{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 1: Solution of Equation & Curve Fitting" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 1.1, page no. 21" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The roots of above equation are: [-3. 2. 0.5]\n" ] } ], "source": [ "import numpy\n", "\n", "x = numpy.poly([0])\n", "p = 2*(x**3)+x**2-13*x+6\n", "print \"The roots of above equation are: \", numpy.roots([2,1,-13,6])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 1.2, page no. 21" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The roots of the equation are: [ 2.00000000+2.64575131j 2.00000000-2.64575131j -2.66666667+0.j ]\n" ] } ], "source": [ "import numpy\n", "\n", "x = numpy.poly([0])\n", "print \"The roots of the equation are: \", numpy.roots ([3, -4, 1, 88])" ] }, { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "## Example 1.3, page no. 22" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The roots of above equation are: [ 6. 3. -2.]\n" ] } ], "source": [ "import numpy\n", "\n", "x = numpy.poly([0])\n", "p = x^3-7*(x^2)+36\n", "print \"The roots of above equation are:\", numpy.roots([1, -7, 0, 36])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 1.4, page no. 23" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The roots of above equation are: [ 5. -4. 2. -1.]\n" ] } ], "source": [ "import numpy\n", "\n", "x = numpy.poly ([0]) \n", "p = x**4-2*(x**3)-21*(x**2)+22*x+40\n", "print \"The roots of above equation are:\", numpy.roots([1,-2,-21,22,40])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 1.5, page no. 23" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The roots of above equation are: [ 4. 2. 1. 0.5]\n" ] } ], "source": [ "import numpy\n", "\n", "x = numpy.poly ([0]) \n", "p = 2*(x**4)-15*(x**3)+35*(x**2)-30*x+8\n", "print \"The roots of above equation are:\", numpy.roots([2,-15,35,-30,8])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 1.6, page no. 24" ] }, { "cell_type": "code", "execution_count": 25, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The roots of above equation are: [ 2.87938524 0.65270364 -0.53208889]\n", "let x1 = 0.6527036 x2 = -0.5320889 x3 = 2.8793852\n", "So the equation whose roots are cube of the roots of above equation is (x−x1ˆ3)∗(x−x2ˆ3)∗(x−x3ˆ3)\n", "(x - 23.8725770741465)*(x - 0.278066086195109)*(x + 0.150644263115026)\n" ] } ], "source": [ "import numpy\n", "import sympy\n", "\n", "x = numpy.poly ([0]) \n", "p = x**3-3*(x**2)+1\n", "ans = numpy.roots([1,-3, 0, 1])\n", "print \"The roots of above equation are:\", ans\n", "x = sympy.Symbol('x')\n", "print \"let x1 = 0.6527036 x2 = -0.5320889 x3 = 2.8793852\"\n", "print \"So the equation whose roots are cube of the roots of above equation is (x−x1ˆ3)∗(x−x2ˆ3)∗(x−x3ˆ3)\"\n", "p1 = (x-x1**3)*(x-x2**3)*(x-x3**3)\n", "print p1" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 1.7, page no. 25" ