{
 "metadata": {
  "name": "",
  "signature": "sha256:12efbfeaa3ed3ebbe140abe577bbac08dcae30fc36caa52e184adf21fd445870"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Chapter 5 : Second Law of Thermodynamics and Entropy"
     ]
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 5.1 Page no : 237"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "\n",
      "# Variables\n",
      "Q1 = 1500./60; \t\t#kJ/s\n",
      "W = 8.2; \t\t\t#kW\n",
      "\n",
      "# Calculations and Results\n",
      "print (\"(i) Thermal efficiency\")\n",
      "n = W/Q1;\n",
      "print (\"n = \"),(n)\n",
      "\n",
      "print (\"(ii) Rate of heat rejection\")\n",
      "Q2 = Q1-W; \n",
      "print (\"Q2 = \"),(Q2), (\"kW\")\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "(i) Thermal efficiency\n",
        "n =  0.328\n",
        "(ii) Rate of heat rejection\n",
        "Q2 =  16.8 kW\n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 5.2 Page no : 238"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "# Variables\n",
      "Q_12 = 30.; \t\t#kJ\n",
      "W_12 = 60; \t\t\t#kJ\n",
      "\n",
      "# Calculations\n",
      "dU_12 = Q_12-W_12;\n",
      "Q_21 = 0;\n",
      "W_21 = Q_21+dU_12;\n",
      "\n",
      "# Results\n",
      "print (\"W_21  = \"),(W_21)\n",
      "print (\"Thus 30 kJ work has to be done on the system to restore it to original state, by adiabatic process.\")\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "W_21  =  -30.0\n",
        "Thus 30 kJ work has to be done on the system to restore it to original state, by adiabatic process.\n"
       ]
      }
     ],
     "prompt_number": 2
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 5.3 Page no : 239"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "# Variables\n",
      "Q2 = 12000.; \t\t\t#kJ/h\n",
      "W = 0.75*60*60; \t\t#kJ/h\n",
      "\n",
      "# Calculations and Results\n",
      "COP = Q2/W;\n",
      "print (\"Coefficient of performance %.3f\")%(COP)\n",
      "\n",
      "Q1 = Q2+W;\n",
      "print (\"heat transfer rate = %.3f\")%(Q1), (\"kJ/h\")\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Coefficient of performance 4.444\n",
        "heat transfer rate = 14700.000 kJ/h\n"
       ]
      }
     ],
     "prompt_number": 3
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 5.4 Page no : 239"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "T2 = 261.; \t\t\t#K\n",
      "T1 = 308.; \t\t\t#K\n",
      "Q2 = 2.; \t\t\t#kJ/s\n",
      "\n",
      "# Calculations\n",
      "Q1 = Q2*(T1/T2);\n",
      "W = Q1-Q2;\n",
      "\n",
      "# Results\n",
      "print (\"Least power required to pump the heat continuosly %.3f\")%(W),(\"kW\")\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Least power required to pump the heat continuosly 0.360 kW\n"
       ]
      }
     ],
     "prompt_number": 5
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 5.5 Page no :239"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "\n",
      "import math \n",
      "\n",
      "\n",
      "# Variables\n",
      "Q1 = 2*10**5; \t\t\t#kJ/h\n",
      "W = 3*10**4; \t\t\t#kJ/h\n",
      "\n",
      "# Calculations and Results\n",
      "Q2 = Q1-W;\n",
      "print (\"Heat abstracted from outside = \"),(Q2), (\"kJ/h\")\n",
      "\n",
      "\n",
      "COP_hp = Q1/(Q1-Q2);\n",
      "print (\"Co-efficient of performance = %.2f\")%(COP_hp)\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Heat abstracted from outside =  170000 kJ/h\n",
        "Co-efficient of performance = 6.00\n"
       ]
      }
     ],
     "prompt_number": 4
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 5.6 Page no : 240"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "\n",
      "# Variables\n",
      "T1 = 2373; \t\t\t#K\n",
      "T2 = 288.; \t\t\t#K\n",
      "\n",
      "# Calculations\n",
      "n_max = 1-T2/T1;\n",
      "\n",
      "# Results\n",
      "print (\"Highest possible theoritical efficiency = %.3f\")% (n_max*100), (\"%\")\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Highest possible theoritical efficiency = 87.863 %\n"
       ]
      }
     ],
     "prompt_number": 7
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 5.7 Page no : 240"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "\n",
      "# Variables\n",
      "T1 = 523.; \t\t\t#K\n",
      "T2 = 258.; \t\t\t#K\n",
      "Q1 = 90.; \t\t\t#kJ\n",
      "\n",
      "# Calculations and Results\n",
      "n = 1-T2/T1;\n",
      "print (\"(i) Efficiency of the system %.3f\")%(n*100), (\"%\")\n",
      "\n",
      "W = n*Q1;\n",
      "print (\"(ii) The net work transfer\"),(\"W = %.3f\")%(W),(\"kJ\")\n",
      " \n",
      "Q2 = Q1-W;\n",
      "print (\"(iii) Heat rejected to the math.sink\"),(\"Q2 = %.3f\")%(Q2),(\"kJ\")\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "(i) Efficiency of the system 50.669 %\n",
        "(ii) The net work transfer W = 45.602 kJ\n",
        "(iii) Heat rejected to the math.sink Q2 = 44.398 kJ\n"
       ]
      }
     ],
     "prompt_number": 6
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 5.8 Page no : 241"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "\n",
      "# Variables\n",
      "T1 = 1023.; \t\t#K\n",
      "T2 = 298.; \t\t\t#K\n",
      "\n",
      "# Calculations\n",
      "n_carnot = 1-T2/T1;\n",
      "W = 75*1000*60*60;\n",
      "Q = 3.9*74500*1000;\n",
      "n_thermal = W/Q;\n",
      "\n",
      "# Results\n",
      "print (\"n_carnot  = %.3f\")%(n_carnot)\n",
      "\n",
      "print (\"n_thermal  = %.3f\")%(n_thermal)\n",
      "\n",
      "print (\"Since \u03b7thermal > \u03b7carnot, therefore claim of the inventor is not valid (or possible)\")\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "n_carnot  = 0.709\n",
        "n_thermal  = 0.929\n",
        "Since \u03b7thermal > \u03b7carnot, therefore claim of the inventor is not valid (or possible)\n"
       ]
      }
     ],
     "prompt_number": 7
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 5.9 Page no : 241"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "# Variables\n",
      "T1 = 1273.; \t\t#K\n",
      "T2 = 313.; \t\t\t#K\n",
      "n_max = 1-T2/T1;\n",
      "Wnet = 1.;\n",
      "\n",
      "# Calculations\n",
      "Q1 = Wnet/n_max;\n",
      "Q2 = Q1-Wnet;\n",
      "\n",
      "# Results\n",
      "print (\"the least rate of heat rejection  =  %.3f\")%(Q2), (\"kW\")\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "the least rate of heat rejection  =  0.326 kW\n"
       ]
      }
     ],
     "prompt_number": 10
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 5.10 Page no : 242"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "# Variables\n",
      "one_ton_of_refrigeration = 210.; \t\t\t#kJ/min\n",
      "Cooling_required = 40*(one_ton_of_refrigeration); \t\t\t#kJ/min\n",
      "T1 = 303.; \t\t\t#K\n",
      "T2 = 238.; \t\t\t#K\n",
      "\n",
      "# Calculations\n",
      "COP_refrigerator = T2/(T1-T2);\n",
      "COP_actual = 0.20*COP_refrigerator;\n",
      "W = Cooling_required/COP_actual/60;\n",
      "\n",
      "# Results\n",
      "print (\"power required  =  %.1f\")% (W), (\"kW\")\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "power required  =  191.2 kW\n"
       ]
      }
     ],
     "prompt_number": 2
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 5.11 Page no : 242"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "\n",
      "# Variables\n",
      "E = 12000.; \t\t#kJ/min\n",
      "T2 = 308.; \t\t\t#K\n",
      "# Source 1\n",
      "T1 = 593.; \t\t\t#K\n",
      "\n",
      "# Calculations\n",
      "n1 = 1-T2/T1;\n",
      "# Source 2\n",
      "T1 = 343.; \t\t\t#K\n",
      "n2 = 1-T2/T1;\n",
      "W1 = E*n1;\n",
      "\n",
      "# Results\n",
      "print (\"W1  = %.3f\")% (W1),(\"kJ/min\")\n",
      "\n",
      "W2 = E*n2;\n",
      "print (\"W2  = %.3f\")% (W2),(\"kJ/min\")\n",
      "\n",
      "print (\"Thus, choose source 2.\")\n",
      "print (\"The source 2 is selected even though efficiency in this case is lower, because the criterion for selection is the larger output.\")\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "W1  = 5767.285 kJ/min\n",
        "W2  = 1224.490 kJ/min\n",
        "Thus, choose source 2.\n",
        "The source 2 is selected even though efficiency in this case is lower, because the criterion for selection is the larger output.\n"
       ]
      }
     ],
     "prompt_number": 8
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      " Example 5.12 Page no : 243"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "\n",
      "\n",
      "# Variables\n",
      "T1 = 973.; \t\t\t#K\n",
      "T2 = 323.; \t\t\t#K\n",
      "T3 = 248.; \t\t\t#K\n",
      "\n",
      "Q1 = 2500.; \t\t\t#kJ\n",
      "W = 400.;    \t\t\t#kJ\n",
      "\n",
      "# Calculations and Results\n",
      "n_max = 1-T2/T1;\n",
      "W1 = n_max*Q1;\n",
      "COP_max = T3/(T2-T3);\n",
      "W2 = W1-W;\n",
      "Q4 = COP_max*W2;\n",
      "COP1 = round(Q4/W2,3);\n",
      "Q3 = Q4+W2;\n",
      "Q2 = Q1-W1;\n",
      "print (\"Heat rejection to the 50\u00b0C reservoir = %.3f\")%(Q2+Q3), (\"kJ\")\n",
      "\n",
      "\n",
      "n = 0.45*n_max;\n",
      "W1 = n*Q1;\n",
      "W2 = W1-W;\n",
      "COP2 = 0.45*COP1;\n",
      "Q4 = W2*COP2;\n",
      "Q3 = Q4+W2;\n",
      "Q2 = Q1-W1;\n",
      "\n",
      "print (\"Heat rejected to 50\u00b0C reservoir = %.3f\")% (Q2+Q3), (\"kJ\")\n",
      "\n",
      "# Note : Answers are slightly different then book because of Rounding Error."
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Heat rejection to the 50\u00b0C reservoir = 6299.773 kJ\n",
        "Heat rejected to 50\u00b0C reservoir = 2623.147 kJ\n"
       ]
      }
     ],
     "prompt_number": 7
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 5.13 Page no : 244"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "# Variables\n",
      "T1 = 298.; \t\t\t#K\n",
      "T2 = 273.; \t\t\t#K\n",
      "Q1 = 24.; \t\t\t#kJ/s\n",
      "T3 = 653.; \t\t\t#K\n",
      "\n",
      "# Calculations and Results\n",
      "COP = T1/(T1-T2);\n",
      "print (\"(i) determine COP and work input required\")\n",
      "\n",
      "print (\"Coefficient of performance  =  \"),(COP)\n",
      "\n",
      "COP_ref = T2/(T1-T2);\n",
      "W = Q1/COP_ref;\n",
      "print (\"Work input required  =  %.3f\")%(W),(\"kW\")\n",
      "\n",
      " \n",
      "Q4 = T1*W/(T3-T1);\n",
      "Q3 = Q4+W;\n",
      "Q2 = Q1+W;\n",
      "COP = Q1/Q3;\n",
      "print (\"(ii)Determine overall COP of the system \"),(\"COP = %.3f\")%(COP)\n",
      "\n",
      "COP_overall = (Q2+Q4)/Q3;\n",
      "print (\"Overall COP = %.3f\")%(COP_overall)\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "(i) determine COP and work input required\n",
        "Coefficient of performance  =   11.92\n",
        "Work input required  =  2.198 kW\n",
        "(ii)Determine overall COP of the system  COP = 5.937\n",
        "Overall COP = 6.937\n"
       ]
      }
     ],
     "prompt_number": 10
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 5.14 Page no : 245"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "\n",
      "# Variables\n",
      "T_e1 = 493.; \t\t\t#K\n",
      "T_e2 = 298.; \t\t\t#K\n",
      "T_p1 = 298.; \t\t\t#K\n",
      "T_p2 = 273.; \t\t\t#K\n",
      "Amt = 15.; \t\t    \t#tonnes produced per day\n",
      "h = 334.5; \t\t\t    #kJ/kg\n",
      "Q_abs = 44500.; \t\t#kJ/kg\n",
      "\n",
      "# Calculations and Results\n",
      "Q_p2 = Amt*10**3*h/24/60;\n",
      "COP_hp = T_p2/(T_p1-T_p2);\n",
      "W = Q_p2/COP_hp/60;\n",
      "print (\"(i)Power developed by the engine  =  %.3f\")%(W),(\"kW\")\n",
      "\n",
      "print (\"(ii) Fuel consumed per hour\")\n",
      "n_carnot = 1-(T_e2/T_e1);\n",
      "Q_e1 = W/n_carnot*3600; \t\t\t#kJ/h\n",
      "fuel_consumed = Q_e1/Q_abs;\n",
      "print (\"Quantity of fuel consumed/hour  =  %.3f\")%(fuel_consumed),(\"kg/h\")\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "(i)Power developed by the engine  =  5.318 kW\n",
        "(ii) Fuel consumed per hour\n",
        "Quantity of fuel consumed/hour  =  1.088 kg/h\n"
       ]
      }
     ],
     "prompt_number": 15
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 5.15 Page no : 247"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "\n",
      "# Variables\n",
      "T1 = 550.; \t\t\t#K\n",
      "T3 = 350.; \t\t\t#K\n",
      "\n",
      "# Calculations\n",
      "T2 = (T1+T3)/2;\n",
      "\n",
      "# Results\n",
      "print (\"Intermediate temperature  = \"), (T2),(\"K\")\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Intermediate temperature  =  450.0 K\n"
       ]
      }
     ],
     "prompt_number": 16
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 5.16 Page no : 247"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "# Variables\n",
      "T1 = 600.; \t\t\t#K\n",
      "T2 = 300.; \t\t\t#K\n",
      "\n",
      "# Calculations and Results\n",
      "T3 = 2*T1/(T1/T2+1);\n",
      "print (\"(i) When Q1 = Q2\"),(\"T3 = \"),(T3),(\"K\")\n",
      "\n",
      "\n",
      "print (\"(ii) Efficiency of Carnot engine and COP of carnot refrigerator\")\n",
      "n = (T1-T3)/T1; \t\t\t#carnot engine\n",
      "COP = T2/(T3-T2); \t\t\t#refrigerator\n",
      "\n",
      "print (\"Efficiency of carnot engine  =  %.3f\")% (n)\n",
      "\n",
      "print (\"COP of carnot refrigerator  =  \"), (COP)\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "(i) When Q1 = Q2 T3 =  400.0 K\n",
        "(ii) Efficiency of Carnot engine and COP of carnot refrigerator\n",
        "Efficiency of carnot engine  =  0.333\n",
        "COP of carnot refrigerator  =   3.0\n"
       ]
      }
     ],
     "prompt_number": 11
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 5.17 Page no : 249"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "# Variables\n",
      "T3 = 278.; \t\t\t#K\n",
      "T2 = 350.; \t\t\t#K\n",
      "T4 = T2;\n",
      "T1 = 1350.; \t\t\t#K\n",
      "\n",
      "# Calculations\n",
      "Q1 = 100/(((T4/T1)*(T1-T2)/(T4-T3))+T2/T1)  \t#Q4+Q2 = 100; Q4 = Q1*((T4/T1)*(T1-T2)/(T4-T3)); Q2 = T2/T1*Q1;\n",
      "\n",
      "# Results\n",
      "print (\"Q1 = %.3f\")%(Q1),(\"kJ\")\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Q1 = 25.906 kJ\n"
       ]
      }
     ],
     "prompt_number": 18
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 5.18 Page no : 250"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "# Variables\n",
      "Q1 = 300.; \t\t\t#kJ/s\n",
      "T1 = 290.; \t\t\t#0C\n",
      "T2 = 8.5; \t\t\t#0C\n",
      "\n",
      "# Calculations and Results\n",
      "print (\"let \u03a3dQ/T  =  A\")\n",
      "\n",
      "print (\"(i) 215 kJ/s are rejected\")\n",
      "Q2 = 215.; \t\t\t#kJ/s\n",
      "A =  Q1/(T1+273) - Q2/(T2+273)\n",
      "print (\"Since, A<0, Cycle is irreversible.\")\n",
      "\n",
      "\n",
      "print (\"(ii) 150 kJ/s are rejected\")\n",
      "Q2 = 150; \t\t\t#kJ/s\n",
      "A =  Q1/(T1+273) - Q2/(T2+273)\n",
      "print (\"Since A = 0, cycle is reversible\")\n",
      "\n",
      "\n",
      "print (\"(iii) 75 kJ/s are rejected.\")\n",
      "Q2 = 75; \t\t\t#kJ/s\n",
      "A =  Q1/(T1+273) - Q2/(T2+273)\n",
      "print (\"Since A>0, cycle is impossible\")\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "let \u03a3dQ/T  =  A\n",
        "(i) 215 kJ/s are rejected\n",
        "Since, A<0, Cycle is irreversible.\n",
        "(ii) 150 kJ/s are rejected\n",
        "Since A = 0, cycle is reversible\n",
        "(iii) 75 kJ/s are rejected.\n",
        "Since A>0, cycle is impossible\n"
       ]
      }
     ],
     "prompt_number": 65
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 5.19 Page no : 251"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "\n",
      "# Variables\n",
      "P1 = 0.124*10**5; \t\t\t#N/m**2\n",
      "T1 = 433; \t\t\t#K\n",
      "T2 = 323; \t\t\t#K\n",
      "h_f1 = 687; \t\t\t#kJ/kg\n",
      "h2 = 2760; \t\t\t#kJ/kg\n",
      "h3 = 2160; \t\t\t#kJ/kg\n",
      "h_f4 = 209; \t\t\t#kJ/kg\n",
      "\n",
      "# Calculations and Results\n",
      "Q1 = h2-h_f1;\n",
      "Q2 = h_f4-h3;\n",
      "print (\"Let A = \u03a3dQ/T\")\n",
      "A = Q1/T1+Q2/T2;\n",
      "print (A)\n",
      "print (\"A<0. Hence classius inequality is verified\")\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Let A = \u03a3dQ/T\n",
        "-3\n",
        "A<0. Hence classius inequality is verified\n"
       ]
      }
     ],
     "prompt_number": 66
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 5.20 Page no :251"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "\n",
      "# Variables\n",
      "T1 = 437.;  \t\t\t#K\n",
      "T2 = 324.; \t    \t\t#K\n",
      "h2 = 2760.; \t\t\t#kJ/kg\n",
      "h1 = 690.; \t\t    \t#kJ/kg\n",
      "h3 = 2360.; \t\t\t#kJ/kg\n",
      "h4 = 450.; \t\t\t    #kJkg\n",
      "\n",
      "# Calculations\n",
      "Q1 = h2-h1;\n",
      "Q2 = h4-h3;\n",
      "\n",
      "# Results\n",
      "print (\"Let A = \u03a3dQ/T\")\n",
      "A = Q1/T1 + Q2/T2;\n",
      "print \"%.3f\"%(A)\n",
      "print (\"Since A<0, Classius inequality is verified\")\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Let A = \u03a3dQ/T\n",
        "-1.158\n",
        "Since A<0, Classius inequality is verified\n"
       ]
      }
     ],
     "prompt_number": 19
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 5.21 Page no : 266"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "\n",
      "import math \n",
      "\n",
      "# Variables\n",
      "T0 = 273.; \t\t\t#K\n",
      "T1 = 673.; \t\t\t#K\n",
      "T2 = 298.; \t\t\t#K\n",
      "m_w = 10.; \t\t\t#kg\n",
      "T3 = 323.; \t\t\t#K\n",
      "c_pw = 4186.; \t\t#kJ/kg.K\n",
      "\n",
      "# Calculations and Results\n",
      "print (\"Let C = mi*cpi\")\n",
      "C = m_w*c_pw*(T3-T2)/(T1-T3);\n",
      "S_iT1 = C*math.log(T1/T0); \t\t\t# Entropy of iron at 673 K\n",
      "S_wT2 = m_w*c_pw*math.log(T2/T0); \t#Entropy of water at 298 K\n",
      "S_iT3 = C*math.log(T3/T0); \t\t\t#Entropy of iron at 323 K\n",
      "S_wT3 = m_w*c_pw*math.log(T3/T0); \t#Entropy of water at 323 K\n",
      "\n",
      "dS_i = S_iT3 - S_iT1;\n",
      "dS_w = S_wT3 - S_wT2; \n",
      "dS_net = dS_i + dS_w\n",
      "\n",
      "print (\"Since dS>0, process is irreversible\")\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Let C = mi*cpi\n",
        "Since dS>0, process is irreversible\n"
       ]
      }
     ],
     "prompt_number": 68
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 5.23 Page no : 267"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "\n",
      "import math \n",
      "\n",
      "# Variables\n",
      "T1 = 293.; \t\t\t#K\n",
      "V1 = 0.025; \t\t\t#m**3\n",
      "V3 = V1;\n",
      "p1 = 1.05*10**5; \t\t\t#N/m**2\n",
      "p2 = 4.5*10**5; \t\t\t#N/m**2\n",
      "R = 0.287*10**3; \n",
      "cv = 0.718;\n",
      "cp = 1.005;\n",
      "T3 = 293.; \t\t\t#K\n",
      "\n",
      "# Calculations and Results\n",
      "m = p1*V1/R/T1;\n",
      "T2 = p2/p1*T1;\n",
      "Q_12 = m*cv*(T2-T1);\n",
      "Q_23 = m*cp*(T3-T2)\n",
      "\n",
      "Q_net = Q_12+Q_23;\n",
      "print (\"Net heat flow  =  \"),(Q_net), (\"kJ\")\n",
      "\n",
      "\n",
      "dS_32 = m*cp*math.log(T2/T1);\n",
      "dS_12 = m*cv*math.log(T2/T1);\n",
      "dS_31 = dS_32 - dS_12;\n",
      "print (\"Decrease in entropy  =  %.3f\")% (dS_31), (\"kJ/K\")\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Net heat flow  =   -8.625 kJ\n",
        "Decrease in entropy  =  0.013 kJ/K\n"
       ]
      }
     ],
     "prompt_number": 12
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 5.24 Page no : 269"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "%matplotlib inline\n",
      "\n",
      "from matplotlib.pyplot import *\n",
      "from numpy import *\n",
      "import math \n",
      "\n",
      "# Variables\n",
      "p1 = 1.05*10**5; \t#N/m**2\n",
      "V1 = 0.04; \t\t\t#m**3\n",
      "T1 = 288.; \t\t\t#K\n",
      "p2 = 4.8*10**5;\n",
      "T2 = T1;\n",
      "R0 = 8314.;\n",
      "M = 28.;\n",
      "\n",
      "# Calculations and Results\n",
