C = C * 10**-6 # in F\n", "R_A = 4.7 # in k ohm\n", "R_A = R_A * 10**3 # in ohm\n", "R_B = 1 # in k ohm\n", "R_B = R_B * 10**3 # in ohm\n", "T_on = 0.693*(R_A+R_B)*C # in s\n", "T_on = T_on # in sec\n", "print \"Positive pulse width = %0.2f ms\" %(T_on * 10**3) \n", "T_off = 0.693*R_B*C # in s\n", "T_off = T_off # in ms\n", "print \"Negative pulse width = %0.3f ms\" %(T_off * 10**3) \n", "f = 1.4/((R_A+2*R_B)*C) # in Hz\n", "print \"Free running frequency = %0.2f Hz\" %f \n", "D = ((R_A+R_B)/(R_A+(2*R_B)))*100 # in %\n", "print \"The duty cycle = %0.f %%\" %D" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Positive pulse width = 3.95 ms\n", "Negative pulse width = 0.693 ms\n", "Free running frequency = 208.96 Hz\n", "The duty cycle = 85 %\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 13.3 : Page No - 497\n" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Given data\n", "C = 0.01 # in \u00b5F\n", "C = C * 10**-6 # in F\n", "f = 1 # in kHz\n", "f = f * 10**3 # in Hz\n", "R_A = 1.44/(2*f*C) # in ohm\n", "R_A = R_A * 10**-3 # in k ohm\n", "R_B= R_A # in kohm\n", "print \"The value of both the resistors required = %0.f k\u03a9 (standard value 68 kohm)\" %R_A" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The value of both the resistors required = 72 k\u03a9 (standard value 68 kohm)\n" ] } ], "prompt_number": 7 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 13.4 : Page No - 497\n" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Given data\n", "f = 700 # in Hz\n", "C = 0.01 # in \u00b5F\n", "C = C * 10**-6 # in F\n", "a = 1.44 \n", "R_A = a/(2*f*C) # in ohm\n", "R_A = R_A * 10**-3 # in k ohm\n", "R_B =R_A # in k ohm\n", "print \"The the value of C = %0.2f \u00b5F\" %(C*10**6)\n", "print \"The value of both the resistors = %0.f k\u03a9\" %R_A \n", "print \"(Standard value of resistor is 100 k\u03a9)\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The the value of C = 0.01 \u00b5F\n", "The value of both the resistors = 103 k\u03a9\n", "(Standard value of resistor is 100 k\u03a9)\n" ] } ], "prompt_number": 9 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 13.5 : Page No - 498\n" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Given data\n", "C = 0.01 # in \u00b5F\n", "C = C *10**-6 # in F\n", "R_A = 2 # in k ohm\n", "R_A = R_A * 10**3 # in ohm\n", "R_B = 100 # in k ohm\n", "R_B = R_B * 10**3 # in ohm\n", "T_HIGH = 0.693*(R_A+R_B)*C # in s\n", "T_HIGH = T_HIGH # in sec\n", "T_LOW = 0.693*R_B*C # in s\n", "T_LOW = T_LOW # in sec\n", "T = T_HIGH + T_LOW # in sec\n", "f = 1/T # in Hz\n", "print \"The value fo frequency = %0.1f Hz\" %f \n", "D = (T_HIGH/T)*100 # in %\n", "print \"Duty cycle = %0.1f %%\" %D" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The value fo frequency = 714.4 Hz\n", "Duty cycle = 50.5 %\n" ] } ], "prompt_number": 11 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 13.6 : Page No - 498\n" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Given data\n", "C = 1 # in \u00b5F\n", "C = C * 10**-6 # in F\n", "R_A = 4.7 # in k ohm\n", "R_A = R_A * 10**3 # in ohm\n", "R_B = 1 # in k ohm\n", "R_B = R_B * 10**3 # in ohm\n", "T_on = 0.693*(R_A+R_B)*C # in s\n", "T_on = T_on # in sec\n", "print \"Positive pulse width = %0.2f ms\" %(T_on * 10**3) \n", "T_off = 0.693*R_B*C # in s\n", "T_off = T_off # in ms\n", "print \"Negative pulse width = %0.3f ms\" %(T_off * 10**3) \n", "f = 1.4/((R_A+2*R_B)*C) # in Hz\n", "print \"Free running frequency = %0.2f Hz\" %(f) \n", "D = ((R_A+R_B)/(R_A+(2*R_B)))*100 # in %\n", "print \"The duty cycle = %0.f %%\" %D" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Positive pulse width = 3.95 ms\n", "Negative pulse width = 0.693 ms\n", "Free running frequency = 208.96 Hz\n", "The duty cycle = 85 %\n" ] } ], "prompt_number": 14 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 13.7 : Page No - 498\n" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Given data\n", "C = 0.01 # in \u00b5F\n", "C = C * 10**-6 # in F\n", "f = 1 # in kHz\n", "f = f* 10**3 # in Hz\n", "a = 1.44 \n", "R_A = a/(2*f*C) # in ohm\n", "R_A = R_A * 10**-3 # in k ohm\n", "R_B = R_A # in k ohm\n", "print \"The value of both the resistors required = %0.f k\u03a9 (standard value 68 kohm)\" %R_A" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The value of both the resistors required = 72 k\u03a9 (standard value 68 kohm)\n" ] } ], "prompt_number": 16 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 13.8 : Page No - 499\n" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Given data\n", "f = 700 # in Hz\n", "C = 0.01 # in \u00b5F\n", "C = C * 10**-6 # in F\n", "a = 1.44 \n", "R_A = a/(2*f*C) # in ohm\n", "R_A = R_A * 10**-3 # in k ohm\n", "R_B =R_A # in k ohm\n", "print \"The the value of C = %0.2f \u00b5F\" %(C*10**6)\n", "print \"The value of both the resistors = %0.f k\u03a9\" %R_A \n", "print \"(Standard value of resistor is 100 k\u03a9)\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The the value of C = 0.01 \u00b5F\n", "The value of both the resistors = 103 k\u03a9\n", "(Standard value of resistor is 100 k\u03a9)\n" ] } ], "prompt_number": 18 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 13.9 : Page No - 499\n" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Given data\n", "f = 800 # in Hz\n", "C = 0.01 # in \u00b5F\n", "C =C * 10**-6 # in F\n", "R_A = 1.44/(5*f*C) # in ohm\n", "R_A = R_A * 10**-3 # in k ohm\n", "print \"The value of R_A = %0.f k\u03a9\" %R_A \n", "R_B = 2*R_A # in k ohm\n", "print \"The value of R_B = %0.f k\u03a9\" %R_B " ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The value of R_A = 36 k\u03a9\n", "The value of R_B = 72 k\u03a9\n" ] } ], "prompt_number": 19 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 13.10 : Page No - 501\n" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Given data\n", "C = 10 # in \u00b5F\n", "C = C*10**-6 # in F\n", "T_ON = 5 # in sec\n", "R = T_ON/(1.1*C) # in ohm\n", "print \"The resistor value = %0.1f ohm\" %R" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The resistor value = 454545.5 ohm\n" ] } ], "prompt_number": 21 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 13.11 : Page No - 501\n" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Given data\n", "C = 10 # in \u00b5F\n", "C = C * 10**-6 # in F\n", "T_off = 1 # in sec\n", "#Formula T_off= 0.693*R2*C\n", "R2 = T_off/(0.693*C) # in ohm\n", "print \"The value of R2 = %0.f \u03a9\" %R2 \n", "T_on = 3 # in sec\n", "# Formula T_on= 0.693*(R1+R2)*C\n", "R1 =T_on/(C*0.693)-R2 # in ohm\n", "print \"The value of R1 = %0.f \u03a9\" %R1" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The value of R2 = 144300 \u03a9\n", "The value of R1 = 288600 \u03a9\n" ] } ], "prompt_number": 22 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 13.12 : Page No - 502\n" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from __future__ import division\n", "#Given data\n", "C = 0.22 # in \u00b5F\n", "C=C*10**-6 # in F\n", "T_on = 10 # in ms\n", "T_on = T_on * 10**-3 # in s\n", "V_CC = 15 # in V\n", "V_BE = 0.7 # in V\n", "V_EC = 0.2 # in V\n", "V_LED= 1.4 # in V\n", "I_LED= 20*10**-3 # in A\n", "R = T_on/(C*1.1) # in ohm\n", "R = R *10**-3 # in k ohm\n", "print \"Values for first circuit : \"\n", "print \"The value of R = %0.1f k\u03a9\" %R \n", "V_o = V_CC-(2*V_BE) - V_EC # in V\n", "print \"The output voltage = %0.1f V\" %V_o \n", "R_LED = (V_o - V_LED)/(I_LED) # in ohm \n", "print \"The value of R_LED = %0.f \u03a9\" %R_LED\n", "# Part (ii)\n", "f= 1*10**3 # in Hz\n", "C=0.01*10**-6 # in F\n", "D= 95/100 # duty cycle\n", "# Formula f= 1.44/((R1+2*R2)*C)\n", "# R1+2*R2= 1.44/(f*C) (i)\n", "# D= (R1+R2)/(R1+2*R2) or\n", "# R2= (1-D)/(2*D-1)*R1 (ii)\n", "# From eq (i) and (ii)\n", "R1= 1.44/(f*C*(1+2*((1-D)/(2*D-1)))) # in ohm\n", "R2= (1-D)/(2*D-1)*R1 # in ohm\n", "print \"\\nValues for second circuit : \"\n", "print \"The value of R1 = %0.1f k\u03a9\" %(R1*10**-3) \n", "print \"The value of R2 = %0.2f k\u03a9\" %(R2*10**-3)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Values for first circuit : \n", "The value of R = 41.3 k\u03a9\n", "The output voltage = 13.4 V\n", "The value of R_LED = 600 \u03a9\n", "\n", "Values for second circuit : \n", "The value of R1 = 129.6 k\u03a9\n", "The value of R2 = 7.20 k\u03a9\n" ] } ], "prompt_number": 26 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 13.13 : Page No - 503\n" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Given data\n", "T = 5 # in msec\n", "T = T * 10**-3 # in sec\n", "C = 0.1 # in \u00b5F\n", "C = C * 10**-6 # in F\n", "R = T/(C*1.1) # in ohm\n", "R = R * 10**-3 # in k ohm\n", "print \"The resistor = %0.2f k\u03a9\" %R" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The resistor = 45.45 k\u03a9\n" ] } ], "prompt_number": 28 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 13.14 : Page No - 503\n" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Given data\n", "f = 1 # in kHz\n", "f = f * 10**3 # in Hz\n", "T = 1/f # in s\n", "T = T * 10**3 # in msec\n", "T_d = T/2 # in msec\n", "T_d = T_d * 10**-3 # in sec\n", "C = 0.1 # in \u00b5F\n", "C = C * 10**-6 # in F\n", "R2 = T_d/(0.69*C) # in ohm\n", "R2 = R2 * 10**-3 # in k ohm\n", "print \"The value of C = %0.1f \u00b5F\" %(C*10**6)\n", "print \"The value of R2 = %0.2f k\u03a9\" %R2 \n", "print \"The value of R1 will be 100 \u03a9 +10 k\u03a9 pot\" " ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The value of C = 0.1 \u00b5F\n", "The value of R2 = 7.25 k\u03a9\n", "The value of R1 will be 100 \u03a9 +10 k\u03a9 pot\n" ] } ], "prompt_number": 30 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 13.15 : Page No - 504\n" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Given data\n", "f = 800 # in Hz\n", "D = 0.6 \n", "C = 0.1 # in \u00b5F\n", "C = C * 10**-6 # in F\n", "# Formula f= 1.44/((R_A+2*R_B)*C)\n", "# R_A+2*R_B= 1.44/(f*C) (i)\n", "# D= (R_A+R_B)/(R_A+2*R_B) or\n", "# R_B= (1-D)/(2*D-1)*R_A (ii)\n", "# From eq (i) and (ii)\n", "R_A= 1.44/(f*C*(1+2*((1-D)/(2*D-1)))) # in ohm\n", "R_B= (1-D)/(2*D-1)*R_A # in ohm\n", "print \"The value of R_A = %0.1f k\u03a9\" %(R_A*10**-3) \n", "print \"The value of R_B = %0.1f k\u03a9\" %(R_B*10**-3) " ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The value of R_A = 3.6 k\u03a9\n", "The value of R_B = 7.2 k\u03a9\n" ] } ], "prompt_number": 32 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 13.16 : Page No - 504\n" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Given data\n", "f = 700 # in Hz\n", "D = 0.5 \n", "C = 0.1 # in \u00b5F\n", "C = C * 10**-6 # in F\n", "# Formula f= 1.44/((R_A+2*R_B)*C)\n", "# R_A+2*R_B= 1.44/(f*C) (i)\n", "# D= (R_A+R_B)/(R_A+2*R_B) or\n", "# R_A+R_B=D*1.44/(f*C)\n", "# From eq (i) and (ii)\n", "R_B=round(1.44/(f*C))*(1-D) \n", "R_A= round(D*1.44/(f*C))-R_B \n", "#R_A= 1.44/(f*C*(1+2*((1-D)/(2*D-1)))) # in ohm\n", "#R_B= (1-D)/(2*D-1)*R_A # in ohm\n", "print \"The value of R_A = %0.f \u03a9\" %round(R_A)\n", "print \"The value of R_B = %0.3f k\u03a9\" %(R_B*10**-3) " ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The value of R_A = 1 \u03a9\n", "The value of R_B = 10.286 k\u03a9\n" ] } ], "prompt_number": 34 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 13.17 : Page No - 507\n" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Given data\n", "R_A = 20 # in k ohm\n", "R_A = R_A * 10**3 # in ohm\n", "C = 0.1 # in \u00b5F\n", "C = C*10**-6 # in F\n", "pulse_width = 1.1*R_A*C # in s\n", "print \"The output pulse width = %0.f ms\" %(pulse_width*10**3)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The output pulse width = 2 ms\n" ] } ], "prompt_number": 35 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 13.18 : Page No - 507\n" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from sympy import symbols, solve\n", "T= symbols('T')\n", "#Given data\n", "n=4 \n", "# t_p= X*T, where\n", "X= (0.2+(n-1)) # (assumed)\n", "t_p= X*T\n", "print \"The relation between t_p and T is :\"\n", "print \"t_p = \",t_p\n", "\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The relation between t_p and T is :\n", "t_p = 3.2*T\n" ] } ], "prompt_number": 39 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 13.19 : Page No - 507\n" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Given data\n", "C = 0.02 # in \u00b5F\n", "C = C * 10**-6 # in F\n", "f=2*10**3 #frequency in Hz\n", "T = 1/f # in sec\n", "n = 5 \n", "t_p = (0.2+(n-1))*T # in sec\n", "R_A = t_p/(1.1*C) # in ohm\n", "print \"The value of R_A = %0.2f k\u03a9 (standard value 100 kohm)\" %(R_A*10**-3)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The value of R_A = 95.45 k\u03a9 (standard value 100 kohm)\n" ] } ], "prompt_number": 42 } ], "metadata": {} } ] }