{ "metadata": { "name": "", "signature": "sha256:71218a03a9605d3f7a7341594baa7c6aaf03b045951699482ae5c6da5c0be5f7" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "

Chapter 2: Pressure

" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 2.1, Page Number: 116

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "\n", "x=10000.0*10.0 #equivalnt to 10kg/cm^2\n", "\n", "#result\n", "print('(a)\\n 10kg/cm^2 = %.0f mmWG' %x)\n", "\n", "#(b)\n", "\n", "#variable declaration\n", "onemm_Hg=13.546 #pressure of 1 mm Hg\n", "\n", "#calculation\n", "y=10.0**5/onemm_Hg\n", "y=y/10.0**3\n", "\n", "#result\n", "print('\\n(b)\\n10kg/cm^2 = 10^5 mmWG = %.2f * 10^3 mmHg' %y)\n", "\n", "#(c)\n", "\n", "#variable declaration\n", "onebar=1.03 # 1 Bar presssure in kg/cm^2\n", "#calculation\n", "z=10.0/onebar\n", "\n", "#result\n", "print('\\n(c)\\n10kg/cm^2 = %.2f bars' %z)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(a)\n", " 10kg/cm^2 = 100000 mmWG\n", "\n", "(b)\n", "10kg/cm^2 = 10^5 mmWG = 7.38 * 10^3 mmHg\n", "\n", "(c)\n", "10kg/cm^2 = 9.71 bars" ] } ], "prompt_number": 1 }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 2.2, Page Number: 116

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "#(a)\n", "\n", "#variable Declaration\n", "gamm=1000.0 # density of water\n", "d=35.0 # depth of water \n", "dens_Hg=13.546 # density of Hg\n", "\n", "#calculation\n", "press_in_kg_cm=gamm*d*10**-4\n", "press_in_mmHg=gamm*d/dens_Hg\n", "press_in_mmHg=press_in_mmHg/10**3\n", "\n", "#result\n", "print('(a)\\nThe pressure at depth of %d meters in a water tank=%.1f kg/cm^2 = %.2f*10^3 mmHg'%(d, press_in_kg_cm, press_in_mmHg))\n", "\n", "#(b)\n", "\n", "#varible declaration\n", "press_atm=1.03 #atmospheric pressure\n", "\n", "#calculation\n", "abspress=press_in_kg_cm+press_atm\n", "abspress_mmHg=press_in_mmHg*1000.0+760.0\n", "abspress_mmHg=abspress_mmHg/1000.0\n", "\n", "#result\n", "print('\\n(b)\\nAbsolute Pressure= %.2f kg/cm^2 Abs = %.2f*10^3 mmHg Abs'%(abspress, abspress_mmHg))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(a)\n", "The pressure at depth of 35 meters in a water tank=3.5 kg/cm^2 = 2.58*10^3 mmHg\n", "\n", "(b)\n", "Absolute Pressure= 4.53 kg/cm^2 Abs = 3.34*10^3 mmHg Abs" ] } ], "prompt_number": 2 }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 2.3, Page Number:116

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "#varible declaration\n", "egp=260.0 # equivalent gauge pressure\n", "\n", "#calculation\n", "abspress=760.0-egp\n", "\n", "#result\n", "print('Absolute Presssure = %d mmHg' %abspress)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Absolute Presssure = 500 mmHg" ] } ], "prompt_number": 3 }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 2.4,Page Number:117

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "#(a)\n", "\n", "#variable declaration\n", "p_diff=500.0 #pressure difference in mmHg\n", "\n", "#calculations\n", "pdiff=p_diff*13.546/10000\n", "\n", "#Result\n", "print('(a)\\np1-p2 = %.3f kg/cm^2' %pdiff)\n", "\n", "\n", "#(b)\n", "\n", "#variable declaration\n", "p1=6770.0 # Gauge pressure in mmWG\n", "p_atm=10300.0 # atmospheric pressure \n", "\n", "#calculation\n", "abs_p1=p1+p_atm\n", "\n", "#result\n", "print('\\n(b)If p2 is open to atmosphere:\\nAbsolute Pressure P1 = %d mmWG abs.' %abs_p1)\n", "\n", "#(c)\n", "\n", "#variable declaration\n", "P1=500.0 #mmHg absolute pressure\n", "\n", "#calculations\n", "P1_gauge=P1-760.0\n", "\n", "#result\n", "print('\\n(c)If p2 is evacuated and sealed:\\np1= %d mmHg gauge Pressure' %P1_gauge)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(a)\n", "p1-p2 = 0.677 kg/cm^2\n", "\n", "(b)If p2 is open to atmosphere:\n", "Absolute Pressure P1 = 17070 mmWG abs.\n", "\n", "(c)If p2 is evacuated and sealed:\n", "p1= -260 mmHg gauge Pressure" ] } ], "prompt_number": 4 }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 2.5, Page Number: 117

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "#variable declaration\n", "spe_grav_water=1.0 # specific gravity of water\n", "\n", "#calculation\n", "spe_grav_X=spe_grav_water*100.0/50.0\n", "wt_dens_water=1000.0\n", "wt_dens_X=wt_dens_water*2.0\n", "\n", "#result\n", "print('Weight Density of X = %d kg/m^3' %wt_dens_X)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Weight Density of X = 2000 kg/m^3" ] } ], "prompt_number": 5 }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 2.6, Page Number: 117

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "#variable declaration\n", "A=1.0/20.0 # Area ratio\n", "p_diff=1500.0 # pressure difference in mmWG\n", "\n", "#result\n", "print('(a)\\nAs Delta_h=A2/A1*h << h and normally negligible for well type manometer')\n", "print('hence, p1-p2 = h = %d =111 mmHg' %p_diff)\n", "print('\\n(b)\\nh measured above the oriinal reference will be half of H, i.e. 111/2=55.5 mmHg')\n", "print('(Since area of both legs are same)')" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(a)\n", "As Delta_h=A2/A1*h << h and normally negligible for well type manometer\n", "hence, p1-p2 = h = 1500 =111 mmHg\n", "\n", "(b)\n", "h measured above the oriinal reference will be half of H, i.e. 111/2=55.5 mmHg\n", "(Since area of both legs are same)" ] } ], "prompt_number": 6 }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 2.7, Page Number: 119

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "print('1 kg/cm^2 = 10 mWG\\n')\n", "\n", "#(a)\n", "\n", "#variable declaration\n", "press=10+2 #pressure read by the gauge\n", "\n", "#result\n", "print('\\n(a)Bourdon Gauge is mounted 20 meters below water line:')\n", "print('\\nPressure read by the Gauge = %d kg/cm^2'%press)\n", "\n", "\n", "#(b)\n", "\n", "#variable declaration\n", "press2=10-3 #pressure read by the gauge\n", "\n", "#result\n", "print('\\n\\n(b)Bourdon Gauge is located 30 meters above the water line:')\n", "print('\\nPressure read by the Gauge = %d kg/cm^2'%press2)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "1 kg/cm^2 = 10 mWG\n", "\n", "\n", "(a)Bourdon Gauge is mounted 20 meters below water line:\n", "\n", "Pressure read by the Gauge = 12 kg/cm^2\n", "\n", "\n", "(b)Bourdon Gauge is located 30 meters above the water line:\n", "\n", "Pressure read by the Gauge = 7 kg/cm^2" ] } ], "prompt_number": 7 }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 2.8, Page Number: 120

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "#Variable declaration\n", "dens_water=1000.0 # water Density\n", "h1=125.0 # height1 mm\n", "h2=250.0 # height2 mm\n", "d2=h1*dens_water/h2\n", "\n", "#result\n", "\n", "#a\n", "print('(a)\\nDensity of Liquid = %d kg/m^3' %d2)\n", "print('\\nSpecific Density of the liquid = %.1f' %(h1/h2))\n", "\n", "#(b)\n", "print('\\n\\n(b)\\nIf Values of water and liquid interchanged:\\n')\n", "d3=h2*dens_water/h1\n", "print('\\nDensity of Liquid = %d kg/m^3' %d3)\n", "print('\\nSpecific Density of the liquid = %.1f' %(h2/h1))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(a)\n", "Density of Liquid = 500 kg/m^3\n", "\n", "Specific Density of the liquid = 0.5\n", "\n", "\n", "(b)\n", "If Values of water and liquid interchanged:\n", "\n", "\n", "Density of Liquid = 2000 kg/m^3\n", "\n", "Specific Density of the liquid = 2.0" ] } ], "prompt_number": 8 }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 2.9, Page Number: 120

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "import math\n", "#variable Declaration\n", "R=120.0 #resistance\n", "l=122.0 #length\n", "a=0.1 #area\n", "R1=140.0 #resistance in ohm\n", "\n", "#calculation\n", "rho=R*a/l\n", "l1=math.sqrt(R1*a*l/rho)\n", "l1=round(l1,0)\n", "\n", "#Result\n", "print('Length l1 = %d meters' %l1)\n", "A1=a*l/l1\n", "print('\\nArea A1 = %.4f mm^2' %A1)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Length l1 = 132 meters\n", "\n", "Area A1 = 0.0924 mm^2" ] } ], "prompt_number": 1 }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 2.10, Page Number: 121

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "c=0.57 #Constant\n", "\n", "#(a)\n", "\n", "#variable declaration\n", "d=0.1 #distance between plates\n", "di1=100.0 #Dielectric constant\n", "di2=1000.0 #Dielectric constant\n", "\n", "#calculation\n", "c1=c*di1*10.0/d\n", "c1=round(c1,0)\n", "\n", "#result\n", "print('(a)\\nC1=%d pf' %c1)\n", "\n", "\n", "#(b)\n", "\n", "#calculation\n", "c2=c*di2*10/d\n", "\n", "#result\n", "print('\\n(b)\\nC2=%d pf' %c2)\n", "\n", "\n", "#(c)\n", "\n", "#calculation\n", "ds=0.09\n", "c11=c*di1*10/ds\n", "c12=c*di2*10/ds\n", "\n", "#result\n", "print('\\n(c)\\nC1 = %.1f pf\\nC2 = %d pf'%(c11,c12))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(a)\n", "C1=5700 pf\n", "\n", "(b)\n", "C2=57000 pf\n", "\n", "(c)\n", "C1 = 6333.3 pf\n", "C2 = 63333 pf" ] } ], "prompt_number": 10 }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 2.11, Page Number: 121

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "#variable Declaration\n", "A=1.0 #area\n", "p1=10.0 #pressure\n", "\n", "#calculation\n", "W1=A*p1\n", "\n", "#Result\n", "print('W1 = %d kg' %W1)\n", "print('\\nWith the 4 standard weights of 10kg, 20kg, 30kg and 40kg')" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "W1 = 10 kg\n", "\n", "With the 4 standard weights of 10kg, 20kg, 30kg and 40kg" ] } ], "prompt_number": 11 }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 2.12, Page Number: 122

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "#varable declaration\n", "p1=10**-2 #pressure in torr\n", "h1=20.0 #height in mm\n", "\n", "#xalculation\n", "K=p1/h1**2\n", "p2=K*30**2\n", "p2=p2*100.0\n", "\n", "#Result\n", "print('The unknown pressure p2 = %.2f * 10^-2 torr' %p2)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The unknown pressure p2 = 2.25 * 10^-2 torr" ] } ], "prompt_number": 12 } ], "metadata": {} } ] }