{ "metadata": { "name": "Chapter_2" }, "nbformat": 2, "worksheets": [ { "cells": [ { "cell_type": "markdown", "source": [ "

Chapter 2: Pressure

" ] }, { "cell_type": "markdown", "source": [ "

Example 2.1, Page Number: 116

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "'''Pressure conversion'''", "", "#(a)", "", "#variable declaration", "#1kg/cm^2=10000 mmWG", "x=10000.0*10.0 #equivalnt to 10kg/cm^2", "", "#result", "print('(a)\\n 10kg/cm^2 = %.0f mmWG' %x)", "", "#(b)", "", "#variable declaration", "onemm_Hg=13.546 #pressure of 1 mm Hg", "", "#calculation", "y=10.0**5/onemm_Hg", "y=y/10.0**3", "", "#result", "print('\\n(b)\\n10kg/cm^2 = 10^5 mmWG = %.2f * 10^3 mmHg' %y)", "", "#(c)", "", "#variable declaration", "onebar=1.03 # 1 Bar presssure in kg/cm^2", "#calculation", "z=10.0/onebar", "", "#result", "print('\\n(c)\\n10kg/cm^2 = %.2f bars' %z)" ], "language": "python", "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(a)", " 10kg/cm^2 = 100000 mmWG", "", "(b)", "10kg/cm^2 = 10^5 mmWG = 7.38 * 10^3 mmHg", "", "(c)", "10kg/cm^2 = 9.71 bars" ] } ], "prompt_number": 1 }, { "cell_type": "markdown", "source": [ "

Example 2.2, Page Number: 116

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "'''Gauge and absolute pressure'''", "", "#(a)", "", "#variable Declaration", "gamm=1000.0 # density of water", "d=35.0 # depth of water ", "dens_Hg=13.546 # density of Hg", "", "#calculation", "press_in_kg_cm=gamm*d*10**-4", "press_in_mmHg=gamm*d/dens_Hg", "press_in_mmHg=press_in_mmHg/10**3", "", "#result", "print('(a)\\nThe pressure at depth of %d meters in a water tank=%.1f kg/cm^2 = %.2f*10^3 mmHg'%(d, press_in_kg_cm, press_in_mmHg))", "", "#(b)", "", "#varible declaration", "press_atm=1.03 #atmospheric pressure", "", "#calculation", "abspress=press_in_kg_cm+press_atm", "abspress_mmHg=press_in_mmHg*1000.0+760.0", "abspress_mmHg=abspress_mmHg/1000.0", "", "#result", "print('\\n(b)\\nAbsolute Pressure= %.2f kg/cm^2 Abs = %.2f*10^3 mmHg Abs'%(abspress, abspress_mmHg))" ], "language": "python", "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(a)", "The pressure at depth of 35 meters in a water tank=3.5 kg/cm^2 = 2.58*10^3 mmHg", "", "(b)", "Absolute Pressure= 4.53 kg/cm^2 Abs = 3.34*10^3 mmHg Abs" ] } ], "prompt_number": 2 }, { "cell_type": "markdown", "source": [ "

Example 2.3, Page Number:116

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "''' Gauge and absolute pressure'''", "", "#varible declaration", "egp=260.0 # equivalent gauge pressure", "", "#calculation", "abspress=760.0-egp", "", "#result", "print('Absolute Presssure = %d mmHg' %abspress)" ], "language": "python", "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Absolute Presssure = 500 mmHg" ] } ], "prompt_number": 3 }, { "cell_type": "markdown", "source": [ "

Example 2.4,Page Number:117

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "'''pressure measurement using U tube manometer'''", "", "#(a)", "", "#variable declaration", "p_diff=500.0 #pressure difference in mmHg", "", "#calculations", "pdiff=p_diff*13.546/10000", "", "#Result", "print('(a)\\np1-p2 = %.3f kg/cm^2' %pdiff)", "", "", "#(b)", "", "#variable declaration", "p1=6770.0 # Gauge pressure in mmWG", "p_atm=10300.0 # atmospheric pressure ", "", "#calculation", "abs_p1=p1+p_atm", "", "#result", "print('\\n(b)If p2 is open to atmosphere:\\nAbsolute Pressure P1 = %d mmWG abs.' %abs_p1)", "", "#(c)", "", "#variable declaration", "P1=500.0 #mmHg absolute pressure", "", "#calculations", "P1_gauge=P1-760.0", "", "#result", "print('\\n(c)If p2 is evacuated and sealed:\\np1= %d mmHg gauge Pressure' %P1_gauge)" ], "language": "python", "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(a)", "p1-p2 = 0.677 kg/cm^2", "", "(b)If p2 is open to atmosphere:", "Absolute Pressure P1 = 17070 mmWG abs.", "", "(c)If p2 is evacuated and sealed:", "p1= -260 mmHg gauge Pressure" ] } ], "prompt_number": 4 }, { "cell_type": "markdown", "source": [ "

Example 2.5, Page Number: 117

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "'''Specific Gravity and weight density'''", "", "#variable declaration", "spe_grav_water=1.0 # specific gravity of water", "", "#calculation", "spe_grav_X=spe_grav_water*100.0/50.0", "wt_dens_water=1000.0", "wt_dens_X=wt_dens_water*2.0", "", "#result", "print('Weight Density of X = %d kg/m^3' %wt_dens_X)" ], "language": "python", "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Weight Density of X = 2000 kg/m^3" ] } ], "prompt_number": 5 }, { "cell_type": "markdown", "source": [ "

Example 2.6, Page Number: 117

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "'''water flow rate using mercury manometer'''", "", "#variable declaration", "A=1.0/20.0 # Area ratio", "p_diff=1500.0 # pressure difference in mmWG", "", "#result", "print('(a)\\nAs Delta_h=A2/A1*h << h and normally negligible for well type manometer')", "print('hence, p1-p2 = h = %d =111 mmHg' %p_diff)", "print('\\n(b)\\nh measured above the oriinal reference will be half of H, i.e. 111/2=55.5 mmHg')", "print('(Since area of both legs are same)')" ], "language": "python", "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(a)", "As Delta_h=A2/A1*h << h and normally negligible for well type manometer", "hence, p1-p2 = h = 1500 =111 mmHg", "", "(b)", "h measured above the oriinal reference will be half of H, i.e. 111/2=55.5 mmHg", "(Since area of both legs are same)" ] } ], "prompt_number": 6 }, { "cell_type": "markdown", "source": [ "

Example 2.7, Page Number: 119

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "'''readings and errors in Bourdon gauge reading'''", "", "print('1 kg/cm^2 = 10 mWG\\n')", "", "#(a)", "", "#variable declaration", "press=10+2 #pressure read by the gauge", "", "#result", "print('\\n(a)Bourdon Gauge is mounted 20 meters below water line:')", "print('\\nPressure read by the Gauge = %d kg/cm^2'%press)", "", "", "#(b)", "", "#variable declaration", "press2=10-3 #pressure read by the gauge", "", "#result", "print('\\n\\n(b)Bourdon Gauge is located 30 meters above the water line:')", "print('\\nPressure read by the Gauge = %d kg/cm^2'%press2)" ], "language": "python", "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "1 kg/cm^2 = 10 mWG", "", "", "(a)Bourdon Gauge is mounted 20 meters below water line:", "", "Pressure read by the Gauge = 12 kg/cm^2", "", "", "(b)Bourdon Gauge is located 30 meters above the water line:", "", "Pressure read by the Gauge = 7 kg/cm^2" ] } ], "prompt_number": 7 }, { "cell_type": "markdown", "source": [ "

Example 2.8, Page Number: 120

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "'''Specific Gravity and density of liquid'''", "", "#Variable declaration", "dens_water=1000.0 # water Density", "h1=125.0 # height1 mm", "h2=250.0 # height2 mm", "d2=h1*dens_water/h2", "", "#result", "", "#a", "print('(a)\\nDensity of Liquid = %d kg/m^3' %d2)", "print('\\nSpecific Density of the liquid = %.1f' %(h1/h2))", "", "#(b)", "print('\\n\\n(b)\\nIf Values of water and liquid interchanged:\\n')", "d3=h2*dens_water/h1", "print('\\nDensity of Liquid = %d kg/m^3' %d3)", "print('\\nSpecific Density of the liquid = %.1f' %(h2/h1))" ], "language": "python", "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(a)", "Density of Liquid = 500 kg/m^3", "", "Specific Density of the liquid = 0.5", "", "", "(b)", "If Values of water and liquid interchanged:", "", "", "Density of Liquid = 2000 kg/m^3", "", "Specific Density of the liquid = 2.0" ] } ], "prompt_number": 8 }, { "cell_type": "markdown", "source": [ "

Example 2.9, Page Number: 120

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "'''strain gauge wire length and cross section area'''", "", "import math", "#variable Declaration", "R=120.0 #resistance", "l=122.0 #length", "a=0.1 #area", "R1=140.0 #resistance in ohm", "", "#calculation", "rho=R*a/l", "l1=math.sqrt(R1*a*l/rho)", "l1=round(l1,0)", "", "#Result", "print('Length l1 = %d meters' %l1)", "A1=a*l/l1", "print('\\nArea A1 = %.4f mm^2' %A1)" ], "language": "python", "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Length l1 = 132 meters", "", "Area A1 = 0.0924 mm^2" ] } ], "prompt_number": 1 }, { "cell_type": "markdown", "source": [ "

Example 2.10, Page Number: 121

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "'''Capacitance calculation for variable dielectric'''", "", "c=0.57 #Constant", "", "#(a)", "", "#variable declaration", "d=0.1 #distance between plates", "di1=100.0 #Dielectric constant", "di2=1000.0 #Dielectric constant", "", "#calculation", "c1=c*di1*10.0/d", "c1=round(c1,0)", "", "#result", "print('(a)\\nC1=%d pf' %c1)", "", "", "#(b)", "", "#calculation", "c2=c*di2*10/d", "", "#result", "print('\\n(b)\\nC2=%d pf' %c2)", "", "", "#(c)", "", "#calculation", "ds=0.09", "c11=c*di1*10/ds", "c12=c*di2*10/ds", "", "#result", "print('\\n(c)\\nC1 = %.1f pf\\nC2 = %d pf'%(c11,c12))" ], "language": "python", "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(a)", "C1=5700 pf", "", "(b)", "C2=57000 pf", "", "(c)", "C1 = 6333.3 pf", "C2 = 63333 pf" ] } ], "prompt_number": 10 }, { "cell_type": "markdown", "source": [ "

Example 2.11, Page Number: 121

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "'''pressure gauge caliberation'''", "", "#variable Declaration", "A=1.0 #area", "p1=10.0 #pressure", "", "#calculation", "W1=A*p1", "", "#Result", "print('W1 = %d kg' %W1)", "print('\\nWith the 4 standard weights of 10kg, 20kg, 30kg and 40kg')" ], "language": "python", "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "W1 = 10 kg", "", "With the 4 standard weights of 10kg, 20kg, 30kg and 40kg" ] } ], "prompt_number": 11 }, { "cell_type": "markdown", "source": [ "

Example 2.12, Page Number: 122

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "'''pressure calculation using McLeod gauge'''", "", "#varable declaration", "p1=10**-2 #pressure in torr", "h1=20.0 #height in mm", "", "#xalculation", "K=p1/h1**2", "p2=K*30**2", "p2=p2*100.0", "", "#Result", "print('The unknown pressure p2 = %.2f * 10^-2 torr' %p2)" ], "language": "python", "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The unknown pressure p2 = 2.25 * 10^-2 torr" ] } ], "prompt_number": 12 } ] } ] }