{ "metadata": { "name": "", "signature": "sha256:7c51eb85c2f5974253c21c1966c99eb7233e433431ba178d1ba6aaccb3adc83a" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 4 : Flow Over Weirs Notches" ] }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 4.1 page no : 103" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "import math\n", "#initialisation of variables\n", "p = 70. \t\t\t#per cent\n", "Cd = 0.6\n", "Q = 50. \t\t\t#million gallons\n", "H = 2. \t\t\t#ft\n", "w = 62.4 \t\t\t#lb/ft**3\n", "g = 32.2 \t\t\t#ft/sec**2\n", "#CALCULATIONS\n", "Q1 = p*Q*10**6*10/(100*w*24*3600)\n", "L = Q1*3/(2*Cd*math.sqrt(2*g)*H**1.5)\n", "#RESULTS\n", "print 'length of the weir = %.2f ft '%(L)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "length of the weir = 7.15 ft \n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 4.2 page no : 104" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "import math \n", "\n", "#initialisation of variables\n", "L = 15. \t\t\t#ft\n", "H = 1. \t\t\t#ft\n", "Cd = 0.6\n", "v = 80. \t\t\t#ft/min\n", "g = 32.2 \t\t\t#ft/sec62\n", "w = 62.4 \t\t\t#lb/ft**3\n", "#CALCULATIONS\n", "vo = v/60\n", "Q = 2*Cd*math.sqrt(2*g)*L*((1+(vo**2/(2*g)))**1.5-(vo**2/(2*g))**1.5)*w*100/(3*550)\n", "#RESULTS\n", "print 'HP = %.f HP '%(Q)\n", "\n", "# This is accurate answer. Please calcualte manually." ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "HP = 567 HP \n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 4.3 pageno : 104" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "import math \n", "#initialisation of variables\n", "L = 11. \t\t\t#ft\n", "H = 0.7 \t\t\t#ft\n", "Cd = 0.6\n", "g = 32.2 \t\t\t#ft/sec**2\n", "h = 1.95 \t\t\t#ft\n", "Q = 20.65 \t\t\t#cuses\n", "Q1 = 21.2 \t\t\t#cfs\n", "\n", "#CALCULATIONS\n", "Q = 2*Cd*math.sqrt(2*g)*L*H**1.5/3\n", "vo = Q/(h*L)\n", "h1 = vo**2/(2*g)\n", "Q1 = 2*Cd*math.sqrt(2*g)*L*((H+(vo**2/(2*g)))**1.5-(vo**2/(2*g))**1.5)/3\n", "v1 = Q1/(L*h)\n", "Q2 = 2*Cd*math.sqrt(2*g)*L*((H+(v1**2/(2*g)))**1.5-(v1**2/(2*g))**1.5)/3\n", "p = (Q2-Q1)*100/Q1\n", "\n", "#RESULTS\n", "print \"Head to velocity approach = %.1f cu ft/sec\"%Q1\n", "print \"Q2 = %.2f cu ft/sec\"%Q2\n", "print 'discharge percent = %.3f per cent '%(p)\n", "\n", "# Note : answers may vary because of rounding error. Please calculate manually." ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Head to velocity approach = 21.3 cu ft/sec\n", "Q2 = 21.29 cu ft/sec\n", "discharge percent = 0.148 per cent \n" ] } ], "prompt_number": 23 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 4.4 page no : 106" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "import math \n", "#initialisation of variables\n", "b = 3. \t\t\t#ft\n", "H = 1 \t\t\t#ft\n", "Q = 9 \t\t\t#cfs\n", "Q1 = 1.105 # log Q from fig.\n", "h = 0.1 \t\t# log H from fig. ft\n", "#CALCULATIONS\n", "K = Q/b\n", "n = (Q1-math.log10(3*K))/h\n", "#RESULTS\n", "print 'K = %.f '%(K)\n", "print 'n = %.1f '%(n)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "K = 3 \n", "n = 1.5 \n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 4.5 page no : 108" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "import math \n", "#initialisation of variables\n", "g = 32.2 \t\t\t#ft/sec**2\n", "Cd = 0.62\n", "L = 7.573 \t\t\t#ft\n", "H = 1.2 \t\t\t#ft\n", "S = 2.85 \t\t\t#ft\n", "#CALCULATIONS\n", "Q1 = 2*Cd*math.sqrt(2*g)*L*H**1.5/3\n", "Q2 = 3.33*L*H**1.5\n", "Q3 = math.sqrt(2*g)*L*H**1.5*(0.405+(0.00984/H))\n", "He = H+0.004\n", "Q4 = (3.227+0.435*(He/S))*L*He**1.5\n", "#RESULTS\n", "print 'Q = %.2f cuses '%(Q1)\n", "print 'Q = %.2f cuses '%(Q2)\n", "print 'Q = %.2f cuses '%(Q3)\n", "print 'Q = %.2f cuses '%(Q4)\n", "\n", "# Note : answers may vari because of rounding error. Please check manually." ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Q = 33.02 cuses \n", "Q = 33.15 cuses \n", "Q = 33.01 cuses \n", "Q = 34.12 cuses \n" ] } ], "prompt_number": 28 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 4.6 pageno : 109" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "import math \n", "#initialisation of variables\n", "H = 2.5 \t\t\t#ft\n", "L = 10 \t\t\t#ft\n", "A = 10 \t\t\t#miles\n", "p = 30 \t\t\t#per cent\n", "a = 2 \t\t\t#in/hr\n", "w = 2 \t\t\t#ft\n", "#CALCULATIONS\n", "Q = L*1760**2*3**2*a*p/(60*60*12*100)\n", "n = ((Q/(3.33*H**1.5))-(L-0.1*w*H))/(L-0.1*w*H)\n", "#RESULTS\n", "print 'n = %.f '%(n)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "n = 30 \n" ] } ], "prompt_number": 29 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 4.7 page no : 109" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "import math \n", "#initialisation of variables\n", "L = 2.5 \t\t\t#ft\n", "H = 1 \t\t\t#ft\n", "g = 32.2 \t\t\t#ft/sec**2\n", "Cd = 0.61\n", "L1 = 1.75 \t\t\t#ft\n", "L2 = 2.25 \t\t\t#ft\n", "#CALCULATIONS\n", "Q1 = 2*Cd*math.sqrt(2*g)*L*H/3\n", "Q2 = 2*Cd*math.sqrt(2*g)*L1*(L1**1.5-1)/3\n", "Q3 = 2*Cd*math.sqrt(2*g)*H*(L2**1.5-L1**1.5)/3\n", "Q = Q1+Q2+Q3\n", "#RESULTS\n", "print 'Total discharge = %.1f cfs '%(Q)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Total discharge = 19.1 cfs \n" ] } ], "prompt_number": 30 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 4.8 page no : 110" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "import math \n", "#initialisation of variables\n", "g = 32.2 \t\t\t#ft/sec**2\n", "h1 = 16.63 \t\t\t#cm\n", "h2 = 10.18 \t\t\t#cm\n", "h3 = 16.53 \t\t\t#cm\n", "#CALCULATIONS\n", "H1 = h1-h2\n", "H2 = h3-h2\n", "p = (H1**1.5-H2**1.5)*100/H1**1.5\n", "#RESULTS\n", "print 'Percent decrease in discharge = %.2f %% '%(p)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Percent decrease in discharge = 2.32 % \n" ] } ], "prompt_number": 32 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 4.9 pageno : 111" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "import math \n", "#initialisation of variables\n", "Cd = 0.6\n", "a = 20000 \t\t\t#yd**2\n", "H2 = 12 \t\t\t#in\n", "L = 5 \t\t\t#ft\n", "H1 = 2 \t\t\t#ft\n", "g =32.2 \t\t\t#ft/s**2\n", "#CALCULATIONS\n", "t = 2*a*9*(L-H1)*((1/math.sqrt(H2/12))-(1/math.sqrt(H1)))/(2*60*Cd*math.sqrt(2*g)*L)\n", "#RESULTS\n", "print 'time required to lower level of reservoir = %.2f min '%(t)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "time required to lower level of reservoir = 109.49 min \n" ] } ], "prompt_number": 33 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 4.10 pageno : 113" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "import math \n", "#initialisation of variables\n", "L = 3. \t\t\t#ft\n", "H = 6. \t\t\t#in\n", "Cd = 0.62\n", "Cd1 = 0.59\n", "a = 45. \t\t\t#degrees\n", "g = 32.2 \t\t\t#ft/sec**2\n", "#CALCULATIONS\n", "H = ((2./3)*Cd*math.sqrt(2*g)*L*(H/12)**1.5/((8./15)*Cd1*math.sqrt(2*g)))**0.4\n", "#RESULTS\n", "print 'depth of water = %.3f ft '%(H)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "depth of water = 1.142 ft \n" ] } ], "prompt_number": 34 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 4.11 page no : 114" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "import math \n", "#initialisation of variables\n", "V = 20. \t\t\t#litres\n", "g = 981. \t\t\t#cm/sec**2\n", "Cd = 0.593\n", "r = 2.5\n", "r1 = 1.5\n", "e = 2. \t\t\t#mm\n", "Cd1 = 0.623\n", "L = 30. \t\t\t#cm\n", "#CALCULATIONS\n", "H = (V*1000*15/(8*Cd*math.sqrt(2*g)))**0.4\n", "dH1 = e/10.\n", "p = r*dH1*100/H\n", "H1 = (V*3*1000/(2*Cd1*math.sqrt(2*g)*L))**(2./3)\n", "p1 = r1*dH1*100/H1\n", "#RESULTS\n", "print 'percentage error of discharge over the weir = %.2f %% '%(p)\n", "print 'percentage error of discharge over the weir = %.2f %% '%(p1)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "percentage error of discharge over the weir = 2.74 % \n", "percentage error of discharge over the weir = 2.74 % \n" ] } ], "prompt_number": 36 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 4.12 page no : 116" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "import math \n", "#initialisation of variables\n", "L = 16. \t\t\t#in\n", "H = 9. \t\t\t#in\n", "h = 18. \t\t\t#in\n", "g = 32.2 \t\t\t#ft/sec**2\n", "w = 2. \t\t\t#ft\n", "Cd = 0.63\n", "W = 62.4 \t\t\t#lbs/ft**3\n", "#CALCULATIONS\n", "Q = 2*Cd*math.sqrt(2*g)*(L/12)*(H/12)**1.5/3\n", "v = Q/(w*(h/12))\n", "H1 = v**2/(2*g)\n", "Q1 = 2*Cd*math.sqrt(2*g)*(L/12)*(((H/12)+H1)**1.5-H1**1.5)*W*6/3.\n", "#RESULTS\n", "print 'Discharge = %.f gpm '%(Q1)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Discharge = 1122 gpm \n" ] } ], "prompt_number": 37 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 4.13 pageno : 118" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "import math \n", "#initialisation of variables\n", "L = 100 \t\t\t#ft\n", "H = 2.25 \t\t\t#ft\n", "Cd = 0.95\n", "w = 120 \t\t\t#ft\n", "h = 2 \t\t\t#ft\n", "g = 32.2 \t\t\t#ft/sec**2\n", "#CALCULATIONS\n", "Q = round(3.087*Cd*L*H**1.5)\n", "v0 = round(Q/(w*(h+H)),2)\n", "Q1 = 3.087*Cd*L*((H+(v0**2/(2*g)))**1.5-(v0**2/(2*g))**1.5)\n", "#RESULTS\n", "print 'Discharge = %.0f cuses '%(Q1)\n", "\n", "# Note: answer is slightly different because of rounding error." ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Discharge = 1024 cuses \n" ] } ], "prompt_number": 48 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 4.14 pageno : 119" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "import math \n", "#initialisation of variables\n", "L = 6 \t\t\t#ft\n", "H1 = 0.5 \t\t\t#ft\n", "H2 = 0.25 \t\t\t#ft\n", "g = 32.2 \t\t\t#ft/sec**2\n", "Cd1 = 0.58\n", "Cd2 = 0.8\n", "w = 6.24 \t\t\t#lb/ft**3\n", "#CALCULATIONS\n", "Q1 = 2*Cd1*math.sqrt(2*g)*L*(H1-H2)**1.5/3\n", "Q2 = Cd2*L*H2*math.sqrt(2*g*(H1-H2))\n", "Q = round((Q1+Q2)*w*3600,-3)\n", "#RESULTS\n", "print 'Discharge = %.f gph '%(Q)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Discharge = 160000 gph \n" ] } ], "prompt_number": 51 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 4.15 pageno : 120" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "import math \n", "#initialisation of variables\n", "W = 100 \t\t\t#ft\n", "h = 10 \t\t\t#ft\n", "v = 4 \t\t\t#ft/sec\n", "h1 = 3 \t\t\t#ft\n", "g = 32.2 \t\t\t#ft/sec**2\n", "H = 5.4 \t\t\t#ft\n", "Cd1 = 0.58\n", "Cd2 = 0.8\n", "#CALCULATIONS\n", "v0 = (W*h*v)/(W*(h+h1))\n", "h0 =v0**2/(2*g)\n", "H2 = (W*h*v-(2*Cd1*W*math.sqrt(2*g)*((h1+h0)**1.5-h0**1.5)/3))/(Cd2*W*math.sqrt(2*g*(h1+h0)))\n", "dh = h-H2\n", "#RESULTS\n", "print 'height of anicut which is drowned = %.f ft '%(dh)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "height of anicut which is drowned = 8 ft \n" ] } ], "prompt_number": 52 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 4.16 page no : 123" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "import math \n", "#initialisation of variables\n", "x = 6. \t\t\t#in\n", "l = 200. \t\t\t#ft\n", "d = 10. \t\t\t#ft\n", "v = 4. \t\t\t#ft/sec\n", "Ce = 0.95\n", "g = 32.2 \t\t\t#ft/sec**2\n", "#CALCULATIONS\n", "l1 = math.sqrt(l**2/(Ce**2*(((x/12)*2*g/v**2)+(d**2/(d+(x/12))**2))))\n", "#RESULTS\n", "print 'length = %.f ft '%(l1)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "length = 123 ft \n" ] } ], "prompt_number": 53 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 4.17 page no : 124" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "import math \n", "#initialisation of variables\n", "g = 32.2 \t\t\t#ft/sec**2\n", "H = 25. \t\t\t#ft\n", "l = 2.5 \t\t\t#ft\n", "b = 5. \t\t\t#ft\n", "Cd = 0.64\n", "Q = 3200. \t\t\t#cuses\n", "L =150. \t\t\t#ft\n", "C =3.2\n", "depth =0.5 \t\t\t#ft\n", "A1 =5000000. \t\t\t#sq yards\n", "#CALCULATIONS\n", "Q1 = Cd*l*b*math.sqrt(2*g*H)\n", "n = Q/Q1\n", "h = (Q/(3.2*L))**(2./3)\n", "hr =h-depth\n", "Area =A1*9\n", "V = round(Area*hr,-6)\n", "#RESULTS\n", "print 'number of spilways = %.f '%(n)\n", "print \"Volume of extra water stored = %d cu ft\"%(V)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "number of spilways = 10 \n", "Volume of extra water stored = 137000000 cu ft\n" ] } ], "prompt_number": 57 }, { "cell_type": "code", "collapsed": false, "input": [], "language": "python", "metadata": {}, "outputs": [] } ], "metadata": {} } ] }