      "R = R0/M;\n",
      "m = p1*V1/R/T1;\n",
      "dS = m*R*math.log(p1/p2)\n",
      "print (\"Decrease in entropy  = %.3f\")% (-dS), (\"J/K\")\n",
      "\n",
      "\n",
      "print \n",
      "Q = T1*(-dS);\n",
      "print (\"(ii)Heat rejected  =  \"),(\"Q = %.3f\")%(Q),(\"J\")\n",
      "\n",
      "\n",
      "W = Q;\n",
      "print (\"Work done  =  %.3f\")% (W), (\"J\")\n",
      "\n",
      "V2 = p1*V1/p2;\n",
      "v1 = V1/m; \t\t\t#specific volume\n",
      "v2 = V2/m; \t\t\t#specific volume\n",
      "\n",
      "v = linspace(v2,0.8081571,64);\n",
      "\n",
      "\n",
      "def f(v):\n",
      "    return p1*v1/v\n",
      "plot(v,f(v))\n",
      "\n",
      "p = []\n",
      "for i in range(len(v)):\n",
      "    p.append(p1)\n",
      "plot(v,p,'--')\n",
      "\n",
      "p = [0 ,p2]\n",
      "v = [v2 ,v2]\n",
      "plot(v,p,'--')\n",
      "\n",
      "p = [0 ,p1]\n",
      "v = [v1 ,v1]\n",
      "plot(v,p,'--')\n",
      "\n",
      "T = [288, 288]\n",
      "s = [10 ,(10-dS)]\n",
      "plot(s,T)\n",
      "\n",
      "s = [10 ,10]\n",
      "T = [0 ,288]\n",
      "plot(s,T,'--')\n",
      "\n",
      "s = [(10-dS), (10-dS)]\n",
      "T = [0 ,288]\n",
      "plot(s,T,'--')\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Populating the interactive namespace from numpy and matplotlib\n",
        "Decrease in entropy  = 22.164 J/K\n",
        "\n",
        "(ii)Heat rejected  =   Q = 6383.268 J\n",
        "Work done  =  6383.268 J\n"
       ]
      },
      {
       "metadata": {},
       "output_type": "pyout",
       "prompt_number": 13,
       "text": [
        "[<matplotlib.lines.Line2D at 0x2c3da90>]"
       ]
      },
      {
       "metadata": {},
       "output_type": "display_data",
       "png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAEACAYAAABCl1qQAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAHfdJREFUeJzt3W9MVHe+P/D3zOhW7WivBQYtw5WWtgrHGZnVatTa0ApB\nIMX+sYG0sInuJv3tXQrbB31w22wZ2m39bdst16ybjblZrC7t3frbYtwUOpHdltjU24mirtrNvdla\nhTljlQGkjFL+OZ/fA2UWVBiwnB7m6/uVzAPPzJm8zxkzb77nz3csIiIgIiIah9XsAERENP2xLIiI\nKCaWBRERxcSyICKimFgWREQUE8uCiIhimlBZpKWlwe12w+PxYOXKlQCArq4u5Obmwu12Iy8vD93d\n3dHXb926FZmZmXC5XNi/f390eUtLCzweDzRNQ2VlZXR5f38/iouL4XK5sHbtWrS2tkaf27VrFzRN\ng6Zp2L1793feYCIiugkyAWlpadLZ2TlqWXl5udTU1IiISE1NjVRUVIiIyOHDh2XFihUyNDQkuq5L\nWlqaDAwMiIiIy+WSI0eOiIjIxo0bpb6+XkRE3nrrLamsrBQRkb1790pRUZGIiJw9e1bS09MlHA5L\nOByW9PR0OXfu3EQiExHRFJrwYSi55t69xsZGlJWVAQBKS0vR0NAAAGhoaEBJSQlsNhtSUlKgaRr8\nfj/a2toQiUTg8XiuW2fkexUVFeHgwYOIRCJoampCfn4+7HY77HY7NmzYgKampu/ekERENCkTKguL\nxRI95LR9+3YAQCgUQkJCAgAgMTER7e3tAIBgMAin0xld1+l0Qtd1BINBpKamRpenpKRA13UAgK7r\n0eesVisSEhLQ3t4+5nsREdH3a8ZEXvT555/D4XAgFAphw4YNWLJkidG5iIhoGplQWTgcDgBAUlIS\nNm3ahEOHDiEpKQkdHR1ITExEKBSKvsbpdCIQCETXHR41jLV8eJ22tjY4HA5EIhF0dnbC4XDA6XTC\n7/dH1wkEAlizZs2obPfeey9OnTp1k5tPRHRrSk9Px5dffjnh18c8DNXb24ve3l4AwKVLl+Dz+aBp\nGgoKClBXVwcAqKurQ0FBAQCgoKAA77//PoaGhqDrOk6ePImVK1ciNTUVVqsVR48eBQC8++67yM/P\nj64z/F779u3D6tWrYbVasX79evh8PoTDYYTDYfh8PuTk5IzKd+rUKYhI3D6qqqpMz8D85ue4FfPH\nc3YV8k/2j+yYI4vz58/jscceg8ViQW9vL0pKSlBUVIQHH3wQxcXFqK2txYIFC7Bnzx4AwPLly/H4\n44/D7XbDarVix44dmDlzJgBg586d2LJlCwYGBrB+/Xo88cQTAIDy8nKUlZXB5XJh7ty5eO+99wAA\nd911F1566SWsWrUKAPDyyy8jOTl5UhtIRETfXcyyuPvuu/G3v/3tuuV33nnnmFcmvfjii3jxxRev\nW758+fLoyGKk2267LVo219q8eTM2b94cKyYRERmId3CbLDs72+wI3wnzmyue88dzdiD+80+WRUTi\n+sePLBYL4nwTiIi+d5P97uTIgoiIYmJZEBFRTEqUxYsvAm++aXYKIiJ1KVEWIsDQkNkpiIjUpURZ\nWK1AJGJ2CiIidbEsiIgoJpYFERHFpExZPPSx1+wYRETKUqIsbDbg4QPVZscgIlKWEmVhVWIriIim\nLyW+ZlkWRETGUuJrlmVBRGQsJb5mWRZERMZS4mvWagV8q6rMjkFEpCwlysJmAz5a5TU7BhGRspQo\nC96UR0RkLGXK4vJls1MQEalLibKw2TiyICIykhJlwcNQRETGUqYsCg95zY5BRKQsJcrCZgM2HuPc\nUERERlGiLHhTHhGRsZT4mmVZEBEZS4mvWZvN7ARERGpToiw4siAiMpYSX7M2G7Ang3NDEREZRYmy\nsFqBPy7xmh2DiEhZSpSFzcbpPoiIjMSyICKimJQpC073QURkHCXKgrPOEhEZS4mysNmAZ/7hNTsG\nEZGylCmLH53m3FBEREZRoix4Ux4RkbEm9DV7+fJleDwePProowCArq4u5Obmwu12Iy8vD93d3dHX\nbt26FZmZmXC5XNi/f390eUtLCzweDzRNQ2VlZXR5f38/iouL4XK5sHbtWrS2tkaf27VrFzRNg6Zp\n2L1795j5ON0HEZGxJlQW27ZtQ2ZmJiwWCwCgqqoKhYWFOH78OPLz81FVdeXu6ZaWFtTX1+PEiRPw\n+Xx49tlnMTg4CADYvHkzamtr8cUXX6C1tRV79+4FAGzfvh0LFy7EiRMn8MILL6CiogIA8PXXX+PV\nV1+F3++H3+/HK6+8gvPnz98wH8uCiMhYMctC13U0NjbiJz/5CUQEANDY2IiysjIAQGlpKRoaGgAA\nDQ0NKCkpgc1mQ0pKCjRNg9/vR1tbGyKRCDwez3XrjHyvoqIiHDx4EJFIBE1NTcjPz4fdbofdbseG\nDRvQ1NR0w4wsCyIiY8Usi+effx5vvvkmrCNODIRCISQkJAAAEhMT0d7eDgAIBoNwOp3R1zmdTui6\njmAwiNTU1OjylJQU6LoO4EoZDT9ntVqRkJCA9vb2Md/rRmw2YMcCzg1FRGSUGeM9+eGHH8LhcMDj\n8aC5ufl7ijR5//mfXuwT4GuvF9nZ2cjOzjY7EhHRtNLc3PydvsfHLYuDBw/iz3/+MxobG9HX14ee\nnh6UlZUhKSkJHR0dSExMRCgUgsPhAHDlr/9AIBBdf3jUMNby4XXa2trgcDgQiUTQ2dkJh8MBp9MJ\nv98fXScQCGDNmjU3zPlv/+bFf/834PXe9H4gIlLatX9IV1dP7naDcQ9Dvf766wgEAjh9+jT++Mc/\n4pFHHsEf/vAHFBQUoK6uDgBQV1eHgoICAEBBQQHef/99DA0NQdd1nDx5EitXrkRqaiqsViuOHj0K\nAHj33XeRn58fXWf4vfbt24fVq1fDarVi/fr18Pl8CIfDCIfD8Pl8yMnJuWFOzg1FRGSscUcW1xq+\nGqq6uhrFxcWora3FggULsGfPHgDA8uXL8fjjj8PtdsNqtWLHjh2YOXMmAGDnzp3YsmULBgYGsH79\nejzxxBMAgPLycpSVlcHlcmHu3Ll47733AAB33XUXXnrpJaxatQoA8PLLLyM5OfmGuVgWRETGssjw\nJU5xymKx4H//V1BYCPzjH2anISKKDxaLBZP5+lfi3ucZM4DyDq/ZMYiIlKXEyOLMGcGiNAsQ35tC\nRPS9uSVHFrwpj4jIWCwLIiKKSYmymDGpa7qIiGiylCgLjiyIiIylTFls/QHnhiIiMooSV0NdvChw\nOIBLl8xOQ0QUH27Zq6GGhsxOQUSkLmXKgtN9EBEZR6myiO8DakRE05cSZWG1AhYLEImYnYSISE1K\nlAUAVFu8PBRFRGQQJa6GEhHAYkHvJcGcOWYnIiKa/m7Jq6GGcWRBRGQMpcqCl88SERmDZUFERDGx\nLIiIKCZlyuLtuVUsCyIigyhTFr9J8GJw0OwURERqUqYsZszg1VBEREZRqix4GIqIyBgsCyIiioll\nQUREMSlTFj8972VZEBEZRKm5oQ5+JlizxuxERETTH+eGIiKiKadUWfA+CyIiYyhVFjxnQURkDKXK\ngiMLIiJjKFMW/3V/FcuCiMggypTFn5ZybigiIqMoUxYzZ/KcBRGRUZQqC44siIiMoUxZcLoPIiLj\njFsWfX19eOCBB+DxeHD//ffj+eefBwB0dXUhNzcXbrcbeXl56O7ujq6zdetWZGZmwuVyYf/+/dHl\nLS0t8Hg80DQNlZWV0eX9/f0oLi6Gy+XC2rVr0draGn1u165d0DQNmqZh9+7d424IRxZERAaSGHp7\ne0VEZHBwUFatWiUff/yxlJeXS01NjYiI1NTUSEVFhYiIHD58WFasWCFDQ0Oi67qkpaXJwMCAiIi4\nXC45cuSIiIhs3LhR6uvrRUTkrbfeksrKShER2bt3rxQVFYmIyNmzZyU9PV3C4bCEw2FJT0+Xc+fO\nXZdveBM+XFElv/lNrK0hIiKRf353TlTMw1CzZ88GAAwMDODy5ctwOBxobGxEWVkZAKC0tBQNDQ0A\ngIaGBpSUlMBmsyElJQWapsHv96OtrQ2RSAQej+e6dUa+V1FREQ4ePIhIJIKmpibk5+fDbrfDbrdj\nw4YNaGpqGjNn4eFqjiyIiAwSsywikQiysrKQnJyMhx9+GJqmIRQKISEhAQCQmJiI9vZ2AEAwGITT\n6Yyu63Q6oes6gsEgUlNTo8tTUlKg6zoAQNf16HNWqxUJCQlob28f873Gw7IgIjLGjFgvsFqtOHbs\nGL755hvk5eXhk08++T5y3RSWBRGRMWKWxbA77rgDhYWF8Pv9SEpKQkdHBxITExEKheBwOABc+es/\nEAhE1xkeNYy1fHidtrY2OBwORCIRdHZ2wuFwwOl0wu/3R9cJBAJYM8b8416vFwDwyX4v1q7NRnZ2\n9oR3ABHRraC5uRnNzc03/wbjndDo6OiQnp4eEblyonvdunXy4YcfjjrB/fbbb8tzzz0nIv88wT04\nOCiBQEAWLVo05gnuDz74QERGn+Cur6+XRx99VEREgsGgpKenS09Pj/T09Mg999wz7gluAeTf/31S\n52uIiG5ZMb7+rzPuyOLs2bP40Y9+BBFBX18fnn76aRQWFmL16tUoLi5GbW0tFixYgD179gAAli9f\njscffxxutxtWqxU7duzAzJkzAQA7d+7Eli1bMDAwgPXr1+OJJ54AAJSXl6OsrAwulwtz587Fe++9\nBwC466678NJLL2HVqlUAgJdffhnJycljZv0sh3NDEREZRZlfyvuP/wBOnwa2bTM7ERHR9HfL/lIe\nb8ojIjKOMmXxgx8AAwNmpyAiUpNSZcGRBRGRMZQqC44siIiMoUxZLNvrZVkQERlEmbLI/H/V6O83\nOwURkZqUKQuA5yyIiIyiVFnwMBQRkTGUKgsehiIiMgbLgoiIYlKmLM7/nyoehiIiMogyZdH9cy9H\nFkREBlGmLHhTHhGRcZQpi9tu4zkLIiKjsCyIiCgmlgUREcWkTFnM/hVPcBMRGUWZX8qDxQKbVdDf\nD8wY98diiYjolv2lPICHooiIjKJUWcyaBfT1mZ2CiEg9LAsiIopJubLgYSgioqmnTllUVXFkQURk\nEHXKwuvFrFnAt9+aHYSISD3qlAV4zoKIyChKlcXs2RxZEBEZQamy4GEoIiJjKFUWs2fzMBQRkRHU\nKQuvl4ehiIgMok5ZVFezLIiIDKJOWQCYMwfo7TU7BRGRelgWREQUk1JlwcNQRETGUKosOLIgIjKG\nOmVRVcWyICIyiDpl4fXi9tuBS5fMDkJEpJ6YZREIBPDQQw/B5XJh8eLFeOONNwAAXV1dyM3Nhdvt\nRl5eHrq7u6PrbN26FZmZmXC5XNi/f390eUtLCzweDzRNQ2VlZXR5f38/iouL4XK5sHbtWrS2tkaf\n27VrFzRNg6Zp2L1797hZ58xhWRARGUJiOHfunJw4cUJERMLhsNx3331y7NgxKS8vl5qaGhERqamp\nkYqKChEROXz4sKxYsUKGhoZE13VJS0uTgYEBERFxuVxy5MgRERHZuHGj1NfXi4jIW2+9JZWVlSIi\nsnfvXikqKhIRkbNnz0p6erqEw2EJh8OSnp4u586dG5Vv5CY0Nork5cXaIiIimsDX/ygxRxbJyclY\nunQpAMBut8PtdiMYDKKxsRFlZWUAgNLSUjQ0NAAAGhoaUFJSApvNhpSUFGiaBr/fj7a2NkQiEXg8\nnuvWGfleRUVFOHjwICKRCJqampCfnw+73Q673Y4NGzagqalpzKy33w5cvHjTvUlERGOY1DmLM2fO\n4NChQ3jwwQcRCoWQkJAAAEhMTER7ezsAIBgMwul0RtdxOp3QdR3BYBCpqanR5SkpKdB1HQCg63r0\nOavVioSEBLS3t4/5XmOx23kYiojICBMui4sXL2LTpk3Ytm0b5s2bZ2Smm3P1BDdHFkREU2/GRF40\nODiIJ598Es888wwee+wxAEBSUhI6OjqQmJiIUCgEh8MB4Mpf/4FAILru8KhhrOXD67S1tcHhcCAS\niaCzsxMOhwNOpxN+vz+6TiAQwJo1a67L5/V6gepq9PQAXV3ZALInuRuIiNTW3NyM5ubmm3+DWCc1\nIpGIlJWVyc9//vNRy0ee4H777bflueeeE5F/nuAeHByUQCAgixYtGvME9wcffCAio09w19fXy6OP\nPioiIsFgUNLT06Wnp0d6enrknnvuGfsENyDd3SJ2+6TO2RAR3ZIm8PU/+vWxXvDpp5+KxWKRZcuW\nSVZWlmRlZclHH30knZ2dkpOTIy6XS3Jzc+XChQvRdV577TXJyMgQTdPE5/NFlx8+fFiysrIkMzMz\nWi4iIn19ffLUU0/J0qVLZfXq1XL69Onoc7W1tZKRkSEZGRnyzjvvjL3BgAwOilitIpHIpPYBEdEt\nZ7JlYbm6UtyyWCwQEcBiAUQwZw4QCl25MoqIiG4s+t05QercwX3V3LlAOGx2CiIitahTFlVVAK6U\nRU+PyVmIiBSjTll4vQCAefM4siAimmrqlMVV8+ZxZEFENNWUK4s77gC++cbsFEREalGuLDiyICKa\nesqVBUcWRERTT52yuHqCm2VBRDT11CmL6moAwL/8C3DhgslZiIgUo05ZXDV/PjDiR/uIiGgKKFcW\nHFkQEU095crizjtZFkREU025spg/H+jqMjsFEZFa1CmLq3ND3Xkny4KIaKqpM0X5VRcvAsnJ/C1u\nIqLx3PJTlN9+OzA0BHz7rdlJiIjUoVxZWCxAYiLQ0WF2EiIidShXFgDLgohoqilZFklJV35alYiI\npoY6ZXF1bigAcDiA9nbzohARqUadsrg6NxTAsiAimmrqlMUIycnA+fNmpyAiUoeSZbFgAXDunNkp\niIjUwbIgIqKYlCyLhQuBr782OwURkTrUKYurc0MBQEoKEAyamIWISDHKzQ0FAJEIMGfOlR9BmjXL\npGBERNPYLT83FABYrVcORem62UmIiNSgZFkAQGoqEAiYnYKISA3KlsW//ivQ1mZ2CiIiNShbFosW\nAa2tZqcgIlKDOmUxYm4oAEhLA86cMSMIEZF61CmLEXNDAcDddwNffWVSFiIixahTFte4917g1Cmz\nUxARqUGd+ywsFmDEply+DNjtQFcXMHu2iQGJiKYh3mdxlc125VDUl1+anYSIKP7FLIstW7YgOTkZ\nLpcruqyrqwu5ublwu93Iy8tDd3d39LmtW7ciMzMTLpcL+/fvjy5vaWmBx+OBpmmorKyMLu/v70dx\ncTFcLhfWrl2L1hGXMO3atQuapkHTNOzevXvSG7d4MfA//zPp1YiI6Boxy2Lz5s3w+XyjllVVVaGw\nsBDHjx9Hfn4+qq7Oy9TS0oL6+nqcOHECPp8Pzz77LAYHB6PvU1tbiy+++AKtra3Yu3cvAGD79u1Y\nuHAhTpw4gRdeeAEVFRUAgK+//hqvvvoq/H4//H4/XnnlFZwf70cqRswNNWzJEpYFEdFUiFkW69at\nw/z580cta2xsRFlZGQCgtLQUDQ0NAICGhgaUlJTAZrMhJSUFmqbB7/ejra0NkUgEHo/nunVGvldR\nUREOHjyISCSCpqYm5Ofnw263w263Y8OGDWhqahozpzcbsFRbRj3+7ywLBtd6J71TiIhotBk3s1Io\nFEJCQgIAIDExEe1Xf8M0GAzikUceib7O6XRC13XYbDakpqZGl6ekpEC/OnGTruvR56xWKxISEtDe\n3o5gMAin03nde43Fm+2FN9t7M5tDREQx3FRZTDfeETfkZWdnIzs727QsRETTUXNzM5qbm296/Zsq\ni6SkJHR0dCAxMRGhUAgOhwPAlb/+AyNm7xseNYy1fHidtrY2OBwORCIRdHZ2wuFwwOl0wu/3R9cJ\nBAJYs2bNDfN4r7l7m4iIRrv2D+nqa25kjuWmLp0tKChAXV0dAKCurg4FBQXR5e+//z6Ghoag6zpO\nnjyJlStXIjU1FVarFUePHgUAvPvuu8jPz7/uvfbt24fVq1fDarVi/fr18Pl8CIfDCIfD8Pl8yMnJ\nuZm4RET0XUkMJSUlsnDhQpk5c6Y4nU6pra2Vzs5OycnJEZfLJbm5uXLhwoXo61977TXJyMgQTdPE\n5/NFlx8+fFiysrIkMzNTnnvuuejyvr4+eeqpp2Tp0qWyevVqOX36dPS52tpaycjIkIyMDHnnnXdu\nmC+6CVVVN3y+6quvYm0iEdEtZwJf/6Moewd39PnmZgjPYRARjcI7uImIaMqxLIiIKCaWBRERxcSy\nICKimNQpixvMDQUAVYsWfc9BiIjUo87VUERENGG8GoqIiKYcy4KIiGJiWRARUUwsCyIiikmdshhj\n5lnv6dPfbw4iIgWpczUU54YiIpowXg1FRERTjmVBREQxsSyIiCgmlgUREcWkTllwbigiIsOoczUU\nERFNGK+GIiKiKceyICKimFgWREQUE8uCiIhiUqcsODcUEZFh1LkainNDERFNGK+GIiKiKceyICKi\nmFgWREQUE8uCiIhiUqcsODcUEZFh1LkaioiIJoxXQxER0ZRjWRARUUwsCyIiiollQUREMalTFpwb\niojIMNO+LHw+H1wuFzIzM/GrX/1q7BdWV994cWurQcmIiG4d07os+vv78dOf/hQ+nw/Hjx/Hn/70\nJxw9etTsWFOqubnZ7AjfCfObK57zx3N2IP7zT9a0Lgu/3w9N05CSkoIZM2aguLgYDQ0NZseaUvH+\nH475zRXP+eM5OxD/+SdrWpeFrutITU2N/tvpdELXdRMTERHdmqZ1WVgsFrMjEBERAMg0duDAASks\nLIz++4033pBf/vKXo16Tnp4uAPjggw8++JjEIz09fVLfx9N6bqi+vj4sWbIEn332GRwOB9asWYMd\nO3bghz/8odnRiIhuKTPMDjCeWbNm4Xe/+x3y8vIQiURQVlbGoiAiMsG0HlkQEdH0MK1PcMcy4Rv2\npqm0tDS43W54PB6sXLnS7Djj2rJlC5KTk+FyuaLLurq6kJubC7fbjby8PHR3d5uYcHw3yu/1euF0\nOuHxeODxeODz+UxMOL5AIICHHnoILpcLixcvxhtvvAEgfj6DsfLHy2fQ19eHBx54AB6PB/fffz+e\nf/55APGx/8fKPul9/53PQpukr69P0tLSRNd1GRwclBUrVsiRI0fMjjUpaWlp0tnZaXaMCTlw4IAc\nOXJEli5dGl1WXl4uNTU1IiJSU1MjFRUVZsWL6Ub5vV6v/PrXvzYx1cSdO3dOTpw4ISIi4XBY7rvv\nPjl27FjcfAZj5Y+nz6C3t1dERAYHB2XVqlXy8ccfx83+v1H2ye77uB1ZqHLDnsTJUcB169Zh/vz5\no5Y1NjairKwMAFBaWjqt9/+N8gPxs/+Tk5OxdOlSAIDdbofb7UYwGIybz2Cs/ED8fAazZ88GAAwM\nDODy5ctwOBxxs/+vzZ6cnAxgcvs+bstChRv2LBZLdAi7fft2s+NMWigUQkJCAgAgMTER7e3tJiea\nvN/+9rfIyMhAaWkpurq6zI4zIWfOnMGhQ4fw4IMPxuVnMJx/3bp1AOLnM4hEIsjKykJycjIefvhh\naJoWN/v/2uyZmZkAJrfv47YsVLhh7/PPP8eRI0fw17/+FTt37sRf/vIXsyPdUn72s5/h1KlT+Pvf\n/4709HRUVFSYHSmmixcvYtOmTdi2bRvmzZtndpxJu3jxIp566ils27YNc+fOjavPwGq14tixY9B1\nHQcOHMAnn3xidqQJuzZ7c3PzpPd93JaF0+lEIBCI/jsQCIwaacQDh8MBAEhKSsKmTZtw6NAhkxNN\nTlJSEjo6OgBcGWUMb0+8SExMhMVigcViwbPPPjvt9//g4CCefPJJPPPMM3jssccAxNdnMJz/6aef\njuaPt88AAO644w4UFhbC7/fH1f4H/pn9888/n/S+j9uyeOCBB3Dy5EkEg0EMDg5iz549yM/PNzvW\nhPX29qK3txcAcOnSJfh8PmiaZnKqySkoKEBdXR0AoK6uDgUFBSYnmpyRhww++OCDab3/RQQ//vGP\nkZmZGb2aBYifz2Cs/PHyGXR2diIcDgMAvv32WzQ1NcHlcsXF/h8reygUir5mQvt+6s+7f38aGxtF\n0zTJyMiQ119/3ew4k/LVV1+J2+2WZcuWyX333Se/+MUvzI40rpKSElm4cKHMnDlTnE6n1NbWSmdn\np+Tk5IjL5ZLc3Fy5cOGC2THHdG3+3//+91JaWiput1uWLFkieXl5ouu62THH9Omnn4rFYpFly5ZJ\nVlaWZGVlyUcffRQ3n8GN8jc2NsbNZ3D8+HHJysqSZcuWyeLFi6W6ulpEJC72/1jZJ7vveVMeERHF\nFLeHoYiI6PvDsiAiophYFkREFBPLgoiIYmJZEBFRTCwLIiKKiWVBREQxsSyIiCim/w93T0cbP4g9\nZgAAAABJRU5ErkJggg==\n",
       "text": [
        "<matplotlib.figure.Figure at 0x2124290>"
       ]
      }
     ],
     "prompt_number": 13
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 5.25 Page no : 270"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "\n",
      "import math \n",
      "\n",
      "# Variables\n",
      "R = 287.; \t\t\t#kJ/kg.K\n",
      "dU = 0;\n",
      "W = 0;\n",
      "Q = dU+W;\n",
      "\n",
      "# Calculations\n",
      "dS = R*math.log(2); \t\t\t#v2/v1 = 2\n",
      "\n",
      "# Results\n",
      "print (\"Change in entropy  =  %.3f\")%(dS),(\"kJ/kg.K\")\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Change in entropy  =  198.933 kJ/kg.K\n"
       ]
      }
     ],
     "prompt_number": 22
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 5.26 Page no : 271"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "\n",
      "import math \n",
      "\n",
      "# Variables\n",
      "m = 0.04; \t\t\t#kg\n",
      "p1 = 1*10.**5; \t\t\t#N/m**2\n",
      "T1 = 293.; \t\t\t#K\n",
      "p2 = 9*10.**5; \t\t\t#N/m**2\n",
      "V2 = 0.003; \t\t\t#m**3\n",
      "cp = 0.88; \t\t\t#kJ/kg.K\n",
      "R0 = 8314.;\n",
      "M = 44.;\n",
      "\n",
      "# Calculations\n",
      "R = R0/M;\n",
      "T2 = p2*V2/m/R;\n",
      "ds_2A = R/10**3*math.log(p2/p1);\n",
      "ds_1A = cp*math.log(T2/T1);\n",
      "ds_21 = ds_2A - ds_1A;\n",
      "dS_21 = m*ds_21;\n",
      "\n",
      "# Results\n",
      "print (\"Decrease in entropy = %.3f\")% (dS_21),(\"kJ/K\")\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Decrease in entropy = 0.010 kJ/K\n"
       ]
      }
     ],
     "prompt_number": 23
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 5.27 Page no :  272"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "import math \n",
      "\n",
      "# Variables\n",
      "p1 = 7.*10**5; \t\t\t#N/m**2\n",
      "T1 = 873.; \t\t\t#K\n",
      "p2 = 1.05*10**5; \t\t\t#N/M62\n",
      "n = 1.25;\n",
      "m = 1.; \t\t\t#kg\n",
      "R = 0.287;\n",
      "cp = 1.005;\n",
      "\n",
      "# Calculations\n",
      "T2 = T1*(p2/p1)**((n-1)/n);\n",
      "\n",
      "# At constant temperature from 1 to A\n",
      "ds_1A = R*math.log(p1/p2);\n",
      "# At constant pressure from A to 2\n",
      "ds_2A = cp*math.log(T1/T2);\n",
      "ds_12 = ds_1A - ds_2A;\n",
      "\n",
      "# Results\n",
      "print (\"Increase in entropy  =  %.3f\")% (ds_12), (\"kJ/kg.K\")\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Increase in entropy  =  0.163 kJ/kg.K\n"
       ]
      }
     ],
     "prompt_number": 24
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 5.28 Page no :  274"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "\n",
      "import math \n",
      "\n",
      "# Variables\n",
      "p1 = 7*10**5; \t\t#Pa\n",
      "T1 = 733.; \t\t\t#K\n",
      "p2 = 1.012*10**5; \t#Pa\n",
      "T2a = 433.; \t\t#K\n",
      "y = 1.4;\n",
      "cp = 1.005;\n",
      "\n",
      "# Calculations and Results\n",
      "print (\"(i) To prove that the process is irreversible\")\n",
      "T2 = T1*(p2/p1)**((y-1)/y);\n",
      "print (\"T2  = %.3f\")% (T2)\n",
      "print (\"But the actual temperature is 433K at th epressure of 1.012 bar, Hence the process is irreversible. Proved.\")\n",
      "\n",
      "\n",
      "print (\"(ii) Change of entropy per kg of air\")\n",
      "ds = cp*math.log(T2a/T2);\n",
      "print (\"Increase of entropy = %.3f\")% (ds), (\"kJ/kg.K\")\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "(i) To prove that the process is irreversible\n",
        "T2  = 421.820\n",
        "But the actual temperature is 433K at th epressure of 1.012 bar, Hence the process is irreversible. Proved.\n",
        "(ii) Change of entropy per kg of air\n",
        "Increase of entropy = 0.026 kJ/kg.K\n"
       ]
      }
     ],
     "prompt_number": 25
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 5.29 Page no :  275"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "\n",
      "import math \n",
      "\n",
      "# Variables\n",
      "V1 = 0.3; \t\t\t#m**3\n",
      "p1 = 4*10**5; \t\t#N/m**2\n",
      "V2 = 0.08; \t\t\t#m**3\n",
      "n = 1.25; \n",
      "\n",
      "# Calculations and Results\n",
      "p2 = p1*(V1/V2)**n;\n",
      "\n",
      "dH = n*(p2*V2-p1*V1)/(n-1)/10**3;\n",
      "print (\"(i) Change in enthalpy\"), (\"dH = %.3f\")% (dH), (\"kJ\")\n",
      "\n",
      "dU = dH-(p2*V2 - p1*V1)/10**3;\n",
      "print (\"(ii) Change in internal energy\"),(\"dU = %.3f\")% (dU), (\"kJ\")\n",
      "\n",
      "dS = 0;\n",
      "print (\"(iii) Change in entropy\"),(\"dS\"), (dS)\n",
      "\n",
      "Q = 0;\n",
      "print (\"(iv)Heat transfer\"),(\"Q = \"), (Q)\n",
      "\n",
      "W = Q-dU;\n",
      "print (\"(v) Work transfer\"),(\"W = %.3f\")%(W),(\"kJ\")\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "(i) Change in enthalpy dH = 234.947 kJ\n",
        "(ii) Change in internal energy dU = 187.958 kJ\n",
        "(iii) Change in entropy dS 0\n",
        "(iv)Heat transfer Q =  0\n",
        "(v) Work transfer W = -187.958 kJ\n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 5.30 Page no :  277"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "\n",
      "import math \n",
      "\n",
      "# Variables\n",
      "m = 20.; \t\t\t#kg\n",
      "p1 = 4.*10**5; \t\t\t#Pa\n",
      "p2 = 8.*10**5; \t\t\t#Pa\n",
      "V1 = 4.; \t\t\t#m**3\n",
      "V2 = V1;\n",
      "cp = 1.04; \t\t\t#kJ/kg.K\n",
      "cv = 0.7432; \t\t\t#kJ/kg.K\n",
      "R = cp-cv;\n",
      "T1 = p1*V1/R/1000.; \t\t\t#kg.K;   T = mass*temperature\n",
      "T2 = p2*V2/R/1000.; \t\t\t#kg.K\n",
      "\n",
      "# Calculations and Results\n",
      "dU = cv*(T2-T1);\n",
      "print (\"(i) Change in internal energy\"),(\"dU = %.3f\")% (dU), (\"kJ\")\n",
      "\n",
      "Q = 0;\n",
      "W = Q-dU;\n",
      "print (\"(ii) Work done\"),(\"W  %.3f\")% (W), (\"kJ\")\n",
      "\n",
      "print (\"(iii) Heat transferred  =  \"), (Q)\n",
      "\n",
      "dS = m*cv*math.log(T2/T1);\n",
      "print (\"(iv) Change in entropy  = %.3f\")%(dS), (\"kJ/K\")\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "(i) Change in internal energy dU = 4006.469 kJ\n",
        "(ii) Work done W  -4006.469 kJ\n",
        "(iii) Heat transferred  =   0\n",
        "(iv) Change in entropy  = 10.303 kJ/K\n"
       ]
      }
     ],
     "prompt_number": 2
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 5.31 Page no :  278"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "\n",
      "import math \n",
      "from matplotlib.pyplot import *\n",
      "%matplotlib inline\n",
      "\n",
      "# Variables\n",
      "V1 = 5.; \t\t\t#m**3\n",
      "p1 = 2.*10**5; \t\t\t#Pa\n",
      "T1 = 300.; \t\t\t#K\n",
      "p2 = 6.*10**5; \t\t\t#Pa\n",
      "p3 = 2.*10**5; \t\t\t#Pa\n",
      "R = 287.;\n",
      "n = 1.3;\n",
      "y = 1.4;\n",
      "\n",
      "# Calculations and Results\n",
      "m = p1*V1/R/T1;\n",
      "T2 = T1*(p2/p1)**((n-1)/n);\n",
      "T3 = T2*(p3/p2)**((y-1)/y);\n",
      "W_12 = m*R*(T1-T2)/(n-1)/1000; \t\t\t#polytropic compression\n",
      "W_23 = m*R*(T2-T3)/(y-1)/1000; \t\t\t#Adiabatic expansion\n",
      "\n",
      "\n",
      "W_net = W_12+W_23;\n",
      "print (\"Net work done on the air  =  %.3f\")%(-W_net), (\"kJ\")\n",
      "\n",
      "T = [T1, 310, 320, 330, 340, 350, 360, 370, 380, T2];\n",
      "def f(T):\n",
      "    return (y-n)/(y-1)/(1-n)*R/10**3*math.log(T);\n",
      "\n",
      "s = [f(T1), f(310), f(320), f(330), f(340), f(350), f(360), f(370), f(380), f(T2)]\n",
      "\n",
      "plot(s,T)\n",
      "\n",
      "T = [T2, T3];\n",
      "s = [f(T2), f(T2)];\n",
      "plot(s,T,'r')\n",
      "\n",
      "# Answers are slightly diffferent because of rounding error."
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Populating the interactive namespace from numpy and matplotlib\n",
        "Net work done on the air  =  94.023 kJ\n"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stderr",
       "text": [
        "WARNING: pylab import has clobbered these variables: ['f', 'draw_if_interactive']\n",
        "`%pylab --no-import-all` prevents importing * from pylab and numpy\n"
       ]
      },
      {
       "metadata": {},
       "output_type": "pyout",
       "prompt_number": 9,
       "text": [
        "[<matplotlib.lines.Line2D at 0x2aa0d90>]"
       ]
      },
      {
       "metadata": {},
       "output_type": "display_data",
       "png": "iVBORw0KGgoAAAANSUhEUgAAAYEAAAD9CAYAAABazssqAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3X1c1fX9//HHITBklWkqLpjRAsWDF2AK2s8KFbQ0SavR\ncPllX21bdrWcadLF0iyhtLVso75u+c22vpHuQqw5B83O7MphGrVJBRWbgMY3S+hC7Ajn/fvjnXy1\nlAvh8OFwnvfb7dzCcz6f83lCel583pcuY4xBRESCUojTAURExDkqAiIiQUxFQEQkiKkIiIgEMRUB\nEZEgpiIgIhLE2lQEmpqaSEpKYsaMGQB8/PHHpKenM2TIEKZMmUJdXV3zsbm5ucTFxREfH09RUZF/\nUouISKdoUxF4+OGHcbvduFwuAPLy8khPT6e8vJzJkyeTl5cHQFlZGc888wxlZWVs2bKF66+/Hp/P\n57/0IiLSIa0WgerqajZv3sy1117LkXllmzZtIjs7G4Ds7Gw2btwIQGFhIVlZWYSFhRETE0NsbCwl\nJSV+jC8iIh3RahFYsGABK1euJCTk/w6tra0lMjISgMjISGprawHYu3cv0dHRzcdFR0dTU1PT2ZlF\nRKSThLb04nPPPcfAgQNJSkrC4/Ec9xiXy9XcTHSi19vynIiItK6zV/pp8U7glVdeYdOmTZx77rlk\nZWWxdetW5syZQ2RkJB988AEA+/btY+DAgQBERUVRVVXVfH51dTVRUVHHfW9jTMA+7r77bsczKL/z\nOYItu/I7//CHFovAihUrqKqqorKykoKCAiZNmsRvfvMbMjIyWLduHQDr1q1j5syZAGRkZFBQUIDX\n66WyspKKigqSk5P9ElxERDquxeagrzrSjLNkyRIyMzN5/PHHiYmJYf369QC43W4yMzNxu92EhoaS\nn5+vph8RkW7MZfx1j9HSRV0uv93adAWPx0NqaqrTMU6a8jsnkLOD8jvNH5+dKgIiIgHCH5+dWjZC\nRCSIqQiIiAQxFQERkSCmIiAiEsRUBEREgpiKgIhIEFMREBEJYioCIiJBTEVARCSIqQiIiAQxFQER\nkSCmIiAiEsRUBEREgpiKgIhIEFMREBEJYioCIiJBTEVARCSI9cgi0NQE2rhMRKR1PbII/OpXMGUK\nVFQ4nUREpHvrkXsMNzZCaJiL/mcZbrkFFi2CU0/12+VERLqE9hhuo9BQ+99du6CkBBITYds2ZzOJ\niHRHPfJO4MuLgDEYAxs3ws03Q3o6rFwJZ53l30uLiPiD7gROgssFs2ZBWRmccQYkJMCTT6rjWEQE\nguBO4Kt27oQf/hD69IFHH4WhQ/0bQ0Sks+hOoBOcfz78/e9w+eXw//4fLF0Khw45nUpExBlBVwTA\ndhz/+MdQWgpvvgmjRsELLzidSkSk6wVdc9DxbNoEN90EqamwahUMGODfaCIiJ6PLm4MOHTpESkoK\niYmJuN1ucnJyACgpKSE5OZmkpCTGjh3Ljh07ms/Jzc0lLi6O+Ph4ioqKOjWsv2RkwO7d0L8/DB8O\na9eq41hEgoRpxeeff26MMebw4cMmJSXFvPjiiyY1NdVs2bLFGGPM5s2bTWpqqjHGmN27d5tRo0YZ\nr9drKisrzXnnnWeampq+9p5tuGzHneQ1du0yZuxYYy66yJiysk7OJCLSAf747Gy1TyAiIgIAr9dL\nU1MTffv2ZdCgQdTX1wNQV1dHVFQUAIWFhWRlZREWFkZMTAyxsbGUlJT4rYD5Q1ISvPoqfOc7cNFF\ncNdd0NDgdCoREf9otQj4fD4SExOJjIxk4sSJJCQkkJeXx8KFCxk8eDCLFi0iNzcXgL179xIdHd18\nbnR0NDU1Nf5L7yennAI33ghvvAFvvw0jR0KAtGyJiLRLaGsHhISEUFpaSn19PVOnTsXj8XDvvfey\nevVqZs2axYYNG5g7dy7FxcXHPd/lch33+aVLlzZ/nZqaSmpq6kl9A/509tmwYQNs3gzXXQdjxsBD\nD8GXNz4iIn7l8XjweDx+vUa7RgctX76c3r17c8899/DJJ58AYIzhzDPPpL6+nry8PACWLFkCwCWX\nXMKyZctISUk59qLdbHRQWzQ0QG4u5OfD7bfb0URhYZ329iIirery0UH79++nrq4OgIaGBoqLi0lM\nTCQ2Npa//e1vAGzdupUhQ4YAkJGRQUFBAV6vl8rKSioqKkhOTu7UwE7p3RvuuQdeeQX+/Gc76ezl\nl51OJSLSMS02B+3bt4/s7Gx8Ph8+n485c+aQlpbGmjVruOGGG/jiiy/o3bs3a9asAcDtdpOZmYnb\n7SY0NJT8/PwTNgcFqiFDbP/Ahg1w9dV234IHHrDDS0VEAo0mi3XAJ5/YZSeeegruvRfmzYOQoJyD\nLSJdwR+fnSoCneCNN2D+fPD57KJ0SUldclkRCTJaQK6bGjUKXnrJrk56ySV2XaIvp1GIiHRrKgKd\nJCQE5s61+xY0NIDbDU8/reUnRKR7U3OQn7z6qm0iOuss+OUvIT7esSgi0kOoOSiAjB8Pr71mF6eb\nMAHuuAMOHnQ6lYjIsVQE/OjIvgVvvgnvv2+3tnz2WadTiYj8HzUHdaHnn4cbbrBNQw8/DDExTicS\nkUCi5qAAl5Zm7wqSk+06RLm54PU6nUpEgpmKQBc79VTbP7Bjh112QltbioiT1BzkIGPs1pY33wwX\nXmi3thw0yOlUItJdqTmoh3G54PLL7dyCb30LRoyAX/wCmpqcTiYiwUJ3At1IWZntOP7kE7v8RA9Z\ngFVEOonuBHo4txu2boUFC+wdwnXXwccfO51KRHoyFYFuxuWCa66Bt96y8wzcbvj1r+3idCIinU3N\nQd3c66/b/Y4PH7b9BWoiEgleag4KQklJdoXSm26CmTPh2mvhww+dTiUiPYWKQABwuWDOHNtE1KeP\nXX7iF7+Axkank4lIoFNzUADavdvOLfjwQ1sMLrrI6UQi0hW0s1j7LtJjiwDYb+13v4OFC20ReOAB\nOPtsp1OJiD+pT0CauVzwne/YJqJzzoGRI2HlSq1FJCLtoyIQ4L7xDbjvPti+HTweWwyKi51OJSKB\nQs1BPcxzz9k9DBIT4Wc/s3cJItIzqDlIWnXZZbbjOCkJzj8fli+HQ4ecTiUi3ZWKQA8UHg533gk7\nd8Ibb/zfjmZBeGMkIq1Qc1AQKC62Q0q//W34+c8hLs7pRCJyMtQcJCclPd3eEUycCOPH201tPv/c\n6VQi0h2oCASJXr3g1lvt9pZ79sCwYbBhg26WRIKdmoOC1Isv2oXp+veHRx6xq5WKSPem5iDpNBde\naDuOZ82C1FT4yU+gvt7pVCLS1VosAocOHSIlJYXExETcbjc5OTnNrz3yyCMMGzaM4cOHc9tttzU/\nn5ubS1xcHPHx8RQVFfkvuXRYaKi9G9i9Gz791DYRPfmk9i4QCSatNgcdPHiQiIgIGhsbmTBhAqtW\nreLw4cOsWLGCzZs3ExYWxocffsiAAQMoKytj9uzZ7Nixg5qaGtLS0igvLyck5Nhao+ag7qmkxBaF\nsDC7MF1SktOJRORojjQHRUREAOD1emlqaqJv37489thj5OTkEBYWBsCAAQMAKCwsJCsri7CwMGJi\nYoiNjaWkpKRTA4v/JCfb5SfmzoVLL4X58+Gjj5xOJSL+FNraAT6fj9GjR/Pee+8xf/58EhISKC8v\nZ9u2bdx+++2Eh4ezatUqxowZw969exk3blzzudHR0dTU1Bz3fZcuXdr8dWpqKqmpqR3+ZqTjQkJg\n3jy44gq4+27bRHTnnbYgfFnzRaSLeDwePB6PX6/RahEICQmhtLSU+vp6pk6disfjobGxkQMHDrB9\n+3Z27NhBZmYm77///nHPd7lcx33+6CIg3U/fvrB6NfzoR3bj+8cesxPNpkxxOplI8PjqL8jLli3r\n9Gu0eXRQnz59mD59Oq+99hrR0dFcccUVAIwdO5aQkBD2799PVFQUVVVVzedUV1cTFRXV6aGl6yQk\nwF/+AvffDzfcABkZUFHhdCoR6SwtFoH9+/dTV1cHQENDA8XFxSQlJTFz5ky2bt0KQHl5OV6vl/79\n+5ORkUFBQQFer5fKykoqKipI1s7oAc/lghkz4J//tENLx4+HRYs0pFSkJ2ixCOzbt49JkyaRmJhI\nSkoKM2bMYPLkycydO5f333+fESNGkJWVxZNPPgmA2+0mMzMTt9vNpZdeSn5+/gmbgyTwnHqq/fDf\nvRsOHID4eHj8cWhqcjqZiJwszRiWk7Zzp9274OBBePhhe5cgIv6jPYbbdxEVgS5gDDzzDCxeDBdc\nYPc6HjzY6VQiPZOWjZBux+WC734X3n7bDicdPdoOLdUqpSKBQUVAOkVEhP3w37ULysttQXj6ad2M\niXR3ag4Sv3jpJdtf0Lu3nV8wZozTiUQCn5qDJGBMmGDXIpo71w4vnTsXPvjA6VQi8lUqAuI3p5xi\nP/zfecfuWzB8uO04/uILp5OJyBEqAuJ3Z5xhP/xffdU2EyUkQGGhWutEugP1CUiXKyqy6xGdfTY8\n9JC9QxCR1qlPQHqEKVOgtNSuQzRpkt3DQEtWizhDRUAcERYGN90Eb71l/zxsmN3r+PBhZ3OJBBs1\nB0m38I9/wC232BFEP/85pKc7nUik+9GyEe27iIpAgDHGdhgvXGj7CR58EGJjnU4l0n2oT0B6NJcL\nZs60q5SOHw/jxsGtt8KXq5mLiB+oCEi3Ex4OS5bY/Qvq62HoULvxvfoLRDqfmoOk23vzTdtEVFVl\n5xvMmGH/94oEG/UJtO8iKgI9iDHw5z/b5qFBg2x/QVKS06lEupb6BCRouVwwbZq9K/jOd+DSS+2S\nFHv3Op1MJLCpCEhACQ2F+fPtekQDB8KIEbBsmfYvEDlZKgISkPr0gbw8u8Xl22/bzuMnngCfz+lk\nIoFFfQLSI2zfDj/5CRw6ZPsLJk50OpFI51PHcPsuoiIQZIyBDRvs8NIRI+xIoqFDnU4l0nnUMSzS\nApcLMjOhrMxuajNhAtx8sxanE2mJioD0OOHhsGiRLQY+H8TH2yYibWYj8nUqAtJjDRhgZxpv2wYe\nD7jd8LvfqZVQ5GjqE5Cg8de/2pnHp50GP/sZJCc7nUikfdQnINIBkyfbIaVz58KsWfC978GePU6n\nEnGWioAElVNOsUXgnXfsMtVJSXD77fDJJ04nE3GGioAEpdNOszON33jDLj0xdCisWQONjU4nE+la\nLRaBQ4cOkZKSQmJiIm63m5ycnGNef/DBBwkJCeHjjz9ufi43N5e4uDji4+MpKiryT2qRThIdbWca\n/+lP8PTTkJgIf/mL06lEuk5oSy+Gh4fzwgsvEBERQWNjIxMmTOCll15iwoQJVFVVUVxczDnnnNN8\nfFlZGc888wxlZWXU1NSQlpZGeXk5ISG64ZDubfRo2LoVNm2yex9/+9uwapXd4UykJ2v10zkiIgIA\nr9dLU1MT/fr1A+AnP/kJDzzwwDHHFhYWkpWVRVhYGDExMcTGxlJSUuKH2CKdz+WCyy+3m9lMmwaT\nJsGPfgS1tU4nE/GfFu8EAHw+H6NHj+a9995j/vz5uN1uCgsLiY6OZuTIkcccu3fvXsaNG9f85+jo\naGpqao77vkuXLm3+OjU1ldTU1JP7DkQ6Wa9edqbxnDlw772QkGDvDo4MLxXpKh6PB4/H49drtFoE\nQkJCKC0tpb6+nqlTp7J582Zyc3OPae9vadyq6wRbQB1dBES6o7597UzjG2+EO++EIUPgpz+FefMg\nLMzpdBIMvvoL8rJlyzr9Gm1urO/Tpw/Tp09n165dVFZWMmrUKM4991yqq6s5//zzqa2tJSoqiqqq\nquZzqquriYqK6vTQIl3p3HPhqafg2WftjOPhw+GPf9RcROkZWiwC+/fvp66uDoCGhgaKi4sZP348\ntbW1VFZWUllZSXR0NLt27SIyMpKMjAwKCgrwer1UVlZSUVFBsqZlSg9x/vlQXAyrV8PSpXaBupdf\ndjqVSMe02By0b98+srOz8fl8+Hw+5syZw+TJk4855ujmHrfbTWZmJm63m9DQUPLz80/YHCQSiFwu\nmDoV0tLs3cHs2XZkUW6uXahOJNBo7SCRDjh0CB55xO5dcOWVcPfd8M1vOp1KeiqtHSTSzRxZtvqd\nd+zIoeHDbSH49FOnk4m0jYqASCfo189OLtu5E95/344kys+Hw4edTibSMhUBkU4UEwO/+Q1s3gwb\nN9o5BtrDQLoz9QmI+FFRESxeDL17236DCy90OpEEMm00376LqAhIt+Dzwf/8D9xxh12gLi8Phg1z\nOpUEInUMiwSgkBC45hrbeXzRRfbxwx/aJaxFnKYiINJFwsPt+kPl5XDmmTBihF2OQhvaiJNUBES6\nWN++tn/g9dehqsqOJHrkEfB6nU4mwUhFQMQhgwfDunV2E5s//Qncbli/Xl1Z0rXUMSzSTTz/vB1J\nFBZm7xQuvtjpRNLdaHRQ+y6iIiABx+eDggI7kmj4cDuSKCHB6VTSXWh0kEgPFxJiF6V7+227s9nE\niXb/ghPszSTSYSoCIt3QqafCggV2JNGAATByJOTkwIEDTieTnkZFQKQbO/NM2yRUWgoffmhHEuXl\nwcGDTieTnkJFQCQAfOtb8Otfw4sv2kXqYmPh0Uc1rFQ6TkVAJIDEx8OGDXary40b7fITTz1lO5RF\nToZGB4kEsBdesH0FBw/CihUwfbr9qy89k4aItu8iKgISFIyBTZvssNI+fexWlxdd5HQq8QcVgfZd\nREVAgkpTk12t9Kc/tc1GK1ZAUpLTqaQzaZ6AiJzQKafAnDl2jsH06TBtGnz3u1BR4XQy6c5UBER6\nmFNPhRtvtB/+I0bA+PHwox9pwpkcn4qASA912mm2n+DI0tUjR8KiRfDRR04nk+5ERUCkh+vXD+6/\nH958Ez79FIYOhXvvhc8+czqZdAcqAiJBIioKHnsMtm+HsjKIi4PVq+GLL5xOJk5SERAJMrGxdhTR\nli1QVGTvDNats6OLJPhoiKhIkHvpJTvh7OOPbTPRzJmacNZdaZ5A+y6iIiDSRsbAn/8Mt99uRxfl\n5tqlrKV7URFo30VUBETayeeDZ56Bu+6Cc8+1E87GjnU6lRzR5ZPFDh06REpKComJibjdbnJycgBY\ntGgRw4YNY9SoUVxxxRXU19c3n5Obm0tcXBzx8fEUFRV1algR8a+QEMjKgrfegquusk1DV11lJ6BJ\nz9TqncDBgweJiIigsbGRCRMmsGrVKhoaGpg8eTIhISEsWbIEgLy8PMrKypg9ezY7duygpqaGtLQ0\nysvLCQk5ttboTkAkMBw8CL/4BaxaBZddBkuXwuDBTqcKXo4sGxEREQGA1+ulqamJfv36kZ6e3vzB\nnpKSQnV1NQCFhYVkZWURFhZGTEwMsbGxlJSUdGpgEek6ERGweLGdcHb22XYtogUL7AY30jOEtnaA\nz+dj9OjRvPfee8yfPx+3233M62vXriUrKwuAvXv3Mm7cuObXoqOjqTnBXPWlS5c2f52amkpqaupJ\nxBeRrnDmmXbk0I03wn332QXqrrsOFi60k9HEPzweDx6Px6/XaLUIhISEUFpaSn19PVOnTsXj8TR/\nYN9333306tWL2bNnn/B81wnGmh1dBEQkMAwaBI88ArfeaovCkCFw001wyy12GWvpXF/9BXnZsmWd\nfo02Txbr06cP06dP57XXXgPgiSeeYPPmzTz11FPNx0RFRVFVVdX85+rqaqKiojoxroh0B+ecA7/6\nlZ19/N57dvZxXp6WoghELRaB/fv3U1dXB0BDQwPFxcUkJSWxZcsWVq5cSWFhIeHh4c3HZ2RkUFBQ\ngNfrpbKykoqKCpKTk/37HYiIY2Jj4cknYds2KC21f/7Zz6Chwelk0lYtNgft27eP7OxsfD4fPp+P\nOXPmMHnyZOLi4vB6vaSnpwMwfvx48vPzcbvdZGZm4na7CQ0NJT8//4TNQSLSc8THQ0EB/OMfcPfd\n8OCDdhbyD35gJ59J96XJYiLS6Xbtsjucvfkm3Hkn/Od/QliY06kCn3YWE5GAMHo0PPccrF8Pv/ud\nXaTuiSegsdHpZPJVuhMQEb/bts0uRfHBB3bC2dVX29nJ0j5aO6h9F1EREOlGjIG//tUWg08/hWXL\nYNYsFYP2UBFo30VUBES6oSMrlt51l12w7p577JIUGkPSOhWB9l1ERUCkGzMGCgttB3Lv3rYYTJmi\nYtASFYH2XURFQCQA+Hy28/juu6F/f1i+HLSKzPGpCLTvIioCIgGkqclue7lsmZ2RvHw5XHCB06m6\nFw0RFZEe65RTYM4cu5fB7Nn2ceml8OVKNeInKgIi0q2EhcG8eXb56owMu7HN5ZfDG284naxnUhEQ\nkW6pVy+YPx/efdfud3zJJZCZCWVlTifrWVQERKRbCw+HH//YFoMxY2DiRLjmGqiocDpZz6AiICIB\n4RvfsLucvfuuXbDuggtg7lz417+cThbYVAREJKCcfrpdlK6iAqKj7d3BddfBnj1OJwtMKgIiEpDO\nPNNOMHvnHejb1+5/fN118O9/O50ssKgIiEhAO+ssyM21xeCss+wKpj/4AVRWOp0sMKgIiEiP0L8/\n3HefbSYaNAjGjrVDTd9/3+lk3ZuKgIj0KP362dnGR/oMkpPtpjbvvut0su5JRUBEeqS+fe0SFO++\nCzExMH48ZGdraOlXqQiISI925pl2cbp334XYWDu0dM4c24cgKgIiEiT69LF7GLz3np1ncOGF8L3v\n2bWKgpmKgIgElTPOgDvusMVg+HC4+GL47ndh926nkzlDRUBEgtLpp0NOjh09lJRk1yfKzIR//tPp\nZF1LRUBEgtppp8Ftt9k7g7FjIS0NrroK3nzT6WRdQ0VARARbDBYtssVg/HiYOhWuuAJKS51O5l8q\nAiIiR/nGN2DhQlsMLroIpk2zexrs2uV0Mv9QERAROY6ICLjlFlsMJk2CGTPsJjc7dzqdrHOpCIiI\ntKB3b7j5ZlsMpkyxu5xddhmUlDidrHOoCIiItEF4ONx4o510Nm0aXHml3QN5+3ank3VMi0Xg0KFD\npKSkkJiYiNvtJicnB4CPP/6Y9PR0hgwZwpQpU6irq2s+Jzc3l7i4OOLj4ykqKvJvehGRLhYeDtdf\nb4vB5ZfD1VfbTuRXXnE62clxGWNMSwccPHiQiIgIGhsbmTBhAqtWrWLTpk3079+fxYsXc//993Pg\nwAHy8vIoKytj9uzZ7Nixg5qaGtLS0igvLyck5Nha43K5aOWyHedygb+vISJBz+uFJ56AFSsgLs4u\nUTFhgn+u5Y/PzlabgyIiIgDwer00NTXRt29fNm3aRHZ2NgDZ2dls3LgRgMLCQrKysggLCyMmJobY\n2FhKekrDmYjIcfTqBT/8IZSX27uC//gPmDwZtm1zOlnbtFoEfD4fiYmJREZGMnHiRBISEqitrSUy\nMhKAyMhIamtrAdi7dy/R0dHN50ZHR1NTU+On6CIi3UevXnDttXZhuu99zy5fvXSp06laF9raASEh\nIZSWllJfX8/UqVN54YUXjnnd5XLhcrlOeP6JXlt61E8nNTWV1NTUtiUWEenGwsJg7ly7Uml9fcfe\ny+Px4PF4OiXXibRaBI7o06cP06dPZ+fOnURGRvLBBx8waNAg9u3bx8CBAwGIioqiqqqq+Zzq6mqi\noqKO+35LA6FEioicpLAwu9tZR3z1F+Rly5Z17A2Po8XmoP379zeP/GloaKC4uJikpCQyMjJYt24d\nAOvWrWPmzJkAZGRkUFBQgNfrpbKykoqKCpKTkzs9tIiIdI4W7wT27dtHdnY2Pp8Pn8/HnDlzmDx5\nMklJSWRmZvL4448TExPD+vXrAXC73WRmZuJ2uwkNDSU/P7/FpiIREXFWq0NE/XJRDREVEWk3R4aI\niohIz6UiICISxFQERESCmIqAiEgQUxEQEQliKgIiIkFMRUBEJIipCIiIBDEVARGRIKYiICISxFQE\nRESCmIqAiEgQUxEQEQliKgIiIkFMRUBEJIipCIiIBDEVARGRIKYiICISxFQERESCmIqAiEgQUxEQ\nEQliKgIiIkFMRUBEJIipCIiIBDEVARGRIKYiICISxFQERESCmIqAiEgQa7UIVFVVMXHiRBISEhg+\nfDirV68GoKSkhOTkZJKSkhg7diw7duxoPic3N5e4uDji4+MpKiryX/qWGOO3t/Z4PH57766g/M4J\n5Oyg/D1Rq0UgLCyMhx56iN27d7N9+3Z++ctf8tZbb7F48WKWL1/O66+/zj333MPixYsBKCsr45ln\nnqGsrIwtW7Zw/fXX4/P5/P6NdKVA/4uk/M4J5Oyg/D1Rq0Vg0KBBJCYmAnDaaacxbNgwampq+OY3\nv0l9fT0AdXV1REVFAVBYWEhWVhZhYWHExMQQGxtLSUmJH78FERE5WaHtOfhf//oXr7/+OuPGjSMu\nLo4JEyZw66234vP5ePXVVwHYu3cv48aNaz4nOjqampqazk0tIiKdw7TRp59+as4//3zzxz/+0Rhj\nzOTJk80f/vAHY4wx69evN2lpacYYY2688Ubz29/+tvm8efPmmd///vfHvBeghx566KHHSTw6W5vu\nBA4fPsyVV17JNddcw8yZMwHbMfz8888DcNVVV3HttdcCEBUVRVVVVfO51dXVzU1FRxg/dtqKiEjb\ntdonYIxh3rx5uN1ubrnllubnY2Nj+dvf/gbA1q1bGTJkCAAZGRkUFBTg9XqprKykoqKC5ORkP8UX\nEZGOaPVO4OWXX+a3v/0tI0eOJCkpCYAVK1awZs0abrjhBr744gt69+7NmjVrAHC73WRmZuJ2uwkN\nDSU/Px+Xy+Xf70JERE5OpzcwfWn9+vXG7XabkJAQs3PnzhaPbWxsNImJieayyy5rfu7OO+80I0eO\nNKNGjTKTJk0ye/bs8VfU4+po/ltvvdXEx8ebkSNHmlmzZpm6ujp/R27W0eztOd8fOpr/o48+Mmlp\naSYuLs6kp6ebAwcO+DvyMdqSv6GhwSQnJ5tRo0aZYcOGmSVLljS/VlpaasaNG2dGjBhhZsyYYT75\n5JOuim6M6Xj+v//972bs2LEmMTHRjBkzxpSUlHRVdGNMx/NfffXVJjEx0SQmJpqYmBiTmJjYVdE7\nnN0YY1bAdD8oAAAFVUlEQVSvXm3i4+NNQkKCWbx4cavX9FsReOutt8w777xjUlNTW/2H/OCDD5rZ\ns2ebGTNmND939F/81atXm3nz5vkr6nF1NH9RUZFpamoyxhhz2223mdtuu82veY/W0eztOd8fOpp/\n0aJF5v777zfGGJOXl9elP3tj2p7/888/N8YYc/jwYZOSkmJeeuklY4wxY8aMMdu2bTPGGLN27Vpz\n1113+T/0UTqa/+KLLzZbtmwxxhizefNmk5qa6v/QRznZ/C+++OLXjlm4cKFZvny537J+VUezb926\n1aSlpRmv12uMMeZ///d/W72m35aNiI+Pb+4naEl1dTWbN2/m2muvPabD+PTTT2/++rPPPqN///5+\nyXkiHc2fnp5OSIj98aakpFBdXe23rF/V0extPd9fOpp/06ZNZGdnA5Cdnc3GjRv9lvV42po/IiIC\nAK/XS1NTE3379gWgoqKCCy+8EIC0tDR+//vf+y/scXQ0/4nmEHWVk83fr1+/Y143xrB+/XqysrL8\nkvN4Opr90UcfJScnh7CwMAAGDBjQ6ns5vnbQggULWLlyZfMH5tHuuOMOBg8ezLp161iyZIkD6VrX\nUv4j1q5dy7Rp07owVdu0JXt3dqL8tbW1REZGAhAZGUltba0T8Vrl8/lITEwkMjKSiRMn4na7AUhI\nSKCwsBCADRs2HDParjs5Uf68vDwWLlzI4MGDWbRoEbm5uQ4nPb4T5T/ixRdfJDIykvPOO8+hhCd2\nouwVFRVs27aNcePGkZqaymuvvdbqe3XoX396ejojRoz42uPZZ59t0/nPPfccAwcOJCkp6bjDRu+7\n7z727NnD97//fRYsWNCRqMfl7/xgv4devXoxe/bszozeJdn9qavyu1wuvwxM6Gh+gJCQEEpLS6mu\nrmbbtm3NSxqsXbuW/Px8xowZw2effUavXr0CKv+8efNYvXo1e/bs4aGHHmLu3LkBlf+Ip59+utP/\n3YJ/szc2NnLgwAG2b9/OypUryczMbP3NTr71qm1aatvKyckx0dHRJiYmxgwaNMhERESYOXPmfO24\nf//73yYhIcHfUY+rI/n/+7//21xwwQWmoaGhq+Ieo6M/e6f6BNpy/ZbyDx061Ozbt88YY8zevXvN\n0KFDuyzz0drz87vnnnvMypUrv/b8O++8Y5KTkzs7Wpu0N/+qVauMMcacfvrpzc/7fD5zxhln+CVf\nazry8z98+LCJjIw0NTU1/orXopPNfskllxiPx9P82nnnnWf279/f4vld0g5gTvCb2ooVK6iqqqKy\nspKCggImTZrEk08+CdjbmiMKCwubh6c64WTyb9myhZUrV1JYWEh4eHhXxj3GyWRvy/ld5WTyZ2Rk\nsG7dOgDWrVvXPMHRCSfKv3//furq6gBoaGiguLi4+e/4hx9+CNhb/nvvvZf58+d3TdjjaE/+I2uM\nnWgOkRNO5ucP8PzzzzNs2DDOPvvsLsl5PCeTfebMmWzduhWA8vJyvF4vZ511VqsX8os//OEPJjo6\n2oSHh5vIyEhzySWXGGOMqampMdOmTfva8R6P55gRHldeeaUZPny4GTVqlLniiitMbW2tv6IeV0fz\nx8bGmsGDBzcPNZs/f37AZD/R+V2lo/k/+ugjM3nyZMeGiLYl/xtvvGGSkpLMqFGjzIgRI8wDDzzQ\nfP7DDz9shgwZYoYMGWJycnK6NHtn5N+xY0fzEMZx48aZXbt2BVR+Y4z5/ve/b/7rv/6rS3N3Rnav\n12uuueYaM3z4cDN69GjzwgsvtHpNlzFaw0FEJFgF5rAQERHpFCoCIiJBTEVARCSIqQiIiAQxFQER\nkSCmIiAiEsT+P3S/G55r8UZJAAAAAElFTkSuQmCC\n",
       "text": [
        "<matplotlib.figure.Figure at 0x2aa0bd0>"
       ]
      }
     ],
     "prompt_number": 9
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 5.32 Page no :  279"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "\n",
      "# Variables\n",
      "V1 = 0.004; \t\t\t#m**3\n",
      "p1 = 1.*10**5; \t\t\t#Pa\n",
      "T1 = 300.; \t\t\t#K\n",
      "T2 = 400.; \t\t\t#K\n",
      "y = 1.4;\n",
      "M = 28.;\n",
      "R0 = 8.314;\n",
      "R = R0/M;\n",
      "\n",
      "# Calculations and Results\n",
      "print (\"(i) The heat supplied\")\n",
      "m = p1*V1/R/1000/T1; \t\t\t#kg\n",
      "cv = R/(y-1);\n",
      "Q = m*cv*(T2-T1);\n",
      "print (\"Q  %.3f\")%(Q), (\"kJ\")\n",
      "\n",
      "print (\"(ii) The entropy change\")\n",
      "dS = m*cv*math.log(T2/T1);\n",
      "print (\"dS = %.8f\")%(dS), (\"kJ/kg.K\")\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "(i) The heat supplied\n",
        "Q  0.333 kJ\n",
        "(ii) The entropy change\n",
        "dS = 0.00095894 kJ/kg.K\n"
       ]
      }
     ],
     "prompt_number": 5
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 5.33 Page no :  279"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "\n",
      "import math \n",
      "\n",
      "# Variables\n",
      "V1 = 0.05; \t\t\t#m**3\n",
      "p1 = 1.*10**5; \t\t\t#Pa\n",
      "T1 = 280.; \t\t\t#K\n",
      "p2 = 5.*10**5; \t\t\t#Pa\n",
      "\n",
      "# Calculations\n",
      "print (\"(i) Change in entropy\")\n",
      "R0 = 8.314;\n",
      "M = 28.;\n",
      "R = R0/M;\n",
      "m = p1*V1/R/T1/1000;\n",
      "dS = m*R*math.log(p1/p2);\n",
      "\n",
      "# Results\n",
      "print (\"dS = %.3f\")%(dS), (\"kJ/K\")\n",
      "\n",
      "print (\"(ii)Work done\")\n",
      "Q = T1*dS;\n",
      "print (\"Q = %.3f\")%(Q),(\"kJ\")\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "(i) Change in entropy\n",
        "dS = -0.029 kJ/K\n",
        "(ii)Work done\n",
        "Q = -8.047 kJ\n"
       ]
      }
     ],
     "prompt_number": 30
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 5.34 Page no :  280"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "\n",
      "import math \n",
      "\n",
      "# Variables\n",
      "R = 0.287; \t\t\t#kJ/kg.K\n",
      "m = 1.; \t\t\t#kg\n",
      "p1 = 8.*10**5; \t\t\t#Pa\n",
      "p2 = 1.6*10**5; \t\t\t#Pa\n",
      "T1 = 380.; \t\t\t#K\n",
      "n = 1.2;\n",
      "y = 1.4;\n",
      "\n",
      "\n",
      "# Calculations and Results\n",
      "print (\"(i) Final specific volume and temperature\")\n",
      "v1 = R*T1/p1*10**3; \t\t\t#m**3/kg\n",
      "v2 = v1*(p1/p2)**(1/n);\n",
      "T2 = T1*(p2/p1)**((n-1)/n);\n",
      "\n",
      "print (\"v2 = %.3f\")%(v2), (\"m**3/kg\")\n",
      "print (\"T2 = %.3f\")% (T2),(\"K\")\n",
      "\n",
      "print (\"(ii) Change of internal energy, work done and heat interaction\")\n",
      "dU = R/(y-1)*(T2-T1);\n",
      "print (\"dU = %.3f\")%(dU), (\"kJ/kg\")\n",
      "\n",
      "W = R*(T1-T2)/(n-1);\n",
      "print (\"W = %.3f\")%(W), (\"kJ/kg\")\n",
      "\n",
      "Q = dU + W;\n",
      "print (\"Q = %.3f\")%(Q),(\"kJ/kg\")\n",
      "\n",
      "print (\"(iii) Change in entropy\")\n",
      "dS = R/(y-1)*math.log(T2/T1) + R*math.log(v2/v1)\n",
      "print (\"dS = %.3f\")%(dS),(\"kJ/kg.K\")\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "(i) Final specific volume and temperature\n",
        "v2 = 0.521 m**3/kg\n",
        "T2 = 290.595 K\n",
        "(ii) Change of internal energy, work done and heat interaction\n",
        "dU = -64.148 kJ/kg\n",
        "W = 128.296 kJ/kg\n",
        "Q = 64.148 kJ/kg\n",
        "(iii) Change in entropy\n",
        "dS = 0.192 kJ/kg.K\n"
       ]
      }
     ],
     "prompt_number": 6
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 5.35 Page no :  281"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "%matplotlib inline\n",
      "import math\n",
      "from matplotlib.pyplot import *\n",
      "\n",
      "# Variables\n",
      "y = 1.4;\n",
      "cv = 0.718; \t\t#kJ/kg.K\n",
      "m = 1.; \t\t\t    #kg\n",
      "T1 = 290.; \t\t\t#K\n",
      "n = 1.3;\n",
      "r = 16.;\n",
      "y = 1.4;\n",
      "\n",
      "# Calculations and Results\n",
      "T2 = T1*(r)**(n-1);\n",
      "\n",
      "print (\"(a)\")\n",
      "\n",
      "T = [T1, 300, 310, 320, 330, 340, 350, 360, 370, 380, 390, 400, 410, 420, 430, 440, 450, 460, 470, 480, 490, 500, 510, 520, 530, 540, 550, 560, 570, 580, 590, 600, 610, 620, 630, 640, 650, 660, T2];\n",
      "def f(T):\n",
      "    return (y-n)*cv/(1-n)/10**3*math.log(T);\n",
      "\n",
      "s = [f(T1),f(300),f(310),f(320),f(330),f(340),f(350),f(360),f(370),f(380),f(390),f(400),f(410),f(420),f(430),f(440),f(450),f(460),f(470),f(480),f(490),f(500),f(510),f(520),f(530),f(540),f(550),f(560),f(570),f(580),f(590),f(600),f(610),f(620),f(630),f(640),f(650),f(660), f(T2)];\n",
      "plot(s,T)\n",
      "\n",
      "T = [0, T2];\n",
      "s = [f(T2), f(T2)];\n",
      "plot(s,T,'r--')\n",
      "\n",
      "T = [0 ,T1];\n",
      "s = [f(T1),f(T1)];\n",
      "plot(s,T,'r--')\n",
      "\n",
      "T = [T1 ,T2];\n",
      "s = [f(T1), f(T2)];\n",
      "plot(s,T,'r--' )\n",
      "suptitle(\"T-S diagram\")\n",
      "xlabel(\"S\")\n",
      "ylabel(\"T\")\n",
      "text(-0.00150,400,\"pV**n = C\")\n",
      "\n",
      "print (\"(b)Entropy change\")\n",
      "dS = cv*((n-y)/(n-1))*math.log(T2/T1);\n",
      "print (\"dS = %.3f\")%(dS), (\"kJ/kg.K\")\n",
      "print (\"There is decrease in entropy\")\n",
      "\n",
      "Q = cv*((y-n)/(n-1))*(T1-T2);\n",
      "Tmean  =  (T1+T2)/2;\n",
      "dS_app = Q/Tmean;\n",
      "\n",
      "error = ((-dS) - (-dS_app))/(-dS) * 100;\n",
      "print (\"age error  = %.3f\")%(error), (\"%\")\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Populating the interactive namespace from numpy and matplotlib\n",
        "(a)\n",
        "(b)Entropy change"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "dS = -0.199 kJ/kg.K\n",
        "There is decrease in entropy\n",
        "age error  = 5.393 %\n"
       ]
      },
      {
       "metadata": {},
       "output_type": "display_data",
       "png": "iVBORw0KGgoAAAANSUhEUgAAAZoAAAEhCAYAAABGC2bVAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XlclXX6//EXoOZeJqAFpg2NCwiKC2aSkUUYLpNtYknN\npJXNaJk538rKJX/ptJjaMqMz7VGJpdUk5pglTVai4orlGqaHRj1K7hoC9++Pjx4lNUHOfc4N5/18\nPHgEh/vc93Xujufic9/X5/oEWZZlISIiYpNgfwcgIiLVmxKNiIjYSolGRERspUQjIiK2UqIRERFb\nKdGIiIitavg7AJHK2r17N9deey0A27dvJyQkhLCwMIKCgsjJyaFmzZrs27ePQYMGsWbNGmrVqkX9\n+vX57LPPqFev3hn3+8Ybb5Cbm8uLL77I9OnTqVu3Lunp6b56WSLVhhKNVHmNGzdmxYoVAIwbN44G\nDRowYsSIMts8//zzNG/enPfffx+A/Px8atasWe5j3HvvvV6JtaSkhJCQEK/sS6Sq0KUzqXZONwfZ\n7XZz8cUXe36+9NJLqVWr1inbTZ8+naioKK644gq++eYbz+Njx45l0qRJnm0SEhKIiYmhT58+HDhw\nAIB169bRvn17OnbsyOOPP06DBg0AyM7O5sorr6Rfv37ExcUB0KdPHzp16kTLli154YUXPMepX78+\nDz/8MHFxcSQnJ5OTk0OPHj245JJLmD17thfOjojvKdFIQLjrrruYMGEC3bp1Y9SoUaxfv/6UbbZt\n28b48eNZvnw5X331FevWrSMoKAjA81+AAQMGsGTJEtauXUv79u2ZPn06AMOGDePxxx8nNzeXFi1a\nlNn3ihUreOmll1i7di0A77zzDsuWLWPVqlVMmzYNt9sNwKFDh7j22mtZvXo1DRo0YPTo0Xz++efM\nmTOH0aNH23FqRGynRCMBoWPHjuTn5/PQQw+xd+9eunTpQl5eXpltvv32W6699lrOP/98QkJCuOWW\nW047OsrJyeHyyy+nXbt2vPPOO56ktXjxYm688UYAbr311jLPSUhIICIiwvPzxIkTiY2NpWvXrvz0\n009s3LgRgFq1apGcnAxAbGwsSUlJBAUF0bZtW7Zt2+a9EyLiQ0o0Ui199NFHxMfHEx8fz/LlywFo\n0KABN954Iy+//DLp6elkZWWVeU5wcHCZxPLrJHN8VHPnnXfy6quvsmrVKsaMGUNxcfFZ4zm56GD+\n/PksWrSI3NxcVq5cSXx8vGcfJ983Cg4O9lzeCw4OprS0tCKnQMQxlGikWrrhhhtYsWIFK1asoEOH\nDuTk5LBv3z4AioqK+O6772jWrFmZ53Tp0oUvvviCvXv3UlJSwgcffOBJLpZleRJPUVER4eHhlJSU\n8M4773ief/nll/Phhx8CeIoOTufIkSM0atSIWrVqsXHjRhYvXuzV1y7iNEo0Uu2cfD/luHXr1pGY\nmEi7du1o27Ytbdu2JS0trcw2zZo14/HHH6dDhw50796d6OjoMvs8vt9x48bRsWNHrrzySlq3bu3Z\n5oUXXmD8+PF07tyZDRs2UKdOndPG1LNnT44cOUKbNm14+OGH6dq16xljP/nn070ukaogSMsEiHjH\nkSNHqF27NgAzZszgrbfeYu7cuX6OSsT/NI9GxEuWLl3KsGHDKCoqomHDhrz11lv+DknEETSiERER\nW+kejYiI2EqJRkREbKVEIyIitlKiERERWynRiIiIrZRoRETEVko0IiJiK1sTzfr16z2NDePj4zn/\n/PN54YUXKCwsJDk5mbi4OFJSUtizZ4/nORMnTiQ6OprY2Fjmz59vZ3giIuIDPpuwWVpaSkREBEuW\nLOGZZ54hKiqK4cOHM2XKFPLz85k6dSq5ubkMGTKExYsXs337dhITE1m/fv1pF6gSEZGqwWeXzhYs\nWMBll11Gs2bNmDt3rmft9YEDB3ratWdlZZGWlkZISAgRERHExMSwZMkSX4UoIiI28FmimTFjBgMG\nDADMsrqNGzcGIDQ0lJ07dwJQUFBAZGSk5zmRkZG4XC5fhSgiIjbwSaIpKirik08+4ZZbbvHF4URE\nxEF80r35008/pWPHjoSFhQEQFhbGrl27CA0Nxe12Ex4eDpgRzMnL1bpcrlMWp7rsssvYvHmzL8IW\nEak2oqKi2LRpk1+O7ZMRzXvvvee5bAaQmppKRkYGABkZGaSmpnoez8zMpLi4GJfLRV5eHgkJCWX2\ntXnzZs9qh4H+NWbMGL/H4JQvnQudC52L3/7y5x/oto9oDh48yIIFC/jXv/7leWzcuHH079+f1157\njaZNmzJz5kwAOnbsSL9+/YiLiyM4OJjp06eXWUNdRESqHtsTTb169di1a1eZxy688EI+++yz024/\natQoRo0aZXdYIiLiI+oMUIUlJSX5OwTH0Lk4QefiBJ0LZ6hyK2wGBQVRxUIWEfE7f352akQjIiK2\nUqIRERFbKdGIiIitlGgcyu2GQ/tL/B2GiEilKdE41Mxphexr1Jwf/zgGjvWCExGpipRoHOovT1zI\n2qkL+Or97Ry6pBVH/3QPHDni77BERCpM5c0O9/PPMPo+Nw0XzObq9+7h2uQgf4ckIlWQypvl9MaO\npVEjeHFGGIlv38ugwUEMGgQnLUgqIuJ4SjRONm6c59vrr4e8PKhdG2Ji4KOPjv3i2Wfhuedg717/\nxCgichZKNFVIgwbw8svw3nvwf/8Ht94Ku9tfA8uXw6WXwogR8OOP/g5TRKQMJZoqqHt3WLUKoqKg\nze0deD35XawVKyE4GDp0gNtugxKVRouIM6gYwMmCguAsr3XlShg0CBo1gunTISpsH3z+OfTr56Mg\nRaQqUDGAnLP27SEnB3r2hC5d4JlpDTnaW0lGRJxDicbJxowp12Y1asDIkSbhLFgAnTvD0qWn2XDE\nCLNPTQAVER9SonGysWMrtHlUFPznPybp9OkDw4fD/v0nbXDPPbB9O7RqZb5ft86r4YqInI4STTUT\nFAQDB5pS6D17oG1b+OSTY79s3drcyNmwASIi4Kqr4JZbznofSESkMlQMUM198QUMGWISzgsvQGTk\nSb88fNhcY+ve3W/xiYhvqBhAbNOjB6xeDXFxpnBgyhQoLj72yzp1lGRExHYa0QSQ9evN6GbfPpg2\nzRQNnFFaGlx8MTzwADRv7rMYRcQeGtHI6VWwGOBsWrUyl9IeeAD69oW//OU3+qY988yJCaADBsCy\nZV6NRUQCh0Y0TlaOCZvnqrAQHnsMPv7Y5JTbbzeHO8W+ffDKKzB1KnTqBLNm2RKPiNjLn5+dtiea\nPXv2cPfdd7NhwwaKiop4/fXXadmyJf3792fHjh1cdNFFZGZmcsEFFwAwceJE3n77bUJCQpg0aRLX\nXXdd2YCVaLwqJwfuuw8uuMD0UWvT5gwbHj1qrr21bWtrPCJij2p96ezuu+/mxhtvZNWqVaxdu5bo\n6GjGjBlDr169WL16Nddffz1jjk1MzM3NZfbs2axZs4Z58+Zx7733UlRUZHeIAa1LF1N41q+fqQt4\n5BE4cOA0G9aseeYkU1pqa4wiUrXZmmh2797NypUrGTBggDlYcDANGzZk7ty5pKenAzBw4ECysrIA\nyMrKIi0tjZCQECIiIoiJiWHJkiV2hihASAgMGwZr1sBPP0F0NHzwQQUGU9dcowmgInJGtiaajRs3\nEhYWxq233krbtm2544472L9/P263m8aNGwMQGhrKzmMtUQoKCog8aaJHZGQkLpfLzhDlJE2bwltv\nQUaGWQonJcVcLTurmTNPTADt3RsWLtQkUBHxqGHnzktLS1m6dClTp06lc+fODB8+nPHjx1d6v2NP\nqsZKSkoiKSmp0vt0pHL2OvO27t3NEjcvvwzdusHgwfD441C//hmeEBZmYv2//4O33zY3fWJj4f33\nfRq3iJyQnZ1Ndna2v8MAbC4G2LZtG1deeSVbtmwBYNGiRTz55JP88MMPLF68mNDQUNxuN127dmXT\npk2MHz+eOnXqMHLkSAB69+7No48+Srdu3U4EHEjFAA7wv/+Z+zaff24W80xLO0N12slKS8Hlgksu\n8UmMInJ21bYYoFmzZoSGhrJhwwYAFixYQJs2bbj++uvJyMgAICMjg9TUVABSU1PJzMykuLgYl8tF\nXl4eCQkJdoYoZ3HRRfDmm5CZacqgk5JMp4HfFBx85iRz5Ii3QxQRh7O9vHnVqlUMHjyYQ4cO0bx5\nc9555x0sy/KUNzdt2pSZM2d6ypsnTJhARkYGwcHBTJo0iZSUlLIBa0TjNyUl8K9/wejRZhnpJ5+E\nCy+swA4sC+LjTQ31Qw+ZeTki4hPVeh6NtynR+N/u3SbZfPCBuTVzzz1mTZxyOXkCaIsWJuH07m1G\nQSJiGyWaClCicY7Vq+H+++Hnn03eqFBNxtGjJlNNmgQtW8K779oVpoigRFMhAZVoxo71er8zb7Ms\nky9GjoSEBFMw0KJFBXewZw80amRXiCKCEk2FBFSi8UELGm85dAiee86MbIYMgUcf/Y1y6PIqLKzg\nTSAROZNqW3UmgaNuXXPfZtUq2LrVdIp+441KdKcpKYHLL9cEUJFqQCMaJ6tCI5pfy8mB4cPNrZgp\nUyAx8Rx2cviwmQD6/PNQr54pHLjlFtN3TUQqRJfOKkCJpuqwLHjvPXMZrXNnePppiIo6hx2VlsLc\nuaZw4He/g1df9XqsItWdEk0FKNFUPYcPw+TJZmDyxz+adjbHpk1V3JEjULu2N8MTCQi6RyOn56de\nZ95Wpw6MGgV5eWYaTatW8OKL5rJahZ0pyfz4Y6ViFBH7aEQjPrdmjSmH3rIF/vY3uOGGcvRP+y2/\n/AIxMaaDtCaAipyWLp1VgBJN9fGf/8Bf/wrnn29Ko7t0qcTOTp4Aun8/jBgBd9xhhlMiokRTEUo0\n1UtJiWnaOXq0WZJg4kRzv/+cWRb8978mc/3+9+bGkIgo0VSEEk31dPCgKRiYPBkGDjQFA2Fhldxp\naakuoYkco2IACXj16pnk8t13ZpTTpg089ZRJQOfsTElmxYpqUc0nUlUo0TiZw/uc2aFJE3jpJfj2\nW9O0s2VLszRBcbGXDrB/P9x2m1mi4N13z7H0TUQqQpfOnKyazKOpjKVLzQrR27ebEU6/fpWsUIOy\nE0A3bzYtqO++21QliFRTukdTAUo0gceyYN48MxenVi1TMNCjh5d2nptrCgZiYswBRKopJZoKUKIJ\nXKWlZknpJ54wrWwmTICOHf0dlUjVoGIAkXIIDoYBA0zBwA03QJ8+0L8/rF9v0wEtCz77rBItqEUE\nlGikCqpVC+67DzZuhPbtTWfoQYNs6EKzaxc88ogpgZs+3TRtE5EKU6JxsmrS68wu9eqZztAbN8JF\nF0GHDua+/vbtXjpAWBgsW2aSzJw5ZunQsWNh504vHUAkMOgejVQbO3eaQoG33oJ77jHtbby6QOe6\ndWZGaUKCGUKJVCEqBqgAJRo5m61bYfx4+PBDGDoUHnxQlcsiKgYQ8aJLLjGTPHNyID/ftDybOBEO\nHLDxoEVFMHOmJoCKnIbtiaZFixbExcURHx9PQkICAIWFhSQnJxMXF0dKSgp79uzxbD9x4kSio6OJ\njY1l/vz5docn1VhUlGnY+d//mi4Dl11m5mgeOmTDwdxu+Mc/zEGfew727rXhICJVk+2JJigoiOzs\nbFasWMGSJUsAGDNmDL169WL16tVcf/31jDl20zs3N5fZs2ezZs0a5s2bx7333ktRUZHdIUo117q1\nWVL6s8/gm29MLpg82ctFZBERsHChuV63YgVceqlZqmDbNi8eRKRq8smls19fF5w7dy7p6ekADBw4\nkKysLACysrJIS0sjJCSEiIgIYmJiPMkpIAVgrzM7xcbCrFnw6afw1Vcm4UyZ4uWE07EjvPMOrFxp\nJv6sWuXFnYtUTT4Z0Ry/TPbSSy8B4Ha7ady4MQChoaHsPFYuWlBQQGRkpOe5kZGRuFwuu0N0rnHj\n/B1BtdS+PcyeDVlZ8OWXJuFMnerlhHPJJeYSWu/eXtypSNVUw+4DLF68mPDwcNxuNz179qR169aV\n3ufYk/7ST0pKIikpqdL7lMATH3/iStfYsfD006Yk+t57oW5dGw+8d6/ppZOerhVAxTbZ2dlkZ2f7\nOwzAB4kmPDwcgLCwMG6++WaWLl1KWFgYu3btIjQ0FLfb7dkmMjKSbSdd03a5XDRr1uyUfY7VJSXx\novh4+Phjk3D+3/8zCeehh0z3gfr1bTjgnj1mAugTT5iD/PnPcOzfgIi3/PqP8HF+vEJi66WzQ4cO\ncehYic/BgweZN28eMTExpKamkpGRAUBGRgapqakApKamkpmZSXFxMS6Xi7y8PE+lmojd4uPNPZzP\nPjMNAaKiTFn0vn1ePlDz5vDvf5vrdv/7H7RqZWaY/vCDlw8k4gy2TtjMz8/nhhtuICgoiEOHDpGW\nlsaTTz5JYWEh/fv3Z8eOHTRt2pSZM2dywQUXADBhwgQyMjIIDg5m0qRJpKSklA04kCZsqnuzX333\nnVkDZ/58M/Hz/vuhUSMbDuR2w9//Dj17QpcuNhxARJ0BKiSgEs3Ysao8c4ANG+BvfzOX1+65x3Qa\n0JUuqWrUGUBOT0nGEVq2hNdeg+XLzWW01q1h+HDwSUHktm2aACpVnhKNSDk1bw4vvwxr10KNGhAX\nZ0Y4mzbZeNDiYpPhjk8A9fpaCCL2U6IRqaCLLjKDjA0bzPddu0Jampmj6XWXXgrvvntiAmiHDuZg\ntmY3Ee9SohE5R6GhZk7tDz9Ap07QqxekppquA153fALoDz9A584qEpEqRcUAIl7yyy+mieczz0DT\npmZxztRUMxAR8TcVA8jpqRigSjnvPHPPZt06Uw49erS5j/Pmm2YVAdutXm1WZdUKoOIwSjROpl5n\nVVKNGuY2Sm6u6RKdkWEmfz7/POzfb+OBzz/frGN9fALounU2Hkyk/JRoRGwSFATJyabTwEcfwZIl\n5t7+qFEmH3hd8+YwfbqpUoiIgKuuMk09VTggfqZEI+IDHTvCjBkm2ezdC23awKBBpvuA14WFmUto\nW7ZA377QsKENBxEpPxUDOJla0FRbu3bBtGnw0ksmCY0cCUlJ5n+5iB1UDCASYEJD4fHHzaCjXz/T\nwLlTJzNl5uhRHwSwcKEmgIrPKNE42bElrqX6ql0bBg823QbGjYN//tMUDjzzDPz8s40HbtnyxATQ\nAQNMu2oRm+jSmYjDLF9ulpieMwduvx0eeAAuu8ymg+3bB6+8YpYYbdHC1GK3aGHTwcSf1L25ApRo\nJFD89JPprfbPf8IVV5iu0VddZdN9nKNHzWI8ffvavLyo+IsSTQUo0UigOXQI3nrLjHLq1DHr4gwY\nYC67iZSXigFE5Izq1oUhQ0wp9IQJkJlppsw88YQZ9dhuxgxNAJVKUaIRqSKCg+H662HePLMKdGEh\nxMSY+zhLlth44B494OKLT0wAXbhQZfdSIbp05mRaYVPOYs8eePVVMx+nSRMYNgxuvtn0XfO6w4fh\n7bdNL526deGTT0wHAqkSdI+mAgIq0WjCppRTSYn53H/pJcjLg7vvhnvvhchIGw5WWmr66lx7LYSE\n2HAAsYMSTQUo0Yj8tu+/N9Vq775rcsHQoXDlleo6EOhUDCBik3HjxjFq1Kgyj61cuZLo6Ogy25zu\neXY7cOAA9957LzExMbRr145u3brx7bffVnq/bdqYkc2WLdC9u7mP366d6bd54EDl4/5NU6dqAqic\nQiMaJ9OIptI2btxIz5492bx5s+exRx55hPr165OQkMB///tfjh49SsuWLdm/fz/R0dGnPDZ8+HBb\nYuvVqxfdunXzJMItW7bw3XffkZqa6tXjWBYsWAD/+AdkZ5vigfvug5Nyrff8egLoyJFm6VGt/uZ3\nfv3stKqYKhjyuQuk11pJ+fn5VqtWraz09HQrJibG6tWrl3Xw4EHLsiyrY8eOVk5Ojmfb3/3ud9am\nTZssy7KsL7/80jrvvPOsZ555xvP70z1Wr14967HHHrPat29vtW/f3vrpp58qFe93331ntWzZslL7\nOBdbt1rWE09YVtOmlnXVVZaVmWlZv/xiw4GKiizr3Xctq2NHy2rVyrJ27bLhIFIR/vzstP3PjJKS\nEuLj4+nTpw8AhYWFJCcnExcXR0pKCnv27PFsO3HiRKKjo4mNjWX+/Pl2h+Z86nVWIRs2bGDo0KHk\n5eVx8cUXM3XqVAAGDBjAjBkzAFi8eDEXXnghUVFRLFiwgPnz53P//fdz4YUX8sILL5z2MYBDhw6R\nmJjIihUruO6665g+ffopx8/OziY+Pv6Ur8TExFO2Xb16NR06dLDxbJxes2bw5JOml+af/2xGOcfn\n5Gzd6sUD1axpLqEtXWoq1Ro39uLOpcqxO5NNmjTJuu2226w+ffpYlmVZQ4cOtSZPnmxZlmVNnjzZ\nuv/++y3Lsqxly5ZZnTp1soqLiy2Xy2W1aNHC+uU0f2r5IGSpgvLz861LLrnE8/MXX3xhpaamWpZl\nWVu3brWaNWtmlZaWWg888ID1/PPPl3nu2LFjT9nfrx8777zzPN9nZmZad911V6XizczMtNLS0iq1\nD29Zu9ayhg61rAsvtKxevSzr3/+2rOJiHxy4pMQHB5Hj/PnZaeuIxuVyMXfuXAYPHuy5Njh37lzS\n09MBGDhwIFlZWQBkZWWRlpZGSEgIERERxMTEsMTWWWhS3QSdVFZlWZbn52bNmnHppZeSnZ3N7Nmz\n6d+/f5nnjTnNyPHXj9WsWdPzfXBwMKWlpac8Z+HChacd0XTr1u2UbWNjY1m+fHnFXqBNoqPhxRdh\n2za46SZ46ilze2XcOCgosPHAY8ZoAmiAsDXRPPjggzz77LMEn3Qj0O120/jYMDo0NJSdO3cCUFBQ\nQORJRf+RkZG4XC47w5NqZuvWrSxduhSAzMzMMpesBgwYwIMPPkhUVBQXX3yxLce/+uqrWbFixSlf\nX3/99SnbtmnThqioKP72t795Hvvxxx+ZO3euLbGVR9268Kc/weLFZk7O9u0QGws33ACffmrm6njV\nqFGmied99/l4MR7xtRp27XjOnDmEh4cTHx9Pdna2V/c99qTZ8klJSSQlJXl1/1I1tWrVihdffJHl\ny5fTokULpkyZ4vndzTffzP33389LL710Tvs+ebQUFBRU5udzlZmZyUMPPURMTAw1a9akQYMGPPfc\nc5Xerze0b2/u3zz7LLz3nrmHM2QI3HWXSUaXXOKFg9SpY2qvBw+GuXNh0iSTfNauhXr1vHCAwJad\nne31z95zZVt586hRo3j77bepUaMGR44cYd++fdx4441888035OTkEBoaitvtpmvXrmzatInx48dT\np04dRo4cCUDv3r159NFHT7nsEFDlzVJuW7ZsoU+fPqxZs8bfoVRbK1aYdjfvvQddupjuA717m/v+\nXrN5s1n5TbyuWk7YnDBhAtu2bSM/P58ZM2bQo0cP3n77bVJTU8nIyAAgIyPDM2cgNTWVzMxMiouL\ncblc5OXlkZCQYFd4VYP6nFWIN0YZcmbx8WYi6LZtpqBs8mQzsnnkEdi40UsHOVOS+eUXLx1A/MFn\ns6iOfwiMGzeOrKws4uLi+PTTT3nyyScB6NixI/369SMuLo6ePXsyffr0MjdgA5IPZqdXFy1atGD1\n6tX+DiMg1K0L6enw3/+aCaAlJZCYaJo7v/UWHDxow0FHjjQH+OQT02tNqhR1BnAydQaQKqKoCLKy\n4LXX4OuvTQfpu+4yl9i8MtA8ehQ++MDcxzlwwCw3escd5j6PlIuaalaAEo2Is/30k5mj+dprprnz\nXXeZEVCTJl7YuWWZodRzz8GaNeaaXaBf+SgnJZoKUKIRqRosC775xiSc2bNNg8877zQFBLVqeeEA\nu3ZBaKgXdhQYlGgqQIlGpOrZvx9mzYI33zTr5aSlwR//CB062LB8wd690LCh1kX4lWpZdSZeoF5n\nUk00aGASy8KFZtnp0FC45RYzIfS55+B///PiwR56SBNAHUYjGhHxi9JSWLTIjHJmz4auXc39/T/8\noZL3+EtLT0wA3bwZ7r/fTPo5/3yvxV4V6dJZBSjRiFQ/Bw/Chx+aIoIlS6BfP1NAcNVVlVzKJjcX\nnn/e/Pe77wJ6XRwlmgpQohGp3n76yXQfePtt2L3bLNSWng4xMZXY6aFDZgJQAFOiqQAlGpHAsWaN\nSTjvvGPKowcONIUEXuuLWlAAF10UECMdRxYDHNVNNBHxs9hYeOYZsyjbs8+axBMTA9dcY8qm9+6t\n5AEeeQTatIHp0+HwYa/ELKc6Y6Lp0qWLL+OQ01GvMxHATPy85hp4/XVzae2++2DOHNNr7aabTOn0\nkSPnsOO33oJ//tPsrEUL82/u2NIl4j1nvHQWHx/PihUrfB3PWQXUpTPNoxH5TT//bCrW3n3XdJe+\n4Qa47Ta4+mqTnCpk3TrTKXTlSrMoTzWbh+PIezSRkZGMGDHitIEFBQUxYsQI24M7HSUaETmdggLI\nzDRJx+Uy/dbS0uCKKyp4C6ak5ByylPM58h5NSUkJ+/fv58CBA6d87d+/35cxioicVUQEjBgBy5aZ\n+TkXXWQusTVvbpo/L1tWzr/bzpRkvv9eE0DPkS6dOZlGNCKVlpdnRjozZpi5nGlp5qtt2wpeHRs4\n0DT0rKITQB05ohERqQ7atoXx42HDBpg50yxp0KsXREfD6NEmEZXr8zcjAz76yNwMuvRSM3z68Ufb\n468Ozjii2b17N40bN/Z1PGcVUCOasWNVeSZig9JS04Hg/ffNV716pvfarbea8umzjnS2boUXXoD1\n681ibFWAI4sBnCqgEo2I2K5SSceyqkx1mhJNBSjRiIhdLAtyck4knbp1zTydm26C+PgK5JRvv4X2\n7R21AqgSTQUo0YiIL1gWLF1qJoPOmmWqnm+80SSdyy8/S8n07bfDggUwZAj85S8QHu6zuM9EiaYC\nlGhExNcsC1avNpNDZ80yE0X79TOJp3t3qFHjNE86PgF05kxzLW7ECGjd2uexH6dEUwFKNCLib+vX\nm4Qze7YpPOvb1ySea6+F2rV/tbHbDX//u5lR+s9/+iVeUKKpkIBKNKo6E3G8LVtM1fOHH5ruNcnJ\nJumkpkLY5SePAAARQElEQVSjRv6O7gQlmgoIqESjCZsiVYrbbfpzfvSRWba6SxfTf+0Pf4DIyDM8\nac4cuPJK2yeAVssJm0eOHKFz587Ex8fTsmVLHnzwQQAKCwtJTk4mLi6OlJQU9uzZ43nOxIkTiY6O\nJjY2lvnz59sVmoiILcLC4E9/go8/hv/9z7TAycmBdu0gIQGeesosdeD5vLcsU95WzSeA2jqiOXz4\nMHXq1KG4uJjExEQmTpzI7NmziYqKYvjw4UyZMoX8/HymTp1Kbm4uQ4YMYfHixWzfvp3ExETWr19P\nrVq1ygasEY2IVDFHj8JXX5mRzvH5nX36mHs73btDre3HJoC+/rq59jZyJHTq5NUYquWIBqDOsRry\noqIiSkpKCA8PZ+7cuaSnpwMwcOBAsrKyAMjKyiItLY2QkBAiIiKIiYlhyZIldoYnIuITNWtCjx4m\nl/zwA/z732bF0McfN//t/9dLeCf+OX7O/QE6d4Zjn4vVha2JprS0lPbt29OkSROuvvpqYmJicLvd\nntY2oaGh7Dy2yFBBQQGRJ13EjIyMxOVy2RmeiIjPBQWZlUMfe8wse/P993DddaYKunnc+SR98hDP\nNxjDhg3+jtR7Tlf97TXBwcGsXLmSvXv3kpKSwsKFC72y37EnVWIlJSWRlJTklf06zpgx/o5ARGzW\ntCkMGmS+Dh+Gzz83I55Jk0xngl69zFf37nDeu6+bH8oxATQ7O5vs7Gz7X0A5+KzqbPz48dSsWZN/\n/etf5OTkEBoaitvtpmvXrmzatInx48dTp04dRo4cCUDv3r159NFH6datW9mAA+kejYgELMuCVatM\nUVpWFqxfW8x7jYeStDOTkn63UPfxik0ArZb3aHbv3u1ZIO3w4cN89tlnxMbGkpqaSkZGBgAZGRmk\npqYCkJqaSmZmJsXFxbhcLvLy8khISLArPBERRwsKMu3SHn/ctE5bv7kGO5+cxtDkDbwwK4LdsVex\nvmVv1k5fRGmpv6P9bbaNaNasWcMdd9yBZVkcOXKE2267jdGjR1NYWEj//v3ZsWMHTZs2ZebMmVxw\nwQUATJgwgYyMDIKDg5k0aRIpKSmnBqwRjYgEuOJiWLzwMDuee5u1eRbD8u496+RQTdisACUaEZGK\nq5aXzkRERECJxtnU50xEysPhnxW6dOZk6gwgIuVRjs8KXToTEZFqS4lGRERspUQjIiK2UqIRERFb\nKdE4mXqdiUh5OPyzQlVnIiIBQFVnIiJSbSnRiIiIrZRoRETEVko0IiJiKyUaJ3N4/yIRcQiHf1ao\n6szJ1OtMRMpDvc5ERCSQKdGIiIitlGhERMRWSjQiImIrJRonc3j/IhFxCId/VqjqTEQkAKjqTERE\nqi0lGhERsZWtiWbbtm10796d2NhYWrVqxTPPPANAYWEhycnJxMXFkZKSwp49ezzPmThxItHR0cTG\nxjJ//nw7wxMRER+w9R7Njh07cLvdtG3blgMHDtChQwfef/99XnnlFaKiohg+fDhTpkwhPz+fqVOn\nkpuby5AhQ1i8eDHbt28nMTGR9evXU6tWrRMB6x6NiEiFVdt7NE2aNKFt27YA1K9fn7i4OAoKCpg7\ndy7p6ekADBw4kKysLACysrJIS0sjJCSEiIgIYmJiWLJkiZ0hOpvD+xeJiEM4/LPCZ/dotmzZwtKl\nS0lMTMTtdtO4cWMAQkND2blzJwAFBQVERkZ6nhMZGYnL5fJViM4zbpy/IxCRqsDhnxU1fHGQAwcO\ncPPNNzN16lQaNmxY6f2NPSl7JyUlkZSUVOl9iohUJ9nZ2WRnZ/s7DMAHiebo0aPcdNNN3H777dxw\nww0AhIWFsWvXLkJDQ3G73YSHhwNmBLNt2zbPc10uF82aNTtln2MdPkwUEfG3X/8RPs6Pox5bL51Z\nlsWgQYOIjo7mwQcf9DyemppKRkYGABkZGaSmpnoez8zMpLi4GJfLRV5eHgkJCXaGKCIiNrO16mzR\nokV0796duLg4goKCAFO+nJCQQP/+/dmxYwdNmzZl5syZXHDBBQBMmDCBjIwMgoODmTRpEikpKWUD\nDqSqM61HIyLl4fD1aNSCxsnGjnV8NYmIOEA5PiuUaCogoBKNiIiXVNt5NCIiIko0IiJiKyUaERGx\nlRKNiIjYSonGyVRxJiLl4fDPClWdOZnm0YhIeTh8Ho1GNCIiYislGhERsZUSjYiI2EqJRkREbKVE\n42Rjxvg7AhGpChz+WaGqMxGRAKCqMxERqbaUaERExFZKNCIiYislGhERsZUSjZM5vH+RiDiEwz8r\nVHXmZOp1JiLloV5nIiISyJRoRETEVko0IiJiKyUaERGxla2J5q677qJJkybExsZ6HissLCQ5OZm4\nuDhSUlLYs2eP53cTJ04kOjqa2NhY5s+fb2doVYPD+xeJiEM4/LPC1qqzr776ivr163PHHXewZs0a\nAIYNG0ZUVBTDhw9nypQp5OfnM3XqVHJzcxkyZAiLFy9m+/btJCYmsn79emrVqlU24ECqOhMR8ZJq\nW3V25ZVX0qhRozKPzZ07l/T0dAAGDhxIVlYWAFlZWaSlpRESEkJERAQxMTEsWbLEzvBERMQHfH6P\nxu1207hxYwBCQ0PZuXMnAAUFBURGRnq2i4yMxOVy+To8ERHxshr+DuBcjD1pFmxSUhJJSUl+i0VE\nxImys7PJzs72dxiAHxJNWFgYu3btIjQ0FLfbTXh4OGBGMNu2bfNs53K5aNas2Wn3Mdbh7RZERPzt\n13+Ejxs3zm+x+PzSWWpqKhkZGQBkZGSQmprqeTwzM5Pi4mJcLhd5eXkkJCT4OjxnUUIVkfJw+GeF\nrVVnAwYM4Msvv2TXrl00adKEJ598kj/84Q/079+fHTt20LRpU2bOnMkFF1wAwIQJE8jIyCA4OJhJ\nkyaRkpJyasCBVHWmXmciUh4O73WmpppOpkQjIuXh8ESjzgAiImIrJRoREbGVEo2IiNhKicbJHN6/\nSEQcwuGfFSoGEBEJACoGEBGRakuJRkREbKVEIyIitlKiERERWynROJnD+xeJiEM4/LNCVWdOphY0\nIlIeakEjIiKBTIlGRERspUQjIiK2UqIRERFbKdE4mcP7F4mIQzj8s0JVZyIiAUBVZyIiUm0p0YiI\niK2UaERExFZKNCIiYislGidzeP8iEXEIh39WOK7qbN68efz1r3+lpKSEO++8k4cffrjM7wOq6ky9\nzkSkPNTrrPx++eUX7rvvPubNm8fq1av54IMPWLFihb/Dcqzs7Gx/h+AYOhcn6FycoHPhDI5KNDk5\nOcTExBAREUGNGjXo378/WVlZ/g7LsfSP6ASdixN0Lk7QuXAGRyUal8tFs2bNPD9HRkbicrn8GJGI\niFSWoxJNUFCQv0MQEREvc1QxwFdffcXTTz/NnDlzAHj22WcpKiriscce82xz2WWXsXnzZn+FKCJS\nJUVFRbFp0ya/HNtRiebIkSO0bt2ar7/+mvDwcK644gqmT59Ohw4d/B2aiIicoxr+DuBktWvX5h//\n+AcpKSmUlpaSnp6uJCMiUsU5akQjIiLVj0+LAQoLC0lOTiYuLo6UlBT27Nlz2u3mzZtHbGws0dHR\nPP3002d9fmFhIVdffTUNGjRg2LBhZfZVVFTEPffcQ1xcHG3atGHWrFmAmbPTv39/YmNj6datGz/+\n+KNNr/r0/HEukpKSaN26NfHx8cTHx7Nr1y4A3njjDcLCwjyPv/baaza96tNzwrlwu91AYL4vjuvb\nty+xsbGenwPxfXHcr89FIL4vrrvuOuLj42nVqhXp6en88ssvwDm+LywfGjp0qDV58mTLsixr8uTJ\n1v3333/KNkeOHLFatGhhuVwu6+jRo1anTp2s5cuX/+bzDx48aC1atMiaNm2aNXTo0DL7GzlypDVh\nwgTPz4WFhZZlWdZzzz1nPfDAA5ZlWdaHH35o9e3b18uv9rf541wkJSVZubm5pxznjTfesIYNG+bV\n11cRTjoXgfi+sCzLmjVrlnXbbbdZsbGxnscC8X1hWac/F4H4vjhw4IDn+5tuusl67bXXLMs6t/eF\nTxPN7373O2vXrl2WZVmW2+22oqKiTtnmyy+/tHr16uX5+dlnn7XGjx9frue//vrrZU5WaWmpdfHF\nF1tFRUWnHKdHjx7WsmXLLMuyrJKSEis0NNQqLS2t5CssP1+fC8syH67HX/PZtvUlJ52LQHxf7N+/\n30pMTLS+++47q23btr+5rS856VwE4vviuKKiIqtPnz7Wp59+etZtz8Snl87cbjeNGzcGIDQ0lJ07\nd56yzW9N2jzb8389D2fHjh3Url2bYcOG0bZtW/r27cv27dtPOU5wcDCNGzc+bTx28fW5OO6Pf/wj\nMTExjB492tP3KCgoiNmzZxMTE0Pfvn19flnASeciEN8XTzzxBCNHjqRu3bqnbBto74sznYtAfF8A\npKSk0KRJE+rUqUPPnj0921b0feH1qrPk5GTPh/nJnnrqqXI9/9cv2LKsc57IWVpaSn5+Ptdddx3T\npk1j8uTJPPDAA2RmZp7T/irKSecCYMaMGTRp0oQDBw5w66238uqrrzJ48GD69u3L7bffTo0aNXj1\n1Ve5/fbbWbRo0Tkf53SqyrnwBSedi5UrV/LDDz8wefJktmzZUuZ3gfa++K1z4QtOOhfH/ec///Hc\nn3rzzTe58847z+l94fVE89lnn53xd2FhYezatYvQ0FDcbjfh4eGnbBMZGcm2bds8P7tcLiIjI8v9\n/JOFh4dTu3ZtbrzxRgBuvvlmpk2b5jnO1q1bCQ8Pp7S0lN27dxMWFlbh1/tbnHQuAJo0aQJA/fr1\nSU9PJzs7m8GDB9OoUSPPNoMGDWL48OHlfo3lVVXORaC9LxYvXsyyZcu49NJLKS4uZufOnfTo0YMv\nvvgi4N4Xv3UuAu19cbLzzjuPm266ia+//po777zznN4XPr10lpqaSkZGBgAZGRmkpqaesk3nzp3J\ny8ujoKCAo0ePMnPmTK6//vpyPd/6VaV2jRo1SE5OZuHChQB8/vnntGnT5pR9ffzxx3Tt2pXgYN+d\nDl+fi5KSEgoLCwE4evQoH3/8MTExMQBlhtGffPIJv//97730KsvHSeci0N4XQ4YMoaCggPz8fBYt\nWkTLli354osvADyVeBAY74vfOheB9r44ePCg5/9/cXExc+bM8VThndPnRYXu6FTS7t27rWuvvdaK\njY21kpOTrZ9//tmyLMsqKCiwUlNTPdvNnTvXiomJsdq0aVOmYuxMz7csy2revLl14YUXWvXr17ea\nNWtmff/995ZlWdaPP/5ode/e3YqJibESExOt/Px8y7JMhcYtt9xitW3b1uratavncV/x1bmIjIy0\nvv/+e+vgwYNWhw4drHbt2lm///3vrSFDhlhHjx61LMuyHn74YSs2NtaKjo62unXrZuXl5fnoLPz2\na/HHuQiU98XJ/0aOy8/PL1NpFSjvi/Kci0B5Xxz/N7Jjxw6rU6dOVrt27ayWLVtaQ4cOtYqLiy3L\nOrf3hSZsioiIrRzVvVlERKofJRoREbGVEo2IiNhKiUZERGylRCMiIrZSohEREVsp0Yh4wRNPPEGr\nVq1o164d7dq1Iycnx98hiTiGo1bYFKmKsrOz+fzzz8nLy6NmzZrs27ePQ4cO+TssEcdQohGpJLfb\nTVhYGDVr1gSgYcOGNGzY0M9RiTiHOgOIVNK+ffvo1q0bxcXFJCUlcfPNN3PNNdf4OywRx9A9GpFK\natiwIStXruTll1+mSZMmDBw4kFdeecXfYYk4hkY0Il42a9YsXnnlFT799FN/hyLiCBrRiFTSxo0b\nyyyUtWLFijIrHYoEOhUDiFTS/v37+fOf/8zBgwcpLi7msssu06UzkZPo0pmIiNhKl85ERMRWSjQi\nImIrJRoREbGVEo2IiNhKiUZERGylRCMiIrZSohEREVsp0YiIiK3+P0qnzwUjczFJAAAAAElFTkSu\nQmCC\n",
       "text": [
        "<matplotlib.figure.Figure at 0x3b860d0>"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 5.36 Page no : 282"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "from matplotlib.pyplot import *\n",
      "from numpy import *\n",
      "# Variables\n",
      "cp = 1.005; \t\t\t#kJ/kg.K\n",
      "R = 0.287; \t\t\t#kJ/kg.K\n",
      "V1 = 1.2; \t\t\t#m**3\n",
      "p1 = 1.*10**5; \t\t\t#Pa\n",
      "p2 = p1;\n",
      "T1 = 300.; \t\t\t#K\n",
      "T2 = 600.; \t\t\t#K\n",
      "T3 = T1;\n",
      "p1 = 1.*10**5; \t\t\t#Pa\n",
      "cv = cp-R;\n",
      "\n",
      "# Calculations and Results\n",
      "print (\"(i) The net heat flow\")\n",
      "m = p1*V1/R/1000/T1; \t\t\t#kg\n",
      "Q = m*R*(T2-T1);\n",
      "print (\"Q = \"), (Q), (\"kJ\")\n",
      "\n",
      "print (\"(ii) The overall change in entropy\")\n",
      "dS_12 = m*cp*math.log(T2/T1);\n",
      "dS_23 = m*(cp-R)*math.log(T3/T2); \t\t\t#cv = cp-R\n",
      "dS_overall = dS_12+dS_23;\n",
      "print (\"Overall change in entropy = %.3f\")%(dS_overall),(\"kJ/K\")\n",
      "\n",
      "s = linspace(math.sqrt(300),math.sqrt(600),100);\n",
      "T = s**2;\n",
      "plot(s,T)\n",
      "\n",
      "s = linspace(22.18,math.sqrt(600),100)\n",
      "T = 10*(s-16.725)**2;\n",
      "plot(s,T,'r')\n",
      "\n",
      "s = [17, 25];\n",
      "T = [600, 600];\n",
      "plot(s,T,'--')\n",
      "\n",
      "s = [17 ,25];\n",
      "T = [300 ,300];\n",
      "plot(s,T,'--')\n",
      "\n",
      "suptitle(\"T-s diagram \")\n",
      "xlabel(\"S\")\n",
      "ylabel(\"T\")\n",
      "text(24,400,\"v = C\")\n",
      "text(20,450,\"p = C\")"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "(i) The net heat flow\n",
        "Q =  120.0 kJ\n",
        "(ii) The overall change in entropy\n",
        "Overall change in entropy = 0.277 kJ/K\n"
       ]
      },
      {
       "metadata": {},
       "output_type": "pyout",
       "prompt_number": 2,
       "text": [
        "<matplotlib.text.Text at 0x4787450>"
       ]
      },
      {
       "metadata": {},
       "output_type": "display_data",
       "png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAEhCAYAAACUW2yNAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XtY1GXex/E3kJaVtilixRC6msppdMRDJvZgaRZqG64H\nTLSezVbL8tyaVopRUpl5yopKtzXsSUsqV9C1VNQOiiIqmOEhLAZDCUJRNATu549bZ8UBE5nhN8D3\ndV1cwfCbHx9J5zv32U0ppRBCCCEu4m50ACGEEK5HioMQQgg7UhyEEELYkeIghBDCjhQHIYQQdqQ4\nCCGEsHON0QGEqK68vDx69+4NQE5ODh4eHjRv3hw3Nze2b99OgwYNqnzPDz74gJSUFBYtWkRsbCzX\nX389I0aMcHR0IVyWFAdR6zVr1ozU1FQAZs2aRePGjZk0aZLD7j969GiH3Ke0tBQPDw+H3EsIZ5Nu\nJVHnVLSuc8+ePXTr1g2LxYLZbObQoUN218TGxtK6dWvuuusuvv32W9vjUVFRzJ0713ZN165dCQgI\nYMCAAZw6dQqAH374gY4dOxIcHMzzzz9P48aNAUhKSqJnz56Eh4djNpsBGDBgAJ07d6Zt27YsXLjQ\n9nNuvPFGpk6ditlspk+fPmzfvp177rmH22+/nfj4eMf9goS4AlIcRL3w7rvvMnnyZFJTU9m9ezcm\nk6nc97OysoiOjmbXrl1s3bqVH374ATc3NwDbfwGGDRtGcnIy+/bto2PHjsTGxgLw9NNP8/zzz5OS\nkkLLli3L3Ts1NZU333yTffv2AbB8+XJ27tzJnj17eOedd8jNzQWgqKiI3r17s3fvXho3bsyMGTPY\nsGEDa9asYcaMGc761QhRISkOol4ICQnhpZde4tVXX+XgwYNcd9115b7/3Xff0bt3b2666SY8PDwY\nPHhwhS2Q7du3c+edd9KhQweWL19ORkYGANu2bWPgwIEADBkypNxzunbtire3t+3rmJgYgoKC6N69\nO0ePHuXgwYMANGzYkD59+gAQFBREaGgobm5uBAYGkpWV5bhfhhBXQIqDqJM+//xzLBYLFouFXbt2\nMWzYML744gtuuOEGBgwYwKZNm8pd7+7uXq4YXFoYLrQeHnnkEZYsWcKePXuYOXMmJSUlf5jlhhtu\nsH2+fv16vv76a1JSUti9ezcWi8V2j4sHzt3d3WnYsKHt87Kysir+BoSoHikOok566KGHSE1NJTU1\nlU6dOvHzzz/TqlUrnnrqKf7yl7/YBrAv6NatGxs3buTEiROUlpby6aef2gqCUspWLIqLi/Hy8qK0\ntJTly5fbnn/nnXfy2WefAfDJJ59Umuvs2bPcfPPNNGzYkIMHD7Jt2zZH/9GFcAgpDqLOuXiM4ILl\ny5cTFBSExWJh3759PPLII+W+7+Pjw/PPP0+nTp24++678ff3L3e/C/ecNWsWwcHB9OzZk/bt29uu\nWbhwIdHR0XTp0oUDBw7QqFGjCvPcf//9nD17Fj8/P6ZOnUr37t0rzX3x1xX9mYRwJjfZsluI6jt7\n9qxtHOPjjz9m2bJlJCYmGpxKiKsn6xyEcIAdO3bw9NNPU1xcTJMmTVi2bJnRkYSoFmk5CCGEsCNj\nDkIIIexIcRBCCGFHioMQQgg7UhyEEELYkeIghBDCjhQHIYQQdqQ4CCGEsOP04lBQUMDgwYPp0KED\nfn5+fPfdd0RFRWEymWwbo61du9Z2fUxMDP7+/gQFBbF+/XpnxxNCCFEBpy+CGzx4MAMHDmTYsGGU\nlZVx6tQp5s2bV+FpXSkpKYwZM4Zt27aRk5NDSEgIGRkZtt0phRBC1Aynthzy8vLYvXs3w4YN0z/M\n3Z0mTZoAFZ/WlZCQQEREBB4eHnh7exMQEEBycrIzIwohhKiAU4vDwYMHad68OUOGDCEwMJCRI0fa\njlVcvHgxfn5+REZGkp+fD0B2dna5E7pMJhNWq9WZEYUQQlTAqcWhrKyMHTt28Mwzz5Cenk7Tpk2J\njo7mqaee4vDhw3z//fe0bt2acePGOTOGEEKIKnLqrqw+Pj54e3vTpUsXAAYNGkR0dDTNmjWzXTN6\n9Gh69eoF6JbCxcchWq1WfHx8yt2zTZs2HD582JmxhRCizmndujWHDh264uud2nLw8fHB09OTAwcO\nAPDVV1/h5+dnO1AdYNWqVQQEBAAQFhbGihUrKCkpwWq1kp6eTteuXcvd8/Dhw7aTuVz5Y+bMmYZn\nkJySs7ZmlJyO/6jqm2qnn+ewZMkShg8fTlFREb6+vsTFxTF+/Hj27t1LcXExvr6+LFmyBIDg4GDC\nw8Mxm824u7sTGxtb7lxdIYQQNcPpxaFDhw7s2LGj3GMffvhhpddPnz6d6dOnOzuWEEKIy5AV0k4S\nGhpqdIQrIjkdqzbkrA0ZQXIardadBOfm5kYtiyyEEIar6muntByEEELYkeIghBDCjhQHIYQQdqQ4\nCCGEsCPFQQghhB0pDkIIIexIcRBCCGFHioMQQgg7UhyEEELYkeIghBDCjhQHIYQQdqQ4CCGEsCPF\nQQghhB0pDkIIIexIcRBCCGFHioMQQgg7UhyEEELYcXpxKCgoYPDgwXTo0AE/Pz+2bdtGfn4+ffr0\nwWw207dvXwoKCmzXx8TE4O/vT1BQEOvXr3d2PCGEEBVwenF4/PHHGThwIHv27GHfvn34+/szc+ZM\n+vXrx969e3nggQeYOXMmACkpKcTHx5OWlsa6desYPXo0xcXFzo4ohBCuIy8PXOAoZKcWh7y8PHbv\n3s2wYcP0D3N3p0mTJiQmJjJixAgAIiMjSUhIACAhIYGIiAg8PDzw9vYmICCA5ORkZ0YUQgjXoRTc\nfz989ZXRSZxbHA4ePEjz5s0ZMmQIgYGBjBw5ksLCQnJzc2nWrBkAnp6eHD9+HIDs7GxMJpPt+SaT\nCavV6syIQgjhOtavp+z0GdQ99xqdxLnFoaysjB07dvDMM8+Qnp5O06ZNiY6OduaPFEKI2kkpCqa8\nxORfp7Exyfi5Qtc48+Y+Pj54e3vTpUsXAAYNGsSLL76Il5cXv/76K56enuTm5uLl5QXolkJWVpbt\n+VarFR8fH7v7uoW6/feLlkArmPk/M4kKjbK7NiopilmbZ9k9LtfL9XK9XO8q1584Ae9FbiHLax8L\nB0Uy/+tI+Lp69w8llKSkJLvvXSk3pZw78tG5c2c++ugj2rZtS1RUFL/99htlZWW0bt2aCRMmMG/e\nPDIzM1m4cCEpKSmMGTOG7777jpycHEJCQjh48CANGjT4b2A3N5wcWQghasy//w1PPgn/UX1oOTWC\n659+zCk/p6qvnU5tOQAsWbKE4cOHU1RUhK+vL8uXL0cpxdChQ1m6dCm33HILK1euBCA4OJjw8HDM\nZjPu7u7ExsaWKwxCCFFX5ObC+PGQnAyfP7sN/zkHYfQIo2PZOL3l4GjSchBC1GZKwccfw8SJMHw4\nREfD9UP6Q79+8MQTTvu5LtdyEEIIoVmt+vX/yBFYvRq6dgV27YLdu+HTT42OV47xQ+JCCFHHlZXB\nO++AxQJdukBKyvnCALrp8MwzcN11hma8lLQchBDCiQ4cgMcfh+JiSEqCgICLvrl3L2zbBsuXGxWv\nUtJyEEIIJzh3Dl55Be66C/76V/j660sKA8DLL8OkSXD99YZkvBxpOQghhIPt2gWPPQZeXrBzJ7Rs\nWcFF+/frpsSSJTWc7spIy0EIIRykqAj+8Q+9PdLEibBuXSWFAXSrYfx4uPHGmox4xaQ4CCGEA2za\nBGYz/PwzpKXByJHg5lbJxQcOwH/+A089VaMZq0K6lYQQohp++w2mTIH16+Gtt2DAgCt40uzZ8PTT\n0KSJ0/NdLWk5CCHEVVBKL00ICIBGjWDfvissDIcPw5o1MG6c0zNWh7QchBCiiqxWGDsWDh6ETz6B\nHj2q8OTZs/WT//Qnp+VzBGk5CCHEFSor011HFgt06gSpqVUsDJmZ8PnnMGGC0zI6irQchBDiCuzb\nB3//u/5882bw97+Km8yerffPuPlmh2ZzBtl4TwghLuP33/Vr+uLF8OKLMGYMuF9Nn8uRIxAcrGcq\nnT8JsybJxntCCOEgW7fqrS/atdN74110inHVxcTA6NGGFIarIS0HIYS4REEBTJ2qJxUtWgTh4ZdZ\ns3AlfvpJD1IY1GqAqr92yoC0EEKcp5SefeTvr4vBvn0wcGA1CwPofqla1GoA6VYSQggAsrL0DNND\nh65ieurl/PSTXhCRkeGgG9YMaTkIIeq10lKYP/+/Zy1UeXrqH5k9W09z8vR04E2dT1oOQoh6KzVV\nv27fcAN8840eeHaoC62GAwccfGPnc3rLoWXLlpjNZiwWC13PH30UFRWFyWTCYrFgsVhYu3at7fqY\nmBj8/f0JCgpi/fr1zo4nhKiHTp/W+yHdf79edrBpkxMKA+idV2vZWMMFTm85uLm5kZSURNOmTcs9\nNmnSJCZNmlTu2pSUFOLj40lLSyMnJ4eQkBAyMjJo2LChs2MKIeqJxEQ9thASAunp0Ly5k37QkSOw\nalWtbDVADY05VDR9qqLHEhISiIiIwMPDA29vbwICAkhOTq6JiEKIOu6XX2DIEL3f3bvvwocfOrEw\nALz0km6W1MJWA9RAcXBzc6NPnz6YzWbefPNN2+OLFy/Gz8+PyMhI8vPzAcjOzsZ00SoTk8mE1Wp1\ndkQhRB1WVgZvv63PWrjjDn3WQp8+Tv6hP/6o91C6pHekNnF6t9K2bdvw8vIiNzeX+++/n/bt2zN2\n7FhmzJgB6PGHcePGERcXd8X3jIqKsn0eGhpKaGiog1MLIeqCtDQ94OzurscVAgNr6Ae/9BI8+SRc\n1J1e05KSkkhKSrrq59foCumYmBgApk2bZnvs6NGj9OrVi4yMDKKjo2nUqBFTpkwBoH///kybNo0e\nF80rkxXSQog/UlSk90FaulS/To8adZX7IV2NQ4ege3e9n7cLbcvtUiuki4qKKCoqAuD06dOsW7eO\ngIAAcnNzbdesWrWKgIAAAMLCwlixYgUlJSVYrVbS09NtM5yEEOJKrF2rWwhZWeVbDjUmOlqf8uZC\nheFqOLVb6dixYzz00EO4ublRVFREREQEDz74ICNGjGDv3r0UFxfj6+vLkiVLAAgODiY8PByz2Yy7\nuzuxsbE0aNDAmRGFEHXE0aP6mISUFHjnHbjvPgNCZGTo6VCHDxvwwx1LNt4TQtRqpaV6wHnWLL2k\n4Lnn9LGdhnj4YX1u6HPPGRSgclV97ZTiIISotXbt0gXh+ut1a8HPz8Aw+/bBPffoMYfGjQ0MUjGX\nGnMQQghnKCzUXUhhYXpBW1KSwYUBICpKL7t2wcJwNaQ4CCFqDaX0VkV+fnDypF7h/OijDthSu7r2\n7IGvv9aVqo6QjfeEELVCZiY89ZTeleL//g969jQ60UVmzNCnA11/vdFJHEZaDkIIl1ZcrHe97tJF\nF4TUVBcrDDt26ClSY8YYncShpOUghHBZSUl6oXHr1rBzJ7RsaXSiCrzwgp6ddN11RidxKCkOQgiX\nc+yYHtvdvBkWLICHHnKBcYWKfP01/PADrF5tdBKHk24lIYTLKC3VU1KDguDWW+H77yE83EULg1Lw\n/PMwcybUwWMFpOUghHAJu3bpbvuGDWHDBl0gXNqGDXpZ9ogRRidxCmk5CCEMdeKEPmMhLEyPL2zZ\nUgsKw4VWw4svwjV18z22FAchhCGUgo8+0msWfv9dLzB+9NEa3iTvaq1Zo7d+HTLE6CROUzdLnhDC\npe3fr9eL/fYbxMfDnXcanagKysp0qyE6upZUsqtTd/9kQgiXc/o0TJsGd9+tZyDt2FHLCgPAJ5/A\ntdfCgw8ancSppOUghHA6pfSpmRMmQEgI7N2rZyPVOiUlejX04sUuOoXKcaQ4CCGc6vBhffbNkSPw\nwQfQq5fRiaph2TK47Ta4916jkziddCsJIZzizBm9BKBbNwgNhd27a3lh+P13fWjEyy/X+VYDSMtB\nCOEECQl6emqnTnovJB8foxM5QGysnmN7111GJ6kRctiPEMJhMjP1uML+/bBoEfTta3QiBzl1Ctq0\ngf/8Bzp0MDrNVZHDfoQQNe7sWT2zs3Nn3Y2UllaHCgPoDZ569aq1heFqOL04tGzZErPZjMVioWvX\nrgDk5+fTp08fzGYzffv2paCgwHZ9TEwM/v7+BAUFsX79emfHE0JU09q1EBiot79ISYHp0/VMzzoj\nPx/mz9eroesRp3crtWrVipSUFJo2bWp77Omnn6Z169ZMmDCB+fPnk5mZyYIFC0hJSWHMmDFs27aN\nnJwcQkJCyMjIoOFFm1pJt5IQruHIEd2FtG8fLFwIDzxgdCInmToVCgr0mEMt5pLdSpcGSkxMZMT5\nzaoiIyNJSEgAICEhgYiICDw8PPD29iYgIIDk5OSaiCiEuEJnz+o30Z076wN40tLqcGE4ehTef1+v\nbahnnF4c3NzcbF1Ib775JgC5ubk0a9YMAE9PT44fPw5AdnY2JpPJ9lyTyYTVanV2RCHEFVqzBgIC\n9LTUlJQ6ecZNeS++CI89Bt7eRiepcU6fyrpt2za8vLzIzc3l/vvvp3379tW+Z1RUlO3z0NBQQkND\nq31PIUTlDh+G8ePh4EF46606NthcmUOH4NNPISPD6CRXJSkpiaSkpKt+vtOLg5eXFwDNmzdn0KBB\n7Nixg+bNm/Prr7/i6elJbm6u7RqTyURWVpbtuVarFZ8KJkhfXByEEM5TVAQxMfD22/DMM3qTvDp4\nrk3FXngBJk6E870ctc2lb5xnzZpVpec7tVupqKiIoqIiAE6fPs26desICAggLCyMuLg4AOLi4ggL\nCwMgLCyMFStWUFJSgtVqJT093TbDSQhRc5SCVavA31+3Fnbv1uOy9aYwpKbqA6zHjzc6iWGc2nI4\nduwYDz30EG5ubhQVFREREcGDDz5ISEgIQ4cOZenSpdxyyy2sXLkSgODgYMLDwzGbzbi7uxMbG0uD\nBg2cGVEIcYn9+/Xq5l9+gX/+s5ZveXG1pk3T23LfeKPRSQwjK6SFEACcPKnHX//1L/26+OSTUC/f\nm23aBKNG6SpZh5pKLjmVVQjhusrK9Gaj7dtDXp6emjp+fD0tDErBs8/CSy/VqcJwNWTjPSHqsZQU\nvZ32uXO18EQ2Z4iPh+JiGDrU6CSGk5aDEPXQr7/C3/8O/frB3/4G27dLYaCkRO/98cordfr4zysl\nvwEh6pGSEnjzTT0LqVEj+OEH3b0ur4XA0qV6sdt99xmdxCVIt5IQ9URSkp6F1Lw5bNyoN8sT550+\nrQ/y+fzzenGQz5WQ4iBEHffTT3oBW3IyzJ0LAwfK65+d+fP14dZduhidxGVIY1KIOurMGf1mODhY\n74f0/ffw179KYbDz668wb56eoSRspOUgRB1zYXXzlCnQtauekeTra3QqF/bSSxARAXfcYXQSlyLF\nQYg6ZO9efcbCr7/CBx+A7En5B378ET78UDerRDnSrSREHZCXp1c09+4NgwbpU9mkMFyB55/XK/5a\ntDA6icuR4iBELXbuHCxaBH5+4OGhp6Y++SRcI30CfywlRU/hmjTJ6CQuSf4KCVFLffWVftN7660y\nNbXKlIJ//ANmzqzXm+tdjhQHIWqZQ4dg8mRIT4c33oAHH5QZSFW2bp0+AvSxx4xO4rKkW0mIWuLk\nSX2mwp13wl136THUv/xFCkOVlZbqVsMrr0j/22VIcRDCxZWWwpIl0K4d5ObqXVOnToVrrzU6WS31\nwQdw8826ySUqJWVTCBe2dauemnrddfDvf0PnzkYnquVOn9bjDKtWSZPrD0jLQdRrBw4cICwsjKCg\nIIKCgnjooYc4duyY0bE4cgSGDIHhw/Vitq+/lsLgEG+8AT16QLduRidxeXISnKi3Tpw4QadOnXj3\n3Xe59957Adi8eTOenp4EBAQYkunUKd0V/vbbeibSlClw/fWGRKl7cnL0PiI7dsCf/2x0mhonJ8GJ\nOunIkSO0b9+ekSNHEhgYSP/+/SkqKqrWPT/66CN69+5tKwwA//M//2NIYSgr013h7drBzz/Dnj0w\nY4YUBoeKioJHH62XheFqOL04lJaWYrFYGDBgAABRUVGYTCYsFgsWi4W1a9faro2JicHf35+goCDW\nr1/v7Giiljlw4ABPPfUU6enp3HbbbSxYsMDumtdff932d+vijwkTJthdm5aWRnBwcE1Ev6ytW/Vm\noO++C599po/sNJmMTlXHfP+9PuXtueeMTlJrVDogfe7cORo44BDZBQsW4O/vT2FhIaCbNpMmTWLS\nJasSU1JSiI+PJy0tjZycHEJCQsjIyKBhPT/HVfyXj48PXbt2BWDYsGG8/vrrdtdMmTKFKVOmXPE9\njeyizMzUMyqTk+HVV/XJlDJG6iT/+Ic+G7ppU6OT1BqVthy6OWDAxmq1kpiYyKhRo2z/CJVSFf6D\nTEhIICIiAg8PD7y9vQkICCA5ObnaGUTd4XbRK6dSqtzXF8yZM6fClsP48ePtrg0KCmLXrl1OzVyR\nC+sVunSBDh30lhcREVIYnGbDBti/H8aONTpJrVJpcXDEO6qJEycyZ84c3C86g9DNzY3Fixfj5+dH\nZGQk+fn5AGRnZ2O6qC1tMpmwWq3VziDqjp9//pkdO3YAsGLFCkJCQuyueeaZZ0hNTbX7qKgL6uGH\nH+bLL79k06ZNtse2bNnCvn37nJK/pARiY/+7XmHvXr3vW6NGTvlxAvQikSlT9Ci/LAypkkq7lXJz\nc3njjTcqLBIXuoYuZ82aNXh5eWGxWEhKSrI9PnbsWGbMmAHo8Ydx48YRFxdXpdBRUVG2z0NDQwmV\n7SfrhXbt2rFo0SJ27dpFy5YtmT9/frXud9NNN7F27VomTJhga1nccccdvPPOO46IW86XX+r93Zo2\nhYQE6NTJ4T9CVGTZMj2qP2iQ0UlqXFJSUrnX3qqqtDiUlpbaxgmuxrfffsvq1atJTEzk7NmznDx5\nkpEjR7Js2TLbNaNHj6ZXr16AbilkZWXZvme1WvHx8anw3hcXB1F/XHPNNeX+/jhCu3btyk2KcLT9\n+/Ub14wMmDMHHnpIuo9qzOnTumlWTxe8XfrGedasWVW7gapEx44dK/tWlSUlJan+/fsrpZQ6duyY\n7fGFCxeq8PBwpZRSO3fuVJ07d1bnzp1TWVlZytfXVxUXF9vd6zKRRR2WmZmpgoKCjI5xxY4fV2rs\nWKU8PZWaO1ep3383OlE9NHOmUhERRqdwGVV97ayR7TPURYOHkyZNIi0tjeLiYnx9fVmyZAkAwcHB\nhIeHYzabcXd3JzY21iGzpUTd0LJlS/bu3Wt0jD/0++/6fIVXX9WDzPv3g6en0anqoexs/T8iJcXo\nJLVWpSuk8/LyaNasWU3n+UOyQlq4IqXg00/1LKSgIHjtNT3wLAzy6KP6oIuYGKOTuIyqvnZW2nJw\nxcIghCvatk2fr1BUBO+/D/fcY3Siei4lBf7zHz3QI66abJ8hxFXKzNRdR4MGweOPw86dUhgMp5Se\nFjZrFjRpYnSaWk2KgxBVVFAAzzyjF7EFBMCBA7oXw8PD6GSCzz7T/4PkhLdqk+IgxBUqLoaFC/VY\nQkGBPnTnhRdkczyX8fvvumq/8YZUageQw36E+ANKweef6+152rSBr77Sg87CxSxcqJtyF+2yK66e\nnOcgxGVs364HmwsL9SK2++4zOpGo0LFjujB8+y20bWt0GpdU1ddOKQ5CVODHH2H6dH0CW3Q0jBwp\nPRUu7e9/hxtv1F1KokJy2I8Q1ZCfrye7dO0KgYF6NuT//q8UBpe2ezesXq1PRxIOI8VBCODsWXj9\ndT3YfOYM7Nunt+W54Qajk4nLUgomTNCnvP3pT0anqVNkQFrUa2Vl8H//pw8I69hRn8rWvr3RqcQV\ni4/Xzb1Ro4xOUudIcRD11saNeubjNdfonZ3vvtvoRKJKzpzRW94uWaL/JwqHkt+oqHfS0vQeSBkZ\neuudwYPr5Y7Otd8bb4DFIsvSnURmK4l6w2rVi9YSE3U30pgxIEeU11LZ2WA2w44d8Oc/G52mVpDZ\nSkJcoqBAny3foYPeqPPAARg3TgpDrfbss7q6S2FwGulWEnXW77/DW2/prqMHH9RnNnt7G51KVNt3\n38GmTfDDD0YnqdOkOIg6p6wMPvpIT0U1m/XrSECA0amEQ5SVwdNPwyuv6EVvwmmkW0nUGUrpbfw7\ndYI339QzkFavlsJQp/zzn7o/cPhwo5M43bJly7BYLHTs2JHAwEBmz55doz9fWg6iTti5U89Aslp1\nN1J4uMxAqnMKCvRMgoSEOv8/95NPPuGtt95iw4YNNG3alOLiYpYtW1ajGWS2kqjVDh3Srxdbt+rd\nEx57DOTo8Tpq4kQ4dQree8/oJOVMmzYNHx8fnnzySQCioqJo3LgxkydPvup7duvWjfnz59O9e3dH\nxXS92UqlpaVYLBYGDBgAQH5+Pn369MFsNtO3b18KCgps18bExODv709QUBDr1693djRRi+XkwNix\ncOedelzh4EE9eUUKQx21bx/ExUENd61ciaFDh7Jy5Urb15988gkRERF21919991YLBa7j40bN9pd\nm5aWRnBwsFNz/xGndystWLAAf39/CgsLAZg5cyb9+vVjwoQJzJ8/n5kzZ7JgwQJSUlKIj48nLS2N\nnJwcQkJCyMjIoKHMNxQXOXlSb5391lt6p9QffgBPT6NTCadSSs89fuEFaN7c6DR2OnbsyPHjx/nl\nl184fvw4N998M94VTIvbsmWLAemunlNbDlarlcTEREaNGmVrziQmJjJixAgAIiMjSUhIACAhIYGI\niAg8PDzw9vYmICCA5ORkZ8YTtcjvv8O8eXDHHfDzz7Brl/5aCkM9EB8PublwvtvGFQ0ePJhPP/2U\nlStXVthqAOjZs2eFLYcNGzbYXRsUFERKSoqzY1+WU1sOEydOZM6cOZw8edL2WG5uLs2aNQPA09OT\n48ePA5Cdnc09Fy2DN5lMWK1WZ8YTtUBpqe5NmDlTdx/JKWz1TFGR3kP9X/9y6f2Thg4dyqhRo8jL\ny6u0hbB169Yrvt/kyZOZPHkya9assQ1If/jhhzxWg2djO+23vWbNGry8vLBYLCQlJTn03lFRUbbP\nQ0NDCQ1/GI12AAAVwElEQVQNdej9hfGUgn//Wx+486c/6QIREmJ0KlHjXnkFuncHF/837u/vz6lT\npzCZTLRo0aLa9xsyZAhFRUXcc889uLm5UVpayvAqTt9NSkqq1muv02YrTZ8+nQ8//JBrrrmGs2fP\ncvLkSQYOHMi3337L9u3b8fT0JDc3l+7du3Po0CGio6Np1KgRU6ZMAaB///5MmzaNHj16lA8ss5Xq\nvM2bYdo0PTElJgbCwur8zEVRkcOHoVs3fZiPyWR0mlrPZWYrzZ49m6ysLDIzM/n444+55557+PDD\nDwkLCyMuLg6AuLg4wsLCAAgLC2PFihWUlJRgtVpJT0+na9euzoonXNDu3fDAA/rktSeegNRU6NdP\nCkO9NWGC3pJbCoMhaqwTz+38v/BZs2YxdOhQli5dyi233GKbAhYcHEx4eDhmsxl3d3diY2NpIPMS\n64WDB/VElM2b9ZYXX3whm+LVe2vW6B0SP/3U6CT1liyCE4bJzoYXX4RVq/T6pvHjZbscgT7EJzAQ\n3n4b7rvP6DR1hst0KwlRmbw8fQKb2Qw33aQP3XnuOSkM4rzXXtNntkphMJTrzg0TdU5hoV6bsHCh\nPn0tLQ1uu83oVMKl/PgjLFqkF7IIQ0nLQTjd2bO6KLRpo7uRt23TPQZSGISd8eNh8mS4/Xajk9R7\n0nIQTnPunN5hOToagoNlAZv4A6tX63cPq1YZnUQgxUE4QVkZfPyxXtXcsqWecNKtm9GphEsrKtKt\nhvfek6lqLkKKg3AYpfSbv+ef14PLsbFw0Y4oQlRu9mz9DqJ3b6OTiPNkKquoNqXgyy91Ufj9d3j5\nZVm8JqogI0PvjbJnjwxEOVFVXzul5SCqZetWXRRycvSahcGDwV2mOYgrpZQ+mGP6dCkMLkaKg7gq\nO3boVc0ZGfoEthEjXHrTTOGqPv5Yb8f99NNGJxGXkG4lUSV79+pisHOnXrj22GMyfiiu0okT4O+v\nZyw48DhMUTFZIS2c4ocfICJCL1oNDdX7IT3xhBQGUQ0vvKC33JXC4JKkI0Bc1uHDeiwhMVGfufL+\n+7LNhXCAlBRYuVKfDS1ckrQcRIV++gkef1zPLvzzn+HQIX3GghQGUW2lpTB6NLz6Kpw/FVK4HikO\nopzsbH1Ub6dO4OWlF6zOnKk3yBPCId56C264AUaONDqJuAzpVhKAnor6yiuwbJkeZP7hB2je3OhU\nos45elT3U27ZIgthXJy0HOq548f1YVsBAfrr77+HOXOkMAgnGT9edyn5+RmdRPwBaTnUU7/+Cq+/\nrreyGTZMT1H19jY6lajTEhP12a/LlhmdRFwBaTnUM/n5en1Cu3ZQUKDPbX7zTSkMwslOn9Yrod9+\nGxo1MjqNuAJSHOqJ337Ti9fattULUnftgnfeAR8fo5OJemHWLLjrLujTx+gk4go5rTicPXuWLl26\nYLFYaNu2LRMnTgQgKioKk8mExWLBYrGwdu1a23NiYmLw9/cnKCiI9evXOytavVJQAFFRcMcdeixw\nxw54913w9TU6mag39uyBf/1Ln/gkag2njTlcd911bNmyhUaNGlFSUkJISAibNm3Czc2NSZMmMWnS\npHLXp6SkEB8fT1paGjk5OYSEhJCRkUFDWYJ7VQoKYMECfeLigw9CcrJeryBEjSot1QtmZs/Wc6NF\nreHUbqVG5/sWi4uLKS0tpUWLFgAV7u+RkJBAREQEHh4eeHt7ExAQQHJysjPj1UkFBboF36YNHDkC\n27fD0qVSGIRBFi/WYwz/+79GJxFV5NTiUFZWRseOHWnRogW9evXC398fgMWLF+Pn50dkZCT5+fkA\nZGdnYzKZbM81mUxYrVZnxqtTLi4KmZn6nOZ//hNatzY6mai3srL0mobYWNnHvRZy6lRWd3d3du/e\nzYkTJ+jbty9JSUmMHTuWGTNmAHr8Ydy4ccTFxVXpvlFRUbbPQ0NDCQ0NdWDq2uW332D+fP0GrX9/\nXRTatDE6laj3lNJL7cePh/btjU5TLyUlJZGUlHTVz6+RdQ433XQT/fr1Y9u2beVeyEePHk2vXr0A\n3VLIysqyfc9qteJTyVSai4tDfZWfr4vCW2/pMYXt26WVIFzIp5/Cjz/CqlVGJ6m3Ln3jPGvWrCo9\n32ltvby8PAoLCwE4c+YMX375JUFBQeTm5tquWbVqFQHnl+aGhYWxYsUKSkpKsFqtpKen07VrV2fF\nq7Xy8vTJa23b6tlHF8YUpDAIl/Hbb7rF8N57sqd7Lea0lsPRo0cZOXIkSinOnj3Lww8/TL9+/Rgx\nYgR79+6luLgYX19flixZAkBwcDDh4eGYzWbc3d2JjY2lQYMGzopX6+Tmwhtv6GmoAwfqKamtWhmd\nSogKPPOM/kt6111GJxHVICfBubhjx2DuXH2OwtCh8OyzskZBuLBNm+CRRyA9HZo0MTqNuIicBFdH\n/PKLPlzHzw+KivQ6orfflsIgXFhREfz973p2hBSGWk+Kg4vJytJnrQcE6Akf6el67yPZ5kK4vKgo\nCA6GAQOMTiIcQHZldRGZmfo8hU8/1ecp7N8P59cMCuH6du7UW2Ts3Wt0EuEg0nIw2MGDevFo587g\n6QkZGfDaa1IYRC1y7hyMGqX3gJe/uHWGtBwMsm+f3m5m/Xp46il9RvPNNxudSoir8NprcOutEBlp\ndBLhQDJbqYalpsJLL8E338DEifDEEzJ2J2qx77+Hu++GlBSZLeHiZLaSi/ruO729xYAB0LMnHD4M\nU6dKYRC1WGmp7k568UUpDHWQdCs5kVKwcSO8/LIecJ46Ve8mcO21RicTwgEWLYIGDWDMGKOTCCeQ\nbiUnUAoSEnRR+O03mDYNHn5Y/zsSok44fBi6ddNN4jvuMDqNuAJVfe2UloMDlZbqlsHs2frr6dPh\nr38FDw9jcwnhUGVlujtp2jQpDHWYFAcHKC6G5cv1OoWmTfWAc79+4OZmdDIhnOCdd+DsWZgwwegk\nwomkW6kaiopgyRKYM0fvkvrccxAaKkVB1GFHjkCXLrBli97bRdQa0q1UA06c0OcoLFgA3bvrVc2y\nu7io88rK9PL9KVOkMNQDUhyq4PhxfcDOu+/CAw/Ahg16DyQh6oV334VTp2DyZKOTiBogxeEKHDmi\ndwb46CMYNkzOUhD10JEj8MILsHkzXCMvG/WBLIK7jH37YORIvdHkjTfqxaCLF0thEPXMxd1J/v5G\npxE1RIpDBb77Dv7yF7j3Xn02+uHDeibSLbcYnUwIA7zzjp59MWWK0UlEDZLZSucpBf/5jy4CR47o\nkw7/9jdo1MjhP0qI2uPHH/Vit61b9TslUWvJbKUqKimBTz6BV1/Vrednn4UhQ6RbVQjKyvR+8s8+\nK4WhHnJat9LZs2fp0qULFouFtm3bMnHiRADy8/Pp06cPZrOZvn37UlBQYHtOTEwM/v7+BAUFsX79\nemdFA+DMGT0dtW1bffzmyy/rozgfflgKgxCAnqtdViaL3eopp3YrnTlzhkaNGlFSUkJISAgxMTHE\nx8fTunVrJkyYwPz588nMzGTBggWkpKQwZswYtm3bRk5ODiEhIWRkZNCwYcPygavZrZSfr4vCm2/q\n1vLUqXDXXdX9kwpRx+zfr7cP3r4dWrc2Oo1wAJfasrvR+Q774uJiSktL8fLyIjExkREjRgAQGRlJ\nQkICAAkJCURERODh4YG3tzcBAQEkJyc7LEtWFkyaBG3a6AHmjRvhiy+kMAhhp6QEHnlEb8UthaHe\ncmpxKCsro2PHjrRo0YJevXoREBBAbm4uzZo1A8DT05Pjx48DkJ2djclksj3XZDJhtVqrneHcOf33\nvGNHcHfXR9z+858yI0+ISr3yCvzpT/okKlFvObU4uLu7s3v3bqxWK1u2bGHTpk0OuW+Um5vtI8nN\nTW9mFBVV4bUNXo7iX8vcyMt34/W5bph8Ln89UVH6+5d+yPVyfX24fvRovdjtyy/1uymj88j1V319\nUlISUVFRto+qqrGprNHR0TRo0ID33nuP7du34+npSW5uLt27d+fQoUNER0fTqFEjppyfS92/f3+m\nTZtGjx49ygd2c52N94Soc15/XZ8HPXy40UmEg7nMmENeXh6FhYWAHpj+8ssvCQoKIiwsjLi4OADi\n4uIICwsDICwsjBUrVlBSUoLVaiU9PZ2uspudEDVryhQpDAJw4jqHo0ePMnLkSJRSnD17locffph+\n/frRvXt3hg4dytKlS7nllltYuXIlAMHBwYSHh2M2m3F3dyc2NpYGcnSaEEIYQlZICyFEPeAy3UpC\nCCFqLykOQggh7EhxEEIIYUeKgxBCCDtSHIQQQtiR4iCEEMKOFAchhBB2pDgIIYSwI8VBCCGEHSkO\nQggh7EhxEEIIYUeKgxBCCDtSHIQQQtiR4iCEEMKOFAchhBB2pDgIIYSwI8VBCCGEHSkOQggh7Di1\nOGRlZXH33XcTFBREu3bteO211wCIiorCZDJhsViwWCysXbvW9pyYmBj8/f0JCgpi/fr1zownhBCi\nEk4tDg0bNuStt94iLS2NlJQU3n//ffbs2YObmxuTJk0iNTWV1NRUHnjgAQBSUlKIj48nLS2NdevW\nMXr0aIqLi50Z0WmSkpKMjnBFJKdj1YactSEjSE6jObU4tGjRgsDAQABuvPFGzGYz2dnZABUedJ2Q\nkEBERAQeHh54e3sTEBBAcnKyMyM6TW35CyM5Has25KwNGUFyGq3GxhyOHDnCjh076NmzJwCLFy/G\nz8+PyMhI8vPzAcjOzsZkMtmeYzKZsFqtNRVRCCHEeTVSHE6dOsXgwYNZsGABjRs3ZuzYsRw+fJjv\nv/+e1q1bM27cuJqIIYQQ4kopJysuLlb33XefeuONNyr8fnZ2tmrbtq1SSqkXX3xRzZkzx/a9fv36\nqa+//rrc9a1bt1aAfMiHfMiHfFTho3Xr1lV67XZTqoLOfwdRSvHII4/QrFkz5s2bZ3v8+PHjeHl5\nAbBo0SI2bdpEfHw8KSkpjBkzhu+++46cnBxCQkI4ePAgDRo0cFZEIYQQFbjGmTf/5ptviIuLw2w2\nY7FYAJg9ezYfffQRe/fupbi4GF9fX5YsWQJAcHAw4eHhmM1m3N3diY2NlcIghBAGcGrLQQghRO3k\n0iuk//a3v9GiRQuCgoJsj0VERNgWz7Vq1crWIjFSRTm/+eYbOnbsSGBgIB06dODbb781MGHFGXfu\n3EmnTp0IDAzkwQcfpLCw0MCEWmULJ/Pz8+nTpw9ms5m+fftSUFDgkjk/+eQTAgIC8PDwYNeuXYZm\nhMpzTpo0CX9/f/z9/enfvz95eXkumfP555+nQ4cOBAYGcvfdd/Pjjz+6XMYL5s6di7u7u232pVGu\ndPHxunXrLn+jKo1Q1LAtW7aoXbt2qcDAwAq/P3nyZBUdHV3DqexVlLNHjx5q3bp1SimlEhMTVUhI\niFHxlFIVZwwMDFRbtmxRSim1dOlSNXnyZKPi2eTk5Ki0tDSllFKFhYXqjjvuULt371ZPPfWUmjdv\nnlJKqXnz5qlx48YZGbPSnPv371cZGRkqNDRUpaSkGJpRqcpzbty4UZWWliqllJo6daqaMGGCkTEr\nzVlYWGi7ZuHChWrkyJFGRaw0o1JK/fzzz6pv376qZcuWKi8vz7CMSlWeMyoqSs2dO/eK7+PSLYee\nPXty8803V/g9pRQrV65k2LBhNZzKXkU5fXx8OHHiBAAFBQX4+voaEc2mooyHDx+2rTvp3bs3q1ev\nNiJaOZUtnExMTGTEiBEAREZGkpCQYGTMCnMePXqU9u3b07ZtW0OzXayynL169cLdXf/z79Gjh21x\nqlEqy3njjTfarjl16hS33nqrURErzQi6JXZpS8IoVV18XCnn1C7HyczMrLDlsHnzZtW5c2cDElXs\n0pxHjhxRJpNJ+fj4KG9vb/Xzzz8bmE67NGOnTp3U559/rpRSau7cueraa681KlqFMjMz1e23365O\nnDihGjduXO57l35tpAs5T548aXvMVVoOF6sop1JK9e/fX8XFxRmUyt6lOadPn658fHxUu3bt1G+/\n/WZwOu3ijJ9//rmt5eUKLYeLXZwzKipKtWrVSrVv314NHz78D3PW2uIwZsyYStdOGOHSnPfee6+K\nj49XSim1cuVK1bt3b6Oi2VyaMT09XYWGhqrAwEA1ffp01aRJEwPTlVdYWKiCg4PVZ599ppSyLwau\nUhwKCwtV586dbTkvcLXiUFnOl156SQ0cONCgVPYqy6mUUjExMerRRx81IFV5F2c8ffq06tq1qzpx\n4oRSSheHX3/91eCE2qW/y9zcXFVWVqbKysrUjBkz1PDhwy/7/FpZHM6dO6datGihsrOzDUpl79Kc\nN9xwg+3zsrKycl8bpbJCe+F7HTt2rOFEFato4eSf//xnlZubq5RS6vjx41Ve0OMMl1vg6UrFobKc\nH3zwgerevbs6c+aMQcnK+6MFsz/99JNq165dDacq79KMe/fuVV5eXqply5aqZcuW6pprrlG+vr7q\n2LFjLpXzUhcvPq6MS485VOarr77Cz8+P2267zegolfL19WXz5s0AbNy4kVatWhmcyN6FGSpKKWbP\nns2oUaMMTqSzPPbYY/j7+zNx4kTb42FhYcTFxQEQFxdHWFiYURGBynNeeo3RKsu5bt06XnvtNVav\nXs11111nYEKtspyZmZm2z7/44otys+1qWkUZg4KCOHbsGJmZmWRmZmIymdi1a5dtka+r5AS9+PiC\nVatWERAQ8Ic3clkRERHq1ltvVQ0bNlQmk0ktXbpUKaXUo48+qmJjYw1O918XcjZo0MCW85tvvlEd\nOnRQ/v7+ymKxqO3bt7tUxiVLlqj58+er9u3bq8DAQDVt2jRD812wdetW5ebmpjp06KA6duyoOnbs\nqNauXavy8vJU7969VVBQkOrTp4/hfc8V5UxMTFSfffaZMplM6rrrrlMtWrRQ999/v0vmbNOmjbr9\n9tttjz3xxBMumTM8PFyZzWbl5+enwsLC1NGjR10u48VatWpl+JhDZTkjIyOV2WxW7du3V3379lVW\nq/Wy95FFcEIIIezUym4lIYQQziXFQQghhB0pDkIIIexIcRBCCGFHioMQQgg7UhyEEELYkeIghAO8\n8MILtGvXjg4dOtChQwe2b99udCQhqsWpJ8EJUR8kJSWxYcMG0tPTadCgASdPnqSoqMjoWEJUixQH\nIaopNzeX5s2b2460bdKkCU2aNDE4lRDVIyukhaimkydP0qNHD0pKSggNDWXQoEHce++9RscSolpk\nzEGIamrSpAm7d+9m8eLFtGjRgsjISN5//32jYwlRLdJyEMLBVq1axfvvv8/atWuNjiLEVZOWgxDV\ndPDgQY4cOWL7OjU1FR8fH+MCCeEAMiAtRDUVFhby5JNPcvr0aUpKSmjTpo10K4laT7qVhBBC2JFu\nJSGEEHakOAghhLAjxUEIIYQdKQ5CCCHsSHEQQghhR4qDEEIIO1IchBBC2JHiIIQQws7/A7QEHj3e\nWXM+AAAAAElFTkSuQmCC\n",
       "text": [
        "<matplotlib.figure.Figure at 0x46d17d0>"
       ]
      }
     ],
     "prompt_number": 2
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 5.37 Page no : 283"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "import math \n",
      "from matplotlib.pyplot import *\n",
      "\n",
      "# Variables\n",
      "cv = 0.718; \t\t\t#kJ/kg.K\n",
      "R = 0.287    \t\t\t#kJ/kg.K\n",
      "p1 = 1.*10**5; \t\t\t#Pa\n",
      "T1 = 300.    \t\t\t#K\n",
      "V1 = 0.018; \t\t\t#m**3\n",
      "p2 = 5.*10**5 \t\t\t#Pa\n",
      "T3 = T1;\n",
      "cp = cv+R;\n",
      "p3 = p2;\n",
      "\n",
      "# Calculations and Results\n",
      "m = p1*V1/R/T1/1000; \t\t\t#kg\n",
      "T2 = T1*p2/p1;\n",
      "\n",
      "print (\"(i) constant volume process\")\n",
      "dS_12 = m*cv*math.log(T2/T1);\n",
      "print (\"dS = %.3f\")%(dS_12), (\"kJ/K\")\n",
      "\n",
      "print (\"(ii) Constant prssure process \")\n",
      "dS_23 = m*cp*math.log(T3/T2);\n",
      "print (\"dS = %.3f\")%(dS_23), (\"kJ/K\")\n",
      "\n",
      "print (\"(iii) Isothermal process\")\n",
      "dS_31 = m*R*math.log(p3/p1);\n",
      "print (\"dS = %.5f\")%(dS_31),(\"kJ/K\")\n",
      "\n",
      "print (\"T-s diagram\")\n",
      "s = linspace(math.sqrt(300),math.sqrt(600),72);\n",
      "T = s**2;\n",
      "#plot(s,T)\n",
      "\n",
      "s = linspace(22.18,math.sqrt(600),24)\n",
      "T = 10*(s-16.725)**2;\n",
      "#plot(s,T,'r')\n",
      "\n",
      "s = [math.sqrt(300), 22.18];\n",
      "T = [300 ,300];\n",
      "#plot(s,T,'g')\n",
      "\n",
      "print (\"p-V diagram\")\n",
      "\n",
      "V = [0.018, 0.018];\n",
      "p = [1 ,5];\n",
      "#plot(V,p)\n",
      "\n",
      "p = [5 ,5];\n",
      "V = [0.0036, 0.018];\n",
      "#plot(V,p,'r')\n",
      "\n",
      "V = linspace(0.0036,0.018,145)\n",
      "\n",
      "def f():\n",
      "    return 1*0.018/V;\n",
      "f1 = f()\n",
      "\n",
      "plot(V,f1,'g')\n",
      "suptitle(\"p-V diagram\")\n",
      "xlabel(\"V\")\n",
      "ylabel(\"p\")\n",
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "(i) constant volume process\n",
        "dS = 0.024 kJ/K\n",
        "(ii) Constant prssure process \n",
        "dS = -0.034 kJ/K\n",
        "(iii) Isothermal process\n",
        "dS = 0.00966 kJ/K\n",
        "T-s diagram\n",
        "p-V diagram\n"
       ]
      },
      {
       "metadata": {},
       "output_type": "pyout",
       "prompt_number": 3,
       "text": [
        "<matplotlib.text.Text at 0x4047ad0>"
       ]
      },
      {
       "metadata": {},
       "output_type": "display_data",
       "png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAEdCAYAAAASHSDrAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XlUFGfCNfDbgKiAikRBBFQEFZCtAcUNbXFfI+7gglvC\noAbNJI6vGecVc6LRxJjEaAzJJBrzmWBe4kIUUKO2ioqIggFRAQXZBNzAlSBQ3x9OeiQsCnZR3c39\nncM5dHdVeeFYfXme6qqSCYIggIiIqBZ6UgcgIiLNxqIgIqI6sSiIiKhOLAoiIqoTi4KIiOrEoiAi\nojqxKEinrF69Gu+9916V55KSkuDk5FTnekqlEuPGjQMA/Prrr1i/fr1oGYm0DYuCdEpAQAB27dpV\n5bnw8HAEBAS89DbGjRuH5cuXv3IWQRDA05RIF7AoSGtkZWXBwcEBM2fOhJOTE6ZMmYInT55UWaZb\nt25o27Yt4uPjVc/93//9H/z9/attLyYmBo6OjvD09MSePXtUz2/fvh1vvfUWgGejiz59+sDDwwPD\nhg1DUVERAODWrVsYNmwYnJ2d8cYbb6BLly64e/cusrKy0KNHDwQGBsLFxQU5OTlYuHAhevXqBWdn\nZ4SGhqr+nS5duuC9996DXC6Hl5cXLly4gOHDh8Pe3h5hYWHq/NURvRIWBWmVtLQ0LFq0CKmpqWjd\nujW+/PLLasv4+/sjPDwcABAXFwczMzPY2dlVWaa0tBRvvvkm9u/fj/Pnz6OgoAAymazatnx8fBAX\nF4cLFy5g2rRp+OijjwA8m+IaOnQoUlJSMHnyZGRnZ6vWycjIwKJFi5CSkoJOnTphzZo1OHfuHC5e\nvIjjx48jJSUFACCTydC5c2ckJiZi4MCBmDNnDvbs2YO4uDisWrVKbb8zolfFoiCtYmNjg759+wIA\nZs6cidjY2GrLTJs2DRERERAEodZppytXrsDW1lZVIDNnzqxxmignJwfDhw+Hq6srNmzYgNTUVADA\nqVOnMH36dADAiBEj0LZtW9U6nTt3Ru/evVWPd+3aBU9PT3h4eODSpUuqbQDA+PHjAQAuLi7o27cv\njI2N0a5dOzRv3hz379+v9++HSAwsCtIqz//VLwgCZDIZ4uPjIZfLIZfLsX//flhbW8PW1hZKpRK7\nd+/GtGnT6tzOn9uqyVtvvYWQkBD8/vvvCAsLqzLVVds6xsbGqu8zMzPxySef4OjRo7h48SLGjBmD\n0tJS1evNmzcHAOjp6cHQ0FD1vJ6eHsrLy+v6VRA1GhYFaZXs7GzExcUBAH788Uf4+Pigd+/eSExM\nRGJiIsaOHQvg2fTT22+/DTs7O3Ts2LHadnr06IGsrCxcv34dAPDTTz/V+O/dv39ftf727dtVz/fv\n3x8///wzAODQoUO4d+9eresbGxujdevWKCwsRHR0dI3L8aA3aTIWBWmVHj16YMuWLXByckJJSQmC\ng4NrXG7y5MlITU2t8SA2ALRo0QJff/01xowZA09PT1hYWKhGGTKZTPV9aGgopkyZAi8vL7Rv3171\n/KpVq3Do0CG4uLggIiICHTp0QKtWrVTr/8nNzQ1yuRwODg6YMWMGBgwYUGOe5//Nv26DSGoyXmac\ntEVWVhbGjRuH5ORkqaOgrKwM+vr60NfXx5kzZ7Bo0SJcuHBB6lhEojCQOgBRfWjKX9rZ2dmYOnUq\nKisrYWhoiG+++UbqSESi4YiCiIjqxGMURERUJxYFERHViUVBRER1YlEQEVGdWBRERFQnFgUREdWJ\nRUFERHViURARUZ1EK4ouXbrA1dUVcrm8yiWXnxcSEoJu3brBzc0NiYmJYkUhIqJXINolPGQyGZRK\nJczMzGp8PSoqChkZGUhPT8fZs2cRHBysuiooERFpDlGnnuq6OkhkZCQCAwMBAN7e3iguLkZhYaGY\ncYiIqAFEKwqZTIahQ4fCy8urxgum5eXlwcbGRvXY2toaubm5YsUhIqIGEm3q6dSpU7C0tFTdhN7B\nwQE+Pj5VlvnriOOvVwbVlCuFEhFpG3Ve71W0EYWlpSUAoH379vDz80N8fHyV162srJCTk6N6nJub\nCysrq2rbEQRB0q9Vx1Zh2aFldS+zapXkOV/qZ2HOJpWROZtuTnUTpSgeP36MBw8eAAAePXqkuhPY\n88aPH48dO3YAAOLi4mBqagoLCwsx4rySEXYjcPDaQaljEBFJRpSpp8LCQvj5+QEAysvLMWPGDAwf\nPhxhYWEAgKCgIIwePRpRUVGwt7eHsbExtm3bJkaUV9bLqhdySnJw88FNWLaylDoOEVGjE6UobG1t\nkZSUVO35oKCgKo83b94sxj+vVgZ6BhjSdQgOXTuEQPfAGpdRKBSNG6qBmFN9tCEjwJzqpi051U2j\n73Ank8lEmW+rr39f+DeOZh7Fj5N+lDoKEdELqfu9k5fweAkj7Ebg8PXDqBQqpY5CRNToWBQvwaaN\nDcyNzZGQnyB1FCKiRseieEljuo3BgfQDUscgImp0LIqXNKbbGBxIY1EQUdPDonhJ/Wz64dq9a7j5\n4KbUUYiIGhWL4iU102+GYV2HITojWuooRESNikVRDzxOQURNEYuiHkZ1G4Uj14+grKJM6ihERI2G\nRVEP5sbmcGzvCGWWUuooRESNhkVRTxN6TMDeK3uljkFE1GhYFPXk5+iHvVf28ixtImoyWBT11P21\n7mjbsi3i8+JfvDARkQ5gUTSAn4Mf9lzZI3UMIqJGwaJoAD8HP+y+vFsjrmxLRCQ2FkUDeFh6oKyi\nDJduXZI6ChGR6FgUDSCTyTDBYQL2XOb0ExHpPhZFA/E4BRE1FSyKBhrQaQBy7ucgqzhL6ihERKIS\nrSgqKiogl8sxbty4aq8plUq0adMGcrkccrkcH3zwgVgxRGOgZ4Bx3cfx5Dsi0nkGYm34888/h5OT\nEx48eFDj64MGDUJkZKRY/3yj8HPww4YzG7C0z1KpoxARiUaUEUVubi6ioqKwYMGCWj9CqgsfLR1m\nNwxJBUm49eiW1FGIiEQjSlG8/fbb+Pjjj6GnV/PmZTIZTp8+DTc3N4wePRqpqalixBBdC4MWGGE3\ngtNPRKTT1D71tH//fpibm0Mul0OpVNa4jIeHB3JycmBkZITo6GhMmDABaWlpNS4bGhqq+l6hUECh\nUKg78iuZ7jwdW85twRueb0gdhYiaKKVSWev7rTrIBDXPAb333nv44YcfYGBggNLSUty/fx+TJk3C\njh07al3H1tYW58+fh5mZWdVwMpnGT1GVlpei4ycdkbIwBR1bdZQ6DhGR2t871T71tHbtWuTk5CAz\nMxPh4eHw9fWtVhKFhYWqHyI+Ph6CIFQrCW3RwqAFXnd4HbtSdkkdhYhIFKKfRyGTyQAAYWFhCAsL\nAwBERETAxcUF7u7uWLp0KcLDw8WOIaoA5wD8lPKT1DGIiESh9qknddKGqScAKK8sh/VGa5ycexLd\nXusmdRwiauI0fuqpKTLQM8DUnlMRnqLdIyMiopqwKNQkwCUAO5N3asUIiIioPlgUauJt5Y2yijIk\nFSRJHYWISK1YFGoik8ng7+LPg9pEpHNYFGr056efKoVKqaMQEakNi0KNepr3RNsWbXEq+5TUUYiI\n1IZFoWYBLgH44fcfpI5BRKQ2LAo1m+U6CxGpEXhU9kjqKEREasGiUDOr1lboZ9MPv1z+ReooRERq\nwaIQwTz5PHyb+K3UMYiI1IJFIYKx3cfiyu0rSL+TLnUUIqJXxqIQgaG+IWa6zsS2pG1SRyEiemUs\nCpHMc5+H7y9+j/LKcqmjEBG9EhaFSHqa94RNaxsczDgodRQiolfCohDRfPl8HtQmIq3HohDRNOdp\nOJp5FEWPiqSOQkTUYCwKEbVu3hoTHCbgh4s8U5uItBeLQmQLPBbgmwvf8D4VRKS1WBQi62/TH80N\nmuNI5hGpoxARNYhoRVFRUQG5XI5x48bV+HpISAi6desGNzc3JCYmihVDcjKZDIt7Lcbm+M1SRyEi\nahDRiuLzzz+Hk5MTZDJZtdeioqKQkZGB9PR0fP311wgODhYrhkYIcAlAbHYssoqzpI5CRFRvohRF\nbm4uoqKisGDBghrn5iMjIxEYGAgA8Pb2RnFxMQoLC8WIohGMDY0R6B6IrxK+kjoKEVG9GYix0bff\nfhsff/wx7t+/X+PreXl5sLGxUT22trZGbm4uLCwsqi0bGhqq+l6hUEChUKg7bqMI9gpGv2/7YdWg\nVWjZrKXUcYhIhyiVSiiVStG2r/ai2L9/P8zNzSGXy+sM/teRRk1TVEDVotBm9mb26GXVC7su7cIc\n9zlSxyEiHfLXP6JXr16t1u2rferp9OnTiIyMhK2tLfz9/XH06FHMnj27yjJWVlbIyclRPc7NzYWV\nlZW6o2icxb0W44v4L/hRWSLSKmovirVr1yInJweZmZkIDw+Hr68vduzYUWWZ8ePHq56Li4uDqalp\njdNOumaE/QiUlJbgbN5ZqaMQEb00UY5RPO/PKaWwsDAAQFBQEEaPHo2oqCjY29vD2NgY27Y1jctx\n68n0sKjXImyO34w+1n2kjkNE9FJkggbPg8hkMp2bprn35B7sNtkhOTgZVq11f7qNiBqfut87eWZ2\nI2vbsi0C3QPx+dnPpY5CRPRSOKKQwI3iG/D42gPXQ66jTYs2UschIh3DEYUO6GzaGaPsRyHsfJjU\nUYiIXogjColcLLiI0T+OxvWQ62hu0FzqOESkQzii0BFuHdzgYu6Cnck7pY5CRFQnFoWElvVbhg2n\nN6BSqJQ6ChFRrVgUEvK19UXLZi1xIO2A1FGIiGrFopCQTCbDP/r9Ax+d/kjqKEREtWJRSGyS0yTk\nP8jHyRsnpY5CRFQjFoXEDPQM8E+ff2L1cfVe7ZGISF1YFBpglussXL93naMKItJILAoN0Ey/GVYO\nXMlRBRFpJBaFhuCogog0FYtCQ3BUQUSaikWhQTiqICJNxKLQIBxVEJEmYlFomD9HFSdunJA6ChER\nABaFxmmm3wzvD34fy39brrNXziUi7cKi0EABLgF48vQJ9lzZI3UUIiJxiqK0tBTe3t5wd3eHk5MT\nVqxYUW0ZpVKJNm3aQC6XQy6X44MPPhAjilbSk+lh/dD1WHFkBZ5WPJU6DhE1cQZibLRFixY4duwY\njIyMUF5ejgEDBiA2NhYDBgyostygQYMQGRkpRgStN9xuOKxbW+PbxG/xN6+/SR2HiJow0aaejIyM\nAABlZWWoqKiAmZlZtWU4B187mUyG9UPX4/3j7+Nh2UOp4xBREybKiAIAKisr4eHhgWvXriE4OBhO\nTk5VXpfJZDh9+jTc3NxgZWWFDRs2VFsGAEJDQ1XfKxQKKBQKsSJrHK+OXhjYeSA+PfMp/jXoX1LH\nISINpVQqoVQqRdu+6PfMLikpwYgRI7Bu3boqb/IPHjyAvr4+jIyMEB0djSVLliAtLa1qOB2+Z/bL\nunb3Gnr/uzcuL7oMc2NzqeMQkRbQuntmt2nTBmPGjEFCQkKV51u1aqWanho1ahSePn2Ku3fvih1H\n69iZ2WGGywyEKkOljkJETZQoRXH79m0UFxcDAJ48eYLDhw9DLpdXWaawsFDVePHx8RAEocbjGASE\nKkLxy+VfcLHgotRRiKgJEuUYxc2bNxEYGIjKykpUVlZi1qxZGDJkCMLCwgAAQUFBiIiIwNatW2Fg\nYAAjIyOEh4eLEUUnmLU0Q+igUITEhEAZqIRMJpM6EhE1IaIfo3gVPEbxXxWVFfD82hMrBqzANOdp\nUschIg2mdccoSD309fSxadQmLDu8DI/KHkkdh4iaEBaFFhnYeSD6d+qP9afWSx2FiJoQTj1pmZyS\nHLiHuSPhjQTYtrWVOg4RaSBOPTVxNm1s8Pc+f8fSg0uljkJETQSLQgu92+9dXL19FXsu8+qyRCQ+\nFoUWam7QHGFjwxASE4L7f9yXOg4R6Tgeo9BiCyIXoGWzlvhi1BdSRyEiDaLu904WhRa7++Quen7Z\nE3um7UEf6z5SxyEiDcGD2aRi1tIMnwz/BG/++iZvcEREomFRaDl/Z39YtrLEJ2c+kToKEekoTj3p\ngOv3rqP3N70ROy8WDu0cpI5DRBLj1BNV07VtV7w/+H0E7g1EeWW51HGISMewKHTE37z+hlaGrfDx\nqY+ljkJEOoZTTzokuyQbnl974sjsI3C1cJU6DhFJhFNPVKtObTph3ZB1CNwbiLKKMqnjEJGOYFHo\nmHnyeejYqiPWnFwjdRQi0hGcetJB+Q/yIQ+TY9/0fTwRj6gJ4tQTvVDHVh2xdcxWBPwSgJLSEqnj\nEJGW44hChwUfCEZJaQl2TtzJ+2wTNSEaP6IoLS2Ft7c33N3d4eTkhBUrVtS4XEhICLp16wY3Nzck\nJiaqOwYB+GT4J7hYeBE7Lu6QOgoRaTGD2l548uQJvvzyS8TGxkImk8HHxwfBwcFo0aJFnRts0aIF\njh07BiMjI5SXl2PAgAGIjY3FgAEDVMtERUUhIyMD6enpOHv2LIKDgxEXF6e+n4oAAEbNjBA+KRy+\nO3zR16Yvur/WXepIRKSFah1RzJ49G6mpqQgJCcHixYtx6dIlzJo166U2amRkBAAoKytDRUUFzMzM\nqrweGRmJwMBAAIC3tzeKi4tRWFjY0J+B6uBi4YLVitXw/8Uff5T/IXUcItJCtY4oLl26hNTUVNVj\nX19fODk5vdRGKysr4eHhgWvXriE4OLjaenl5ebCxsVE9tra2Rm5uLiwsLKptKzQ0VPW9QqGAQqF4\nqQz0X8Fewfjt+m9459A72Dx6s9RxiEjNlEollEqlaNuvtSg8PDxw5swZ9O3bFwAQFxcHT0/Pl9qo\nnp4ekpKSUFJSghEjRkCpVFZ7g//rgZbaDrY+XxTUMDKZDNte3wavb7yw8/edmOE6Q+pIRKRGf/0j\nevXq1Wrdfq1TTwkJCejfvz86d+6MLl26oF+/fkhISICLiwtcXV/u8hBt2rTBmDFjkJCQUOV5Kysr\n5OTkqB7n5ubCysqqgT8CvYw2Ldrgl6m/YOnBpUgpSpE6DhFpkVpHFDExMQ3a4O3bt2FgYABTU1M8\nefIEhw8fxqpVq6osM378eGzevBnTp09HXFwcTE1Na5x2IvVytXDFJ8M/wcRdE5HwZgJaN28tdSQi\n0gJqP48iOTkZgYGBqKysRGVlJWbNmoVly5YhLCwMABAUFAQAWLx4MWJiYmBsbIxt27bBw8Ojejie\nRyGK4APBKHpUhIgpETy/gkgH8Z7Z9Mr+KP8DPtt8MMlxEpYPWC51HCJSM40/4Y40X3OD5tg9bTc2\nxW/Cr1d/lToOEWk4FkUTZd3aGrun7sa8yHk8uE1EdWJRNGHe1t74dMSneD38ddx+fFvqOESkoVgU\nTdxM15mY4jQFk3+ezJsdEVGNeDCbUFFZAb9dfjA3Nsc3477hJ6GItBwPZpPa6evp48dJPyKxIJF3\nxiOialgUBAAwMTTBgYAD+DbxW3yf9L3UcYhIg9R6ZjY1PR1MOiAqIAqK7xXo2KojhtkNkzoSEWkA\njiioCsf2joiYEoEZu2fgYsFFqeMQkQZgUVA1Pp19sHn0Zoz5cQyu37sudRwikhinnqhGU3tOxZ3H\ndzDsh2E4OfckOrbqKHUkIpIIRxRUq+BewVggX4DhPwzHncd3pI5DRBLheRRUJ0EQsPy35Th+4zh+\nm/UbWjVvJXUkInoBXj2WGp0gCAjaH4SMuxk4EHAALZu1lDoSEdWBRUGSqKisQODeQBQ9KsK+6ftY\nFkQajGdmkyT09fSxfcJ2tDNqB79dfigtL5U6EhE1EhYFvTQDPQPs8NsB0xamLAuiJoRFQfVioGeA\n/zfx/6GVYStM+nkSy4KoCWBRUL0Z6Blg58SdMDE0wfifxuNR2SOpIxGRiEQpipycHAwePBg9e/aE\ns7MzNm3aVG0ZpVKJNm3aQC6XQy6X44MPPhAjComkmX4z7Jy4Ex1bdcTInSNRUloidSQiEokon3oq\nKChAQUEB3N3d8fDhQ3h6emLv3r1wdHRULaNUKrFx40ZERkbWHo6fetJ4lUIlQqJDEJcbh4MzD+I1\no9ekjkTU5GnFp546dOgAd3d3AICJiQkcHR2Rn59fbTmWgPbTk+nhi1FfYGjXoVB8r8DNBzeljkRE\naib6tZ6ysrKQmJgIb2/vKs/LZDKcPn0abm5usLKywoYNG+Dk5FRt/dDQUNX3CoUCCoVC5MRUXzKZ\nDB8O+RCtm7dG/+/6I2ZmDLq/1l3qWERNhlKphFKpFG37op5w9/DhQygUCqxcuRITJkyo8tqDBw+g\nr68PIyMjREdHY8mSJUhLS6sajlNPWufbC99i5bGViJweiV5WvaSOQ9Qkac2Z2U+fPsXYsWMxatQo\nLF269IXL29ra4vz58zAzM/tvOBaFVvr16q+YFzkPP/j9gJH2I6WOQ9TkaMUxCkEQMH/+fDg5OdVa\nEoWFhaofJD4+HoIgVCkJ0l7jeozDvun7MGfvHGxP2i51HCJ6RaKMKGJjYzFw4EC4urpCJpMBANau\nXYvs7GwAQFBQELZs2YKtW7fCwMAARkZG2LhxI/r06VM1HEcUWu3K7SsY8+MYTO05FWt810BPxtN2\niBqD1kw9qQOLQvvdfnwbE3dNRDujdvjB7wcYGxpLHYlI52nF1BPRn9oZtcPhWYfRunlr+GzzQd79\nPKkjEVE9sShIdM0NmmPb69swrec0eP/bGwn5CVJHIqJ64NQTNardl3cjaH8Qto7ZislOk6WOQ6ST\neIyCtN75/POY+PNE+Dv74wPfD2CgJ/p5n0RNCouCdMKtR7cQsDsAFZUVCJ8cDnNjc6kjEekMHswm\nndDeuD1iZsSgr01feH3thbjcOKkjEVEtOKIgyUVejcSCyAUIVYQi2CtYde4NETUMp55IJ2XczcDE\nXRPh1sENW8dshYmhidSRiLQWp55IJ9mb2SNuQRwM9Azg+bUnLty8IHUkIvoPjihI4/yU/BNCYkKw\nYsAKLO2zlJf+IKonTj1Rk5B5LxMBuwNg2sIU21/fDgsTC6kjEWkNTj1Rk2Db1hYn5pyAp6Un5GFy\nHMw4KHUkoiaLIwrSeMosJWbvmY0JDhPw4ZAPeWFBohfgiIKaHEUXBS7+7SLuld6D21duiM2OlToS\nUZPCEQVplb1X9mLhgYWY7jwda3zXoGWzllJHItI4HFFQkzbBYQJ+D/4dNx/ehHuYO87knJE6EpHO\n44iCtFZEagQWRy3GTNeZWK1YzWMXRP/BEQXRf0x2mozfg39HwcMCOG91RlR6lNSRiHQSRxSkEw5f\nO4zgA8Hw7OiJz0Z8BstWllJHIpKMVowocnJyMHjwYPTs2RPOzs7YtGlTjcuFhISgW7ducHNzQ2Ji\nohhRqIkYZjcMycHJsDezh+tXrvgq4StUCpVSxyLSCaKMKAoKClBQUAB3d3c8fPgQnp6e2Lt3Lxwd\nHVXLREVFYfPmzYiKisLZs2exZMkSxMVVvdQ0RxTUEJeKLuHN/W+iUqjEltFb4GHpIXUkokalFSOK\nDh06wN3dHQBgYmICR0dH5OfnV1kmMjISgYGBAABvb28UFxejsLBQjDjUxPQ074mTc09igXwBxvw4\nBkH7g3Dr0S2pYxFpLdHvQZmVlYXExER4e3tXeT4vLw82Njaqx9bW1sjNzYWFRdVr+oSGhqq+VygU\nUCgUYsYlHaEn08N8j/mY5DQJ7x9/Hz2/7Il/DfwXgnsF89arpHOUSiWUSqVo2xf1YPbDhw+hUCiw\ncuVKTJgwocpr48aNw//8z/+gf//+AIChQ4fio48+gofHf6cJOPVE6pJ6KxUh0SEofFSIz0d+Dl9b\nX6kjEYlGK6aeAODp06eYNGkSZs6cWa0kAMDKygo5OTmqx7m5ubCyshIrDjVxTu2dcHjWYbyveB/z\nI+fj9fDXceX2FaljEWkFUYpCEATMnz8fTk5OWLp0aY3LjB8/Hjt27AAAxMXFwdTUtNq0E5E6yWQy\n+Dn64fKiyxjYaSAGbhuI4APBKHhYIHU0Io0mytRTbGwsBg4cCFdXV9X9j9euXYvs7GwAQFBQEABg\n8eLFiImJgbGxMbZt21Zl2gng1BOJ6+6Tu1hzcg2+T/oeId4heKfvOzy7m3QCb1xEpGaZ9zLxz6P/\nxPEbx/Gvgf/CPPk8GOobSh2LqMFYFEQiSchPwMqjK3H1zlWsGrQKM11n8hNSpJVYFEQiO3njJFYe\nW4nCh4UIVYRias+pvG83aRUWBVEjEAQBRzKP4J9H/4knT58gVBGKCQ4TWBikFVgURI1IEAQcSD+A\nUGUoSstLsWLACkxznsYpKdJoLAoiCQiCgEPXDmHNyTXIf5CP5f2XY7bbbDQ3aC51NKJqWBREEjt5\n4yTWxq5FSlEK3u37Lt7wfANGzYykjkWkwqIg0hDn889jbexaxGbHYon3EgR7BaNty7ZSxyJiURBp\nmtRbqVh/aj1+vforZrjOwBLvJbA3s5c6FjVhLAoiDZX/IB9bzm3B1+e/Rn+b/vh737/Dp5OP6uoE\nRI2FRUGk4R6VPcKOizvw2dnP0MqwFd7u8zam9pyKZvrNpI5GTQSLgkhLVAqViEqPwsYzG5F2Jw0L\ney3EfPl8WJjw4pckLhYFkRZKKkjClnNbEJEagRF2I7Cw10JOS5FoWBREWqy4tBg7Lu7A1oSt0Jfp\nI9grGLPcZqF189ZSRyMdwqIg0gGCIOD4jeP48tyXOHz9MKb2nIpgr2C4d3CXOhrpABYFkY65+eAm\nvk38Ft9c+AbtjdpjrvtcBLgE8JwMajAWBZGOqqiswNHMo/gu6TtEp0djVLdRmOc+D0O6DuHFCKle\nWBRETcDdJ3fxU/JP+C7pO9x+fBtz3Odgjtsc2La1lToaaQEWBVETk1SQhG1J2/Bj8o9wau+EGS4z\nMNlpMsxamkkdjTQUi4Koifqj/A/EZMRgZ/JOHLx2EL62vpjhMgNju49FC4MWUscjDaIVRTFv3jwc\nOHAA5ubmSE5Orva6UqnE66+/jq5duwIAJk2ahJUrV1YPx6IgqlFJaQl2X96Nnck7ceHmBfg5+mGG\nywwM6jwI+nr6UscjiWlFUZw8eRImJiaYPXt2rUWxceNGREZG1h2ORUH0Qnn38xCeEo6dyTtR8LAA\nEx0nYopnIv72AAAMuUlEQVTTFAzoNICl0USp+71TlI9S+Pj4oG3buj/axwIgUg+r1lZ4p987uBB0\nAco5SnRs1RFLDy6F1UYrLDywEMcyj6G8slzqmKTFJLmfo0wmw+nTp+Hm5gYrKyts2LABTk5ONS4b\nGhqq+l6hUEChUDROSCIt1P217njP5z285/MeMu5mICI1Au8efhe593Ph5+CHKU5TMKjLIN7KVcco\nlUoolUrRti/aweysrCyMGzeuxqmnBw8eQF9fH0ZGRoiOjsaSJUuQlpZWPRynnojU4trda4hIjUDE\n5QjcKL6BCQ4TMMFhAnxtfXkgXAdpxTEKoO6i+CtbW1ucP38eZmZVP+7HoiBSv8x7mfjl8i/4Ne1X\nJBUkYYjtEIzvMR5juo1Be+P2UscjNdCKYxQvUlhYqPoh4uPjIQhCtZIgInHYtrXFu/3exfE5x3E9\n5Dr8HPxwIP0Aun3RDQO+G4CPTn2EK7ev8I80UhFlROHv74/jx4/j9u3bsLCwwOrVq/H06VMAQFBQ\nELZs2YKtW7fCwMAARkZG2LhxI/r06VM9HEcURI3mj/I/oMxSIjItEpFXI9HSoCXG9xiPsd3Hop9N\nPxjqG0odkV6S1kw9qQOLgkgagiAgqSAJ+67uQ1R6FNLupGGw7WCMtBuJEfYj0MW0i9QRqQ4sCiJq\ndLce3cLh64cRkxGDg9cOwqylGUbaj8RIu5EY2HkgWjZrKXVEeg6LgogkVSlUIvFmImIyYhBzLQZJ\nBUkY0GkARtqNxNCuQ+HU3ol37pMYi4KINEpxaTF+u/4bDl47iCPXj+BJ+RP42vrCt4svhnQdwmkq\nCbAoiEijZd7LxJHMIziSeQRHM4/CxNAEQ2yHYIjtEPja+vIjuI2ARUFEWkMQBKQUpaiK48SNE+hi\n2gWDuwzGwM4D4dPJh8UhAhYFEWmt8spynMs7h+M3juNk9kmcyj6Fjq06YmDngarisGljI3VMrcei\nICKdUVFZgd8Lf8eJGydwIvsETtw4ARNDk2fF0elZedib2fPgeD2xKIhIZwmCgKt3rj4rjhsncPzG\ncZRXlsOnkw/62fRDX+u+cO/gjuYGzaWOqtFYFETUZAiCgBslN3DyxkmcyT2DM7lnkHYnDW4Wbuhr\n0xd9rZ99WbW2kjqqRmFREFGT9rDsIc7lnVMVR1xuHFoatKxSHHJLeZO+5AiLgojoOYIgIONuRpXi\nSL+TDhcLF/Tq2AteHb3Qq2MvdH+te5O54x+LgojoBR6WPcT5/PNIyE/AufxzSMhPQNGjInhYeqiK\nw6ujF7q27aqTB8pZFEREDXD3yV2czz+vKo5z+efwqOzRs+Kw6gUvSy94WHqgU5tOWl8eLAoiIjUp\neFiAhPwEVXEkFSTh8dPHcO/gDvcO7pB3kMO9gzsc2zmimX4zqeO+NBYFEZGIih4VIakgSfWVWJCI\nG8U34Nje8VmBWLhDbimHq4UrWjdvLXXcGrEoiIga2aOyR0gpSkFiQaKqQJKLkmFpYqkafTibO8PF\n3AW2bW2hJ5Pk5qEqLAoiIg1QXlmO9Dvpz4qjMAmXii4huSgZdx7fgWN7R7iYu8DZ3FlVIB1MOjTa\nsQ8WBRGRBispLcGlW5eQUpSClKIUJBclI7kwGQIEVWn8WSDO5s4wbWGq9gxaURTz5s3DgQMHYG5u\njuTk5BqXCQkJQXR0NIyMjLB9+3bI5fLq4bSkKJRKJRQKhdQxXog51UcbMgLMqW4NzSkIAooeFSG5\nKFlVHilFKbhUdAltWrSBQzsHOLZzhGM7x2fft3eEpYllg0cg6n7vNFDblp4zd+5cvPXWW5g9e3aN\nr0dFRSEjIwPp6ek4e/YsgoODERcXJ0aURqHr/8kbmzbk1IaMAHOqW0NzymQyWJhYwMLEAkO7DlU9\nXylUIqckB5dvX8aV21fwe9Hv+Dn1Z1y+dRl/VPxRY4F0bdsVBnqivHXXSpR/zcfHB1lZWbW+HhkZ\nicDAQACAt7c3iouLUVhYCAsLCzHiEBFpJD2ZHjqbdkZn084YaT+yymt3Ht/BldtXcPn2ZVy+fRkn\nLpzA5VuXcfPhTXRt2/W/5dHOET3a9UD317qL9imsxq2l/8jLy4ONzX+vOW9tbY3c3FwWBRHRf7xm\n9Br6d+qP/p36V3n+ydMnSLuTphqFRKZFIu1MGtLvpKNV81bo/lp39YcRRJKZmSk4OzvX+NrYsWOF\n2NhY1eMhQ4YI58+fr7YcAH7xi1/84lcDvtRJkhGFlZUVcnJyVI9zc3NhZVX9MsGCFhzIJiLSdZKc\nFTJ+/Hjs2LEDABAXFwdTU1NOOxERaShRRhT+/v44fvw4bt++DRsbG6xevRpPnz4FAAQFBWH06NGI\nioqCvb09jI2NsW3bNjFiEBGROqh1IqsO0dHRQo8ePQR7e3th3bp1NS7z1ltvCfb29oKrq6tw4cKF\nF6777rvvCg4ODoKrq6vg5+cnFBcXa2TOP23YsEGQyWTCnTt3NDbnpk2bBAcHB6Fnz57CP/7xD43M\nefbsWaFXr16Cu7u74OXlJcTHx0uac+7cuYK5uXm1Y3J37twRhg4dKnTr1k0YNmyYcO/ePY3Mqe79\nSIyMf9KUfaiunJq0D9WWs777UKMURXl5uWBnZydkZmYKZWVlgpubm5CamlplmQMHDgijRo0SBEEQ\n4uLiBG9v7xeue+jQIaGiokIQBEFYvny5sHz5co3MKQiCkJ2dLYwYMULo0qXLK/8nFyvn0aNHhaFD\nhwplZWWCIAhCUVGRRuYcNGiQEBMTIwiCIERFRQkKhUKynIIgCCdOnBAuXLhQbWdctmyZsH79ekEQ\nBGHdunWS/v+sK6c69yOxMgqC5uxDdeXUpH2orpz13Yca5RhFfHw87O3t0aVLFzRr1gzTp0/Hvn37\nqixT07kVBQUFda47bNgw6OnpqdbJzc3VyJwA8Pe//x0fffTRK+UTO+fWrVuxYsUKNGv27HLK7du3\n18iclpaWKCkpAQAUFxfX+EGIxsoJPDtvqG3bttW2+/w6gYGB2Lt3r0bmVOd+JFZGQHP2obpyatI+\nVFfO+u5DjVIUNZ03kZeX91LL5Ofnv3BdAPjuu+8wevRojcy5b98+WFtbw9XV9ZXyiZ0zPT0dJ06c\nQJ8+faBQKJCQkKCROdetW4d33nkHnTp1wrJly/Dhhx9KlrMuz59EamFhgcLCQo3M+bxX3Y/EyqhJ\n+1BdNGkfqkt996FGKYqXvV6J0MCPw65ZswaGhoYICAho0Pp/EiPnkydPsHbtWqxevbpB69dErN9n\neXk57t27h7i4OHz88ceYOnVqQ+KpiJVz/vz52LRpE7Kzs/Hpp59i3rx5DYmn0tCc9bkOj0wme+Ur\nh4qdUx37kRgZHz9+rDH70IvW05R96EXr1XcfapSi+Ot5Ezk5ObC2tq5zmdzcXFhbW79w3e3btyMq\nKgo7d+7UyJzXrl1DVlYW3NzcYGtri9zcXHh6eqKoqEijcgLP/hKZOHEiAKBXr17Q09PDnTt3NC5n\nfHw8/Pz8AACTJ09GfHx8gzO+Ss4XDdctLCxUUwA3b96Eubm5RuYE1LcfiZFRk/ahF/0uNWUfelHO\neu9DDT7KUg9Pnz4VunbtKmRmZgp//PHHCw/InDlzRnVApq51o6OjBScnJ+HWrVsanfN56jgQJ1bO\nr776Svjf//1fQRAE4erVq4KNjY1G5pTL5YJSqRQEQRB+++03wcvLS7Kcf6rpSgTLli1TfUrlww8/\nfOWD2WLlVOd+JFbG50m9D9WVU5P2obpy1ncfarSPx0ZFRQndu3cX7OzshLVr1wqC8OyX+tVXX6mW\nWbRokWBnZye4urpWuaRHTesKgiDY29sLnTp1Etzd3QV3d3chODhYI3M+z9bWVi0f7RMjZ1lZmTBz\n5kzB2dlZ8PDwEI4dO6aROc+dOyf07t1bcHNzE/r06VPl44BS5Jw+fbpgaWkpGBoaCtbW1sJ3330n\nCMKzj8cOGTJErR+PFSOnuvcjMTI+TxP2odpyato+VFvO+u5DGn3jIiIikp60N3YlIiKNx6IgIqI6\nsSiIiKhOLAoiIqoTi4LoJfn6+uLQoUNVnvvss8+wcOFCiRIRNQ4WBdFL8vf3R3h4eJXndu3a9cpX\nBCDSdPx4LNFLunv3LhwdHZGXlwcDAwNkZWVh0KBBuHHjhtTRiETFEQXRSzIzM0Pv3r0RFRUFAAgP\nD8e0adMkTkUkPhYFUT08P/20a9cu+Pv7S5yISHyceiKqh4cPH8LOzg4xMTGYPn06rl69KnUkItFx\nREFUDyYmJhg8eDDmzp3Lg9jUZLAoiOrJ398fycnJnHaiJoNTT0REVCeOKIiIqE4sCiIiqhOLgoiI\n6sSiICKiOrEoiIioTiwKIiKq0/8HJIEAIIPDm7IAAAAASUVORK5CYII=\n",
       "text": [
        "<matplotlib.figure.Figure at 0x4232ad0>"
       ]
      }
     ],
     "prompt_number": 3
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 5.39 Page no : 285"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "\n",
      "import math \n",
      "from scipy.integrate import quad \n",
      "\n",
      "# Variables\n",
      "m = 4; \t\t\t    #kg\n",
      "T1 = 400; \t\t\t#K\n",
      "T2 = 500; \t\t\t#K\n",
      "\n",
      "# Calculations\n",
      "def f12( T): \n",
      "\t return m*(0.48+0.0096*T)/T\n",
      "\n",
      "dS =  quad(f12, T1,T2)[0]\n",
      "\n",
      "# Results\n",
      "print (\"dS = %.3f\")%(dS), (\"kJ\")\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "dS = 4.268 kJ\n"
       ]
      }
     ],
     "prompt_number": 34
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 5.40 Page no : 286"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "\n",
      "import math \n",
      "from scipy.integrate import quad \n",
      "\n",
      "# Variables\n",
      "p1 = 1*10**5; \t\t\t#Pa\n",
      "T1 = 273;  \t\t\t#K\n",
      "p2 = 25*10**5; \t\t\t#Pa\n",
      "T2 = 750; \t\t\t#K\n",
      "R = 0.29; \t\t\t#kJ/kg.K ; cp = 0.85+0.00025*T; cv = 0.56+0.00025*T; R = cp-cv;\n",
      "\n",
      "# Calculations\n",
      "v2 = R*T2/p2;\n",
      "v1 = R*T1/p1;\n",
      "\n",
      "def f8( T): \n",
      "\t return (0.56+0.00025*T)/T\n",
      "\n",
      "def f9(v):\n",
      "    return R/v\n",
      "ds =  quad(f8, T1, T2)[0] +  quad(f9,v1,v2)[0]\n",
      "\n",
      "# Results\n",
      "print (\"ds = %.3f\")%(ds),(\"kJ/kg K\")\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "ds = 0.045 kJ/kg K\n"
       ]
      }
     ],
     "prompt_number": 35
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 5.41 Page no : 287"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "\n",
      "import math \n",
      "\n",
      "# Variables\n",
      "cv = 0.715; \t\t\t#kJ/kg K\n",
      "R = 0.287; \t\t\t#kJ/kg K\n",
      "V_A = 0.25; \t\t\t#m**3\n",
      "p_Ai = 1.4; \t\t\t#bar\n",
      "T_Ai = 290; \t\t\t#K\n",
      "V_B = 0.25; \t\t\t#m**3\n",
      "p_Bi = 4.2; \t\t\t#bar\n",
      "T_Bi = 440; \t\t\t#K\n",
      "\n",
      "# Calculations and Results\n",
      "print (\"(i) Final equilibrium temperature\")\n",
      "m_A = p_Ai * 10**5 * V_A / R / 1000/ T_Ai; \t\t\t#kg\n",
      "m_B = p_Bi * 10**5 * V_B / R / 1000/ T_Bi; \t\t\t#kg\n",
      "\n",
      "T_f = (m_B * T_Bi + m_A * T_Ai)/(m_A + m_B);\n",
      "print (\"T_f  =  %.3f\")% (T_f), (\"K\")\n",
      "\n",
      "\n",
      "print (\"(ii) Final pressure on each side of the diaphragm\")\n",
      "p_Af = p_Ai*T_f/T_Ai;\n",
      "print (\"p_Af = %.3f\")%(p_Af),(\"bar\")\n",
      "\n",
      "p_Bf = p_Bi*T_f/T_Bi;\n",
      "print (\"p_Bf = %.3f\")%(p_Bf),(\"bar\")\n",
      "\n",
      "\n",
      "print (\"(iii) Entropy change of the system\")\n",
      "dS_A = m_A*cv*math.log(T_f/T_Ai);\n",
      "dS_B = m_B*cv*math.log(T_f/T_Bi);\n",
      "dS_net = dS_A+dS_B;\n",
      "print (\"Net change of entropy = %.3f\")%(dS_net), (\"kJ/K\")\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "(i) Final equilibrium temperature\n",
        "T_f  =  389.618 K\n",
        "(ii) Final pressure on each side of the diaphragm\n",
        "p_Af = 1.881 bar\n",
        "p_Bf = 3.719 bar\n",
        "(iii) Entropy change of the system\n",
        "Net change of entropy = 0.016 kJ/K\n"
       ]
      }
     ],
     "prompt_number": 36
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 5.42 Page no : 287"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "\n",
      "import math \n",
      "\n",
      "# Variables\n",
      "cv = 1.25; \t\t\t#kJ/kg.K\n",
      "T1 = 530.; \t\t\t#K\n",
      "v1 = 0.0624; \t\t\t#m**3/kg\n",
      "v2 = 0.186; \t\t\t#m**3/kg\n",
      "dT_31 = 25.; \t\t\t#K\n",
      "T3 = T1-dT_31; \t\t\t#K\n",
      "dT_21 = 165.; \t\t\t#K\n",
      "\n",
      "# Calculations\n",
      "T2 = T1-dT_21; \t\t\t#K\n",
      "# Path 1-2 : Reversible adiabatic process\n",
      "ds_12 = 0;\n",
      "v3 = 0.186; \t\t\t#m**3/kg\n",
      "v3 = v2;\n",
      "ds_13 = cv*math.log(T3/T2);\n",
      "\n",
      "# Results\n",
      "print (\"Chang in entropy  =  %.4f\")%(ds_13), (\"kJ/kgK\")\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Chang in entropy  =  0.4058 kJ/kgK\n"
       ]
      }
     ],
     "prompt_number": 11
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 5.44 Page no : 289"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "\n",
      "import math \n",
      "from numpy import *\n",
      "\n",
      "# Variables\n",
      "T1 = 500.; \t\t\t#K\n",
      "T2 = 400.; \t\t\t#K\n",
      "T3 = 300.; \t\t\t#K\n",
      "Q1 = 1500.; \t\t\t#kJ/min\n",
      "W = 200.; \t\t\t#kJ/min\n",
      "\n",
      "# Calculations and Results\n",
      "A = [[1,-1],[(1./400),(-1./300)]];\n",
      "B = [(-1300),(-3)];\n",
      "X = linalg.solve(A,B)\n",
      "\n",
      "Q2 = X[0];\n",
      "print (\"Q2  = \"), (Q2), (\"kJ/min\")\n",
      "\n",
      "Q3 = X[1];\n",
      "print (\"Q3  = \"), (Q3), (\"kJ/min\")\n",
      "\n",
      "print (\"(ii) Entropy change \")\n",
      "dS1 = (-Q1)/T1;\n",
      "print (\"Entropy change of source 1  = \"), (dS1), (\"kJ/K\")\n",
      "\n",
      "dS2 = (-Q2)/T2;\n",
      "print (\"Entropy change of math.sink 2  = \"), (dS2), (\"kJ/K\")\n",
      "\n",
      "dS3 = Q3/T3;\n",
      "print (\"Entropy change of source 3  = \"),(dS3), (\"kJ/K\")\n",
      "\n",
      "\n",
      "print (\"(iii) Net change of the entropy\")\n",
      "dSnet  =  dS1 + dS2 + dS3;\n",
      "print (\"dSnet = %d\")% (dSnet)\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Q2  =  -1600.0 kJ/min\n",
        "Q3  =  -300.0 kJ/min\n",
        "(ii) Entropy change \n",
        "Entropy change of source 1  =  -3.0 kJ/K\n",
        "Entropy change of math.sink 2  =  4.0 kJ/K\n",
        "Entropy change of source 3  =  -1.0 kJ/K\n",
        "(iii) Net change of the entropy\n",
        "dSnet = 0\n"
       ]
      }
     ],
     "prompt_number": 13
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 5.45 Page no : 291"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "\n",
      "import math \n",
      "from scipy.integrate import quad \n",
      "\n",
      "# Variables\n",
      "T1 = 250; \t\t\t#K\n",
      "T2 = 125; \t\t\t#K\n",
      "\n",
      "# Calculations\n",
      "#cv = 0.0045*T**2\n",
      "def f10( T): \n",
      "\t return 0.045*T**2\n",
      "\n",
      "Q1 =  quad(f10, T1, T2)[0]\n",
      "\n",
      "def f11( T): \n",
      "\t return 0.045*T\n",
      "\n",
      "dS_system =  quad(f11, T1, T2)[0]\n",
      "\n",
      "dS_universe = 0;\n",
      "\n",
      "W_max = ((-Q1) -T2*(dS_universe-dS_system))/1000;\n",
      "\n",
      "# Results\n",
      "print (\"W_max = %.3f\")%(W_max), (\"kJ\")\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "W_max = 73.242 kJ\n"
       ]
      }
     ],
     "prompt_number": 39
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 5.46 Page no : 292"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "\n",
      "import math \n",
      "from scipy.integrate import quad \n",
      "\n",
      "# Variables\n",
      "cp = 1.005; \t\t\t#kJ/kg K\n",
      "T_A = 333.; \t\t\t#K\n",
      "T_B = 288.; \t\t\t#K\n",
      "p_A = 140.; \t\t\t#kPa\n",
      "p_B = 110.; \t\t\t#kPa\n",
      "#h = cp*T\n",
      "#v/T = 0.287/p\n",
      "\n",
      "# Calculations\n",
      "def f9( T): \n",
      "\t return cp/T\n",
      "\n",
      "def f10(p):\n",
      "    return 0.287/p\n",
      "    \n",
      "ds_system =  quad(f9, T_B, T_A)[0] + quad(f10,p_A,p_B)[0]\n",
      "ds_surr = 0;\n",
      "ds_universe = ds_system+ds_surr;\n",
      "\n",
      "# Results\n",
      "print (\"change in entropy of universe  =  -%.4f\")% (ds_universe), (\"kJ/kgK\")\n",
      "print (\"Since change in entropy of universe from A to B is -ve\")\n",
      "print (\"The flow is from B to A\")\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "change in entropy of universe  =  -0.0767 kJ/kgK\n",
        "Since change in entropy of universe from A to B is -ve\n",
        "The flow is from B to A\n"
       ]
      }
     ],
     "prompt_number": 20
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 5.47 Page no : 292"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "\n",
      "import math \n",
      "\n",
      "# Variables\n",
      "m1 = 3.; \t\t\t#kg\n",
      "m2 = 4.; \t\t\t#kg\n",
      "T0 = 273.; \t\t\t#K\n",
      "T1 = 80.+273; \t\t\t#K\n",
      "T2 = 15.+273; \t\t\t#K\n",
      "c_pw = 4.187; \t\t\t#kJ/kgK\n",
      "\n",
      "# Calculations\n",
      "tm = (m1*T1 + m2*T2)/(m1+m2);\n",
      "Si = m1*c_pw*math.log(T1/T0) + m2*c_pw*math.log(T2/T0);\n",
      "Sf = (m1+m2)*c_pw*math.log(tm/T0);\n",
      "dS = Sf-Si;\n",
      "\n",
      "# Results\n",
      "print (\"Net change in entropy  = %.3f\")%(dS),(\"kJ/K\")\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Net change in entropy  = 0.150 kJ/K\n"
       ]
      }
     ],
     "prompt_number": 41
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 5.49 Page no : 294"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "\n",
      "import math \n",
      "\n",
      "# Variables\n",
      "m = 1.; \t\t\t#kg\n",
      "T1 = 273.; \t\t\t#K\n",
      "T2 = 363.; \t\t\t#K\n",
      "c = 4.187;\n",
      "\n",
      "# Calculations and Results\n",
      "print (\"(a)\")\n",
      "ds_water = m*c*math.log(T2/T1);\n",
      "print (\"(i) Entropy of water = %.3f\")%(ds_water), (\"kJ/kgK\")\n",
      "\n",
      "print (\"(ii) Entropy change of the reservoir \")\n",
      "Q = m*c*(T2-T1);\n",
      "ds_reservoir = -Q/T2;\n",
      "print (\"ds_reservoir = %.3f\")% (ds_reservoir), (\"kJ/K\")\n",
      "\n",
      "ds_universe = ds_water+ds_reservoir;\n",
      "print (\"(iii) Entropy change of universe  = %.3f\")% (ds_universe), (\"kJ/K\")\n",
      "\n",
      "print (\"(b)\")\n",
      "T3 = 313; \t\t\t#K\n",
      "ds_water = m*c*(math.log(T3/T1) + math.log(T2/T3));\n",
      "ds_res1 = -m*c*(T3-T1)/T3;\n",
      "ds_res2 = -m*c*(T2-T3)/T2;\n",
      "\n",
      "ds_universe = ds_water+ds_res1+ds_res2;\n",
      "print (\"(iii) Entropy change of universe  = %.3f\")%(ds_universe), (\"kJ/K\")\n",
      "\n",
      "print (\"(c) The entropy change of universe would be less and less, if the water is heated in more and more stages, by bringing\")\n",
      "print (\"the water in contact successively with more and more heat reservoirs, each succeeding reservoir being at a higher temperature\") \n",
      "print (\"than the preceding one.\")\n",
      "\n",
      "print (\"When water is heated in infinite steps, by bringing in contact with an infinite number of reservoirs in succession, so that\") \n",
      "print (\"at any insmath.tant the temperature difference between the water and the reservoir in contact is infinitesimally small, then\") \n",
      "print (\"the entropy change of the universe would be zero and the water would be reversibly heated.\")\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "(a)\n",
        "(i) Entropy of water = 1.193 kJ/kgK\n",
        "(ii) Entropy change of the reservoir \n",
        "ds_reservoir = -1.038 kJ/K\n",
        "(iii) Entropy change of universe  = 0.155 kJ/K\n",
        "(b)\n",
        "(iii) Entropy change of universe  = 0.081 kJ/K\n",
        "(c) The entropy change of universe would be less and less, if the water is heated in more and more stages, by bringing\n",
        "the water in contact successively with more and more heat reservoirs, each succeeding reservoir being at a higher temperature\n",
        "than the preceding one.\n",
        "When water is heated in infinite steps, by bringing in contact with an infinite number of reservoirs in succession, so that\n",
        "at any insmath.tant the temperature difference between the water and the reservoir in contact is infinitesimally small, then\n",
        "the entropy change of the universe would be zero and the water would be reversibly heated.\n"
       ]
      }
     ],
     "prompt_number": 16
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 5.50 Page no : 295"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "\n",
      "import math \n",
      "\n",
      "# Variables\n",
      "cp = 2.093; \t\t\t#kJ/kg0C\n",
      "c = 4.187;\n",
      "Lf = 333.33; \t\t\t#kJ/kg\n",
      "m = 1.; \t\t\t#kg\n",
      "T0 = 273.; \t\t\t#K\n",
      "T1 = 268.; \t\t\t#K\n",
      "T2 = 298.; \t\t\t#K\n",
      "\n",
      "# Calculations and Results\n",
      "Q_s = m*cp*(T0-T1);\n",
      "Q_f = m*Lf;\n",
      "Q_l = m*c*(T2-T0);\n",
      "Q = Q_s+Q_f+Q_l;\n",
      "\n",
      "print (\"(i) Entropy increase of the universe\")\n",
      "ds_atm = -Q/T2;\n",
      "ds_sys1 = m*cp*math.log(T0/T1);\n",
      "ds_sys2 = Lf/T0;\n",
      "ds_sys3 = m*c*math.log(T2/T0);\n",
      "ds_total = ds_sys1+ds_sys2+ds_sys3;\n",
      "ds_universe = ds_total+ds_atm;\n",
      "\n",
      "print (\"Entropy increase of universe = %.3f\")%(ds_universe), (\"kJ/K\")\n",
      "\n",
      "\n",
      "print (\"(ii) Minimum amount of work necessary to convert the water back into ice at \u2013 5\u00b0C, Wmin.\")\n",
      "dS_refrigerator = 0;\n",
      "\n",
      "dS_system = -1.6263; \t\t\t#kJ/kg K\n",
      "T = 298; \t\t\t#K\n",
      "#For minimum work \n",
      "W_min = T*(-dS_system)-Q;\n",
      "\n",
      "print (\"Minimum work done  = %.3f\")% (W_min), (\"kJ\")\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "(i) Entropy increase of the universe\n",
        "Entropy increase of universe = 0.122 kJ/K\n",
        "(ii) Minimum amount of work necessary to convert the water back into ice at \u2013 5\u00b0C, Wmin.\n",
        "Minimum work done  = 36.167 kJ\n"
       ]
      }
     ],
     "prompt_number": 43
    }
   ],
   "metadata": {}
  }
 ]
}