{

 "metadata": {

  "name": "",

  "signature": "sha256:cba451428c3d9c574800bbc1429b7e9efcd18af4b82f735faf4ac85b4ea52c65"

 },

 "nbformat": 3,

 "nbformat_minor": 0,

 "worksheets": [

  {

   "cells": [

    {

     "cell_type": "heading",

     "level": 1,

     "metadata": {},

     "source": [

      "Chapter02:The 741 IC OP-AMP"

     ]

    },

    {

     "cell_type": "heading",

     "level": 2,

     "metadata": {},

     "source": [

      "Ex2.1:Pg-80"

     ]

    },

    {

     "cell_type": "code",

     "collapsed": false,

     "input": [

      "#Ex 2.1\n",

      "\n",

      "# data from fig of Ex2.1\n",

      "VCC=5.0;#V\n",

      "IS=10**-14.0;#A\n",

      "RS=39*1000.0;#ohm\n",

      "VBE12=0.7;#V(Assumed)\n",

      "VBE11=0.7;#V(Assumed)\n",

      "VEE=-5;#V\n",

      "IREF=(VCC-VBE12-VBE11-VEE)/RS*10**6;#micro A\n",

      "print \"Estimated input reference current , IREF(micro A)\",round(IREF,2)\n",

      "VT=25*10**-3;#V(Thermal Voltage)\n",

      "VBE=VT*log(IREF*10**-6/IS);#V\n",

      "IREF=(VCC-VBE-VBE-VEE)/RS*10**6;#micro A\n",

      "print \"More precise value of reference current , IREF(micro A)\",round(IREF,2)\n",

      "#Replacing Vcc by 15 V in the original design\n",

      "VCC2=15.0;#V\n",

      "VEE2=-15.0;#V\n",

      "IREF=(VCC2-VBE-VBE-VEE2)/RS*10**6;#micro A\n",

      "VBE=VT*log(IREF*10**-6/IS);#V\n",

      "R5=(VCC-VBE-VBE-VEE)/(IREF*10**-6);#ohm\n",

      "R5=round(R5/1000);#kohm\n",

      "print \"Value of R5(kohm) : \",R5"

     ],

     "language": "python",

     "metadata": {},

     "outputs": [

      {

       "output_type": "stream",

       "stream": "stdout",

       "text": [

        "Estimated input reference current , IREF(micro A) 220.51\n",

        "More precise value of reference current , IREF(micro A) 225.88\n",

        "Value of R5(kohm) :  12.0\n"

       ]

      }

     ],

     "prompt_number": 4

    },

    {

     "cell_type": "heading",

     "level": 2,

     "metadata": {},

     "source": [

      "Ex2.2:Pg-81"

     ]

    },

    {

     "cell_type": "code",

     "collapsed": false,

     "input": [

      "#Ex 2.2\n",

      "import math\n",

      "# data from fig of Ex2.2\n",

      "IC10=20*10**-6;#A\n",

      "IREF=0.5*10**-3;#A\n",

      "IS=10**-14;#A\n",

      "VT=25*10**-3;#V(Thermal Voltage)\n",

      "R4=VT/IC10*math.log(IREF/IC10);#ohm\n",

      "print \"For Widlar current source design, the value of R4(kohm) : \",round(R4/1000,2)\n"

     ],

     "language": "python",

     "metadata": {},

     "outputs": [

      {

       "output_type": "stream",

       "stream": "stdout",

       "text": [

        "For Widlar current source design, the value of R4(kohm) :  4.02\n"

       ]

      }

     ],

     "prompt_number": 5

    },

    {

     "cell_type": "heading",

     "level": 2,

     "metadata": {},

     "source": [

      "Ex2.3:Pg-82"

     ]

    },

    {

     "cell_type": "code",

     "collapsed": false,

     "input": [

      "#Ex 2.3\n",

      "\n",

      "import math\n",

      "# given data\n",

      "Gm1=10.0;#mA/V\n",

      "Gm1=Gm1/1000;#A/V\n",

      "Cc=50.0;#pF\n",

      "Cc=Cc*10**-12;#F\n",

      "Rt=10**8;#ohm(Shunting resistance with Cc)\n",

      " # solution\n",

      "Ao=Gm1*Rt;#unitless\n",

      "fp=1/(2*math.pi*Rt*Cc);#Hz\n",

      "ft=Gm1/(2*math.pi*Cc)/10**6;#MHz\n",

      "print \"Frequency at which gain is maximum, fp in Hz\",round(fp,1)\n",

      "print \"Unit gain frequency, ft(MHz)\",round(ft,1)\n",

      "#Bode plot can not be plotted with the given data in the question by using python functions. \n"

     ],

     "language": "python",

     "metadata": {},

     "outputs": [

      {

       "output_type": "stream",

       "stream": "stdout",

       "text": [

        "Frequency at which gain is maximum, fp in Hz 31.8\n",

        "Unit gain frequency, ft(MHz) 31.8\n"

       ]

      }

     ],

     "prompt_number": 7

    },

    {

     "cell_type": "heading",

     "level": 2,

     "metadata": {},

     "source": [

      "Ex2.4:Pg-83"

     ]

    },

    {

     "cell_type": "code",

     "collapsed": false,

     "input": [

      "#Ex 2.4\n",

      "\n",

      "import math\n",

      "# given data\n",

      "SR=10.0/10**-6;#V/s\n",

      "Vout=10.0;#V(magnitude of output voltage)\n",

      "fm=SR/(2*math.pi*Vout)/1000;#kHz\n",

      "print \"Full power bandwidth(kHz)\",round(fm,1)\n",

      "VT=25.0/1000;#V(Thermal voltage)\n",

      "ft=SR/(2*math.pi*4*VT)/10.0**6;#MHz\n",

      "print \"Unity gain bandwidth(MHz)\",round(ft,1)\n"

     ],

     "language": "python",

     "metadata": {},

     "outputs": [

      {

       "output_type": "stream",

       "stream": "stdout",

       "text": [

        "Full power bandwidth(kHz) 159.2\n",

        "Unity gain bandwidth(MHz) 15.9\n"

       ]

      }

     ],

     "prompt_number": 10

    },

    {

     "cell_type": "heading",

     "level": 2,

     "metadata": {},

     "source": [

      "Ex2.5:Pg-84"

     ]

    },

    {

     "cell_type": "code",

     "collapsed": false,

     "input": [

      "#Ex 2.5\n",

      "\n",

      "VCC=5;#V\n",

      "VEE=-5;#V\n",

      "VBE=0.6;#V\n",

      "VCE23=0.6;#V\n",

      "VCE_sat=0.2;#V\n",

      "Vo_max=VCC-VCE_sat-VBE;#V\n",

      "Vo_min=VEE+VCE_sat+VBE+VCE23;#V\n",

      "print \"Maximum output voltage(V)\",round(Vo_max,2)\n",

      "print \"Minimum output voltage(V)\",round(Vo_min,2)"

     ],

     "language": "python",

     "metadata": {},

     "outputs": [

      {

       "output_type": "stream",

       "stream": "stdout",

       "text": [

        "Maximum output voltage(V) 4.2\n",

        "Minimum output voltage(V) -3.6\n"

       ]

      }

     ],

     "prompt_number": 11

    }

   ],

   "metadata": {}

  }

 ]

}