{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 22 : Integral Transform" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 22.1, page no. 608" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "To find the fourier sin integral\n", "0.636619772367581*Integral(sin(t*u), (t, 0, oo))*Integral(sin(u*x), (u, 0, oo))\n" ] } ], "source": [ "import sympy,math\n", "\n", "print \"To find the fourier sin integral\"\n", "x = sympy.Symbol('x')\n", "t = sympy.Symbol('t')\n", "u = sympy.Symbol('u')\n", "fs = 2/math.pi*sympy.integrate(sympy.sin(u*x),(u,0,sympy.oo))*(sympy.integrate(x**0*sympy.sin(u*t),(t,0,sympy.oo)))\n", "print fs" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 22.2, page no. 608" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "To find the fourier transform of given function\n", "Piecewise((2, s == 0), (1.0*I*exp(-1.0*I*s)/s - 1.0*I*exp(1.0*I*s)/s, True))\n", "pi/2\n" ] } ], "source": [ "import sympy\n", "\n", "print \"To find the fourier transform of given function\"\n", "x = sympy.Symbol('x')\n", "s = sympy.Symbol('s')\n", "F = sympy.integrate(sympy.exp(1j*s*x),(x,-1,1))\n", "print F\n", "F1 = sympy.integrate(sympy.sin(x)/x,(x,0,sympy.oo))\n", "print F1" ] }, { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "## Example 22.3, page no. 609" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "To find the fourier transform of given function\n", "Piecewise((4/3, s**6 == 0), ((-2.0*s**4 - 2.0*I*s**3)*exp(1.0*I*s)/s**6 - (2.0*s**4 - 2.0*I*s**3)*exp(-1.0*I*s)/s**6, True))\n", "Integral((x*cos(x) - sin(x))*cos(x/2)/x**3, (x, 0, +inf))\n" ] } ], "source": [ "import sympy,numpy\n", "\n", "print \"To find the fourier transform of given function\"\n", "x = sympy.Symbol('x')\n", "s = sympy.Symbol('s')\n", "F = sympy.integrate(sympy.exp(1j*s*x)*(1-x**2),(x,-1,1))\n", "print F\n", "F1 = sympy.integrals.Integral((x*sympy.cos(x)-sympy.sin(x))/x**3*sympy.cos(x/2),(x,0,numpy.inf))\n", "print F1" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 22.4, page no. 610" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "To find the fourier sin integral\n", "Piecewise((s/(s**2 + 1), Abs(periodic_argument(polar_lift(s)**2, oo)) == 0), (Integral(exp(-x)*sin(s*x), (x, 0, oo)), True))\n", "Piecewise((sqrt(pi)*(-sqrt(pi)*sinh(m) + sqrt(pi)*cosh(m))/2, Abs(periodic_argument(polar_lift(m)**2, oo)) == 0), (Integral(x*sin(m*x)/(x**2 + 1), (x, 0, oo)), True))\n" ] } ], "source": [ "import sympy,math\n", "\n", "print \"To find the fourier sin integral\"\n", "x = sympy.Symbol('x')\n", "s = sympy.Symbol('s')\n", "m = sympy.Symbol('m')\n", "fs = sympy.integrate(sympy.sin(s*x)*sympy.exp(-x),(x,0,sympy.oo))\n", "print fs\n", "f = sympy.integrate(x*sympy.sin(m*x)/(1+x**2),(x,0,sympy.oo))\n", "print f" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 22.5, page no. 611" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Fourier cosine transform.\n", "Piecewise((1/2, s == 0), (-sin(s)/s + cos(s)/s**2 - cos(2*s)/s**2, True)) + Piecewise((1/2, s == 0), (sin(s)/s + cos(s)/s**2 - 1/s**2, True))\n" ] } ], "source": [ "import sympy,math\n", "\n", "print \"Fourier cosine transform.\"\n", "x = sympy.Symbol('x')\n", "s = sympy.Symbol('s')\n", "f = sympy.integrate(x*sympy.cos(s*x),(x,0,1))+sympy.integrate((2-x)*sympy.cos(s*x),(x,1,2))\n", "print f" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 22.6, page no. 612" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Fourier cosine transform.\n", "Piecewise((s*atan(sqrt(s**2/a**2))/(a*sqrt(s**2/a**2)), Or(And(-s**2/a**2 != 1, Abs(periodic_argument(polar_lift(a)**2, oo)) == pi, Abs(periodic_argument(polar_lift(s)**2, oo)) == 0), And(Abs(periodic_argument(polar_lift(a)**2, oo)) < pi, Abs(periodic_argument(polar_lift(s)**2, oo)) == 0))), (Integral(exp(-a*x)*sin(s*x)/x, (x, 0, oo)), True))\n" ] } ], "source": [ "import sympy,math\n", "\n", "print \"Fourier cosine transform.\"\n", "x = sympy.Symbol('x')\n", "s = sympy.Symbol('s')\n", "a = sympy.Symbol('a')\n", "f = sympy.integrate(sympy.exp(-a*x)/x*sympy.sin(s*x),(x,0,sympy.oo))\n", "print f" ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.10" } }, "nbformat": 4, "nbformat_minor": 0 }