{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 28: Numerical Solution Of Partial Differential Equations" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 28.1, page no. 725" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "D=Bˆ2−4AC\n", "if D<0 then elliptic if D=0 then parabolic if D>0 then hyperboic\n", "(i) A=xˆ2, B1−yˆ2 D=4ˆ2−4∗1∗4=0 so the equation is PARABOLIC \n", "(ii) D=4xˆ2(yˆ2−1)\n", "for −inf0\n", "So the equation is HYPERBOLIC \n" ] } ], "source": [ "print \"D=Bˆ2−4AC\"\n", "print \"if D<0 then elliptic if D=0 then parabolic if D>0 then hyperboic\"\n", "print \"(i) A=xˆ2, B1−yˆ2 D=4ˆ2−4∗1∗4=0 so the equation is PARABOLIC \"\n", "print \"(ii) D=4xˆ2(yˆ2−1)\"\n", "print \"for −inf0\"\n", "print \"So the equation is HYPERBOLIC \"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 28.2, page no. 726" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "See figure in question\n", "From symmetry u7=u1, u8=u2, u9=u3, u3=u1, u6=u4, u9=u7\n", "u5=1/4∗(2000+2000+1000+1000)=1500\n", "u1=1/4(0=1500+1000+2000)=1125\n", "u2=1/4∗(1125+1125+1000+1500)=1188\n", "u4=1/4(2000+1500+1125+1125)=1438\n", "1125 1188 1438 1500\n", "Iterations :\n", "\n", "1301 1414 1164 1031\n", "\n", "1250 1337 1087 1019\n", "\n", "1199 1312 1062 981\n", "\n", "1174 1287 1037 968\n", "\n", "1155 1274 1024 956\n", "\n", "1144 1265 1015 949\n" ] } ], "source": [ "print \"See figure in question\"\n", "print \"From symmetry u7=u1, u8=u2, u9=u3, u3=u1, u6=u4, u9=u7\"\n", "print \"u5=1/4∗(2000+2000+1000+1000)=1500\"\n", "u5 = 1500\n", "print \"u1=1/4(0=1500+1000+2000)=1125\"\n", "u1 = 1125\n", "print \"u2=1/4∗(1125+1125+1000+1500)=1188\"\n", "u2 = 1188\n", "print \"u4=1/4(2000+1500+1125+1125)=1438\"\n", "u4 = 1438\n", "print u1,u2,u4,u5 \n", "print \"Iterations :\"\n", "for i in range(1,7):\n", " u11 = (1000+u2+500+u4)/4\n", " u22 = (u11+u1+1000+u5)/4 \n", " u44 = (2000+u5+u11+u1)/4\n", " u55 = (u44+u4+u22+u2)/4\n", " print \"\"\n", " print u55,u44,u22,u11\n", " u1 = u11 \n", " u2 = u22 \n", " u4 = u44 \n", " u5 = u55" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 28.3, page no. 727" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "See figure in question\n", "To find the initial values of u1 u2 u3 u4 we assume u4=0 \n", "u1=1/4∗(1000+0+1000+2000)=1000\n", "u2=1/4(1000+500+1000+500)=625 \n", "u3=1/4∗(2000+0+1000+500)=875\n", "u4=1/4(875+0+625+0)=375\n", "1000 625 875 375\n", "Iterations:\n", "\n", "437 1000 750 1125\n", "\n", "453 1031 781 1187\n", "\n", "457 1039 789 1203\n", "\n", "458 1041 791 1207\n", "\n", "458 1041 791 1208\n", "\n", "458 1041 791 1208\n" ] } ], "source": [ "print \"See figure in question\"\n", "print \"To find the initial values of u1 u2 u3 u4 we assume u4=0 \"\n", "print \"u1=1/4∗(1000+0+1000+2000)=1000\"\n", "u1 = 1000\n", "print \"u2=1/4(1000+500+1000+500)=625 \"\n", "u2 = 625\n", "print \"u3=1/4∗(2000+0+1000+500)=875\"\n", "u3 = 875\n", "print \"u4=1/4(875+0+625+0)=375\"\n", "u4 = 375\n", "print u1,u2,u3,u4 \n", "print \"Iterations:\"\n", "for i in range(1,7):\n", " u11 = (2000+u2+1000+u3)/4 \n", " u22 = (u11+500+1000+u4)/4\n", " u33 = (2000+u4+u11+500)/4\n", " u44 = (u33+0+u22+0)/4\n", " print \"\"\n", " print u44,u33,u22,u11\n", " u1 = u11 \n", " u2 = u22 \n", " u4 = u44 \n", " u3 = u33" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 28.5, page no. 729" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Here cˆ2=4, h=1, k=1/8, therefore alpha=(cˆ2)∗k/(hˆ2)\n", "Using bendre−schmidits recurrence relation ie u(i)(j +1)=t∗u(i−1)(j)+t∗u(i+1)(j)+(1−2t)∗u(i,j)\n", "Now since u(0,t)=0=u(8,t) therefore u(0,i)=0 and u(8,j)=0 and u(x,0)=4x−1/2xˆ2 \n", "0.0\n", "-4.0\n", "0.0\n", "4.0\n", "8.0\n", "12.0\n", "16.0\n" ] } ], "source": [ "import numpy\n", "print \"Here cˆ2=4, h=1, k=1/8, therefore alpha=(cˆ2)∗k/(hˆ2)\"\n", "print \"Using bendre−schmidits recurrence relation ie u(i)(j +1)=t∗u(i−1)(j)+t∗u(i+1)(j)+(1−2t)∗u(i,j)\"\n", "print \"Now since u(0,t)=0=u(8,t) therefore u(0,i)=0 and u(8,j)=0 and u(x,0)=4x−1/2xˆ2 \"\n", "c = 2\n", "h = 1\n", "k = 1/8\n", "t = (c**2)*k/(h**2)\n", "A = numpy.ones((9,9))\n", "for i in range(0,9):\n", " for j in range (0,9):\n", " A[0,i] = 0\n", " A[8,i] = 0\n", " A[i,0] = 4*(i-1)-1/2*(i-1)**2\n", "for i in range(1,8):\n", " for j in range(1,7):\n", " A[i,j] = t*A[i-1,j-1]+t*A[i+1,j-1]+(1-2*t)*A[i-1,j-1]\n", "for i in range(1,8):\n", " j = 2\n", " print A[i,j]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 28.6, page no. 730" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Here cˆ2=1, h=1/3, k=1/36, therefore t=(cˆ2)∗k/(hˆ2)=1/4 \n", "So bendre−schmidits recurrence relation ie u(i)(j+1)=1/4(u(i−1)(j)+u(i+1)(j)+2u(i,j)\n", "Now since u(0,t)=0=u(1,t) therefore u(0,i)=0 and u(1,j)=0 and u(x,0)=sin(%pi)x\n", "-0.433012701892\n", "0.216506350946\n", "0.649519052838\n", "0.433012701892\n", "-0.216506350946\n", "-0.649519052838\n", "-0.433012701892\n" ] } ], "source": [ "import numpy,math\n", "\n", "print \"Here cˆ2=1, h=1/3, k=1/36, therefore t=(cˆ2)∗k/(hˆ2)=1/4 \"\n", "print \"So bendre−schmidits recurrence relation ie u(i)(j+1)=1/4(u(i−1)(j)+u(i+1)(j)+2u(i,j)\"\n", "print \"Now since u(0,t)=0=u(1,t) therefore u(0,i)=0 and u(1,j)=0 and u(x,0)=sin(%pi)x\"\n", "c = 1.\n", "h = 1./3\n", "k = 1./36\n", "t = (c**2)*k/(h**2)\n", "A = numpy.ones((9,9))\n", "for i in range(0,9):\n", " for j in range(0,9):\n", " A[0,i] = 0\n", " A[1,i] = 0\n", " A[i,0] = math.sin(math.pi/3*(i-1)) \n", "for i in range(1,8):\n", " for j in range(1,8):\n", " A[i,j] = t*A[i-1,j-1]+t*A[i+1,j-1]+(1-2*t)*A[i-1,j-1]\n", "for i in range(1,8):\n", " j = 1\n", " print A[i,j]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 28.7, page no. 732" ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Here cˆ2=16, taking h=1, finding k such that cˆ2tˆ2=1 \n", "So bendre−schmidits recurrence relation ie u(i)(j+1)=(16tˆ2(u(i−1)(j)+u(i+1)(j))+2(1−16∗tˆ2u(i,j)−u(i)(j−1)\n", "Now since u(0,t)=0=u(5,t) therefore u(0,i)=0 and u(5,j)=0 and u(x,0)=xˆ2(5−x)\n", "Also from 1st derivative (u(i)(j+1)−u(i,j−1))/2k=g(x) and g(x)=0 in this case\n", "So if j=0 this gives u(i)(1)=1/2∗(u(i−1)(0)+u(i+1)(0))\n", " 0.0 0.0 0.0 0.0 0.0 \n", " 0.0 4.0 8.0 12.0 16.0 \n", " 0.0 12.0 24.0 36.0 48.0 \n", " 0.0 18.0 36.0 54.0 72.0 \n", " 0.0 16.0 0.0 0.0 0.0 \n" ] } ], "source": [ "import numpy\n", "\n", "print \"Here cˆ2=16, taking h=1, finding k such that cˆ2tˆ2=1 \"\n", "print \"So bendre−schmidits recurrence relation ie u(i)(j+1)=(16tˆ2(u(i−1)(j)+u(i+1)(j))+2(1−16∗tˆ2u(i,j)−u(i)(j−1)\"\n", "print \"Now since u(0,t)=0=u(5,t) therefore u(0,i)=0 and u(5,j)=0 and u(x,0)=xˆ2(5−x)\"\n", "c = 4\n", "h =1 \n", "k = (h/c)\n", "t = k/h\n", "A = numpy.zeros((6,6))\n", "print \"Also from 1st derivative (u(i)(j+1)−u(i,j−1))/2k=g(x) and g(x)=0 in this case\"\n", "print \"So if j=0 this gives u(i)(1)=1/2∗(u(i−1)(0)+u(i+1)(0))\"\n", "for i in range(0,6):\n", " for j in range(1,9):\n", " A[0,i] = 0\n", " A[5,i] = 0;\n", " A[i,1] = (i)**2*(5-i)\n", "for i in range(0,4):\n", " A[i+1,2] =1/2*(A[i,1]+A[i+2,1])\n", "for i in range(2,5):\n", " for j in range(2,5):\n", " A[i-1,j] = (c*t)**2*(A[i-2,j-1]+A[i,j-1])+2*(1-(c*t)**2)*A[i-1,j-1]-A[i-1,j-2]\n", "for i in range(0,5):\n", " for j in range(0,5):\n", " print \" \",A[i,j],\n", " print \"\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 28.8, page no. 734" ] }, { "cell_type": "code", "execution_count": 16, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Here cˆ2=4, taking h=1, finding k such that cˆ2tˆ2=1 \n", "So bendre−schmidits recurrence relation ie u(i)(j+1)=(16tˆ2(u(i−1)(j)+u(i+1)(j))+2(1−16∗tˆ2u(i,j)−u(i)(j−1)\n", "Now since u(0,t)=0=u(4,t) therefore u(0,i)=0 and u(4,j)=0 and u(x,0)=x(4−x) \n", "Also from 1st derivative (u(i)(j+1)−u(i,j−1))/2 k=g(x) and g(x)=0 in this case\n", "So if j=0 this gives u(i)(1)=1/2∗(u(i−1)(0)+u(i+1)(0))\n", " 0.0 0.0 0.0 0.0 0.0 \n", " 3.0 0.0 -3.0 -6.0 -9.0 \n", " 4.0 0.0 -4.0 -8.0 -12.0 \n", " 3.0 0.0 -3.0 -6.0 -9.0 \n", " 0.0 0.0 0.0 0.0 0.0 \n" ] } ], "source": [ "print \"Here cˆ2=4, taking h=1, finding k such that cˆ2tˆ2=1 \"\n", "print \"So bendre−schmidits recurrence relation ie u(i)(j+1)=(16tˆ2(u(i−1)(j)+u(i+1)(j))+2(1−16∗tˆ2u(i,j)−u(i)(j−1)\"\n", "print \"Now since u(0,t)=0=u(4,t) therefore u(0,i)=0 and u(4,j)=0 and u(x,0)=x(4−x) \"\n", "c = 2\n", "h = 1\n", "k = (h/c)\n", "t = k/h\n", "A = numpy.zeros((6,6))\n", "print \"Also from 1st derivative (u(i)(j+1)−u(i,j−1))/2 k=g(x) and g(x)=0 in this case\"\n", "print \"So if j=0 this gives u(i)(1)=1/2∗(u(i−1)(0)+u(i+1)(0))\"\n", "for i in range(0,6):\n", " for j in range(1,9):\n", " A[0,i] = 0\n", " A[4,i] = 0\n", " A[i,0] = (i)*(4-i)\n", "for i in range(0,4):\n", " A[i+1,2] = 1/2*(A[i,1]+A[i+2,1])\n", "for i in range(2,5):\n", " for j in range(2,5):\n", " A[i-1,j] = (c*t)**2*(A[i-2,j-1]+A[i,j-1])+2*(1-(c*t)**2)*A[i-1,j-1]-A[i-1,j-2]\n", "for i in range (0,5):\n", " for j in range(0,5):\n", " print \" \",A[i,j],\n", " print \"\"" ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.10" } }, "nbformat": 4, "nbformat_minor": 0 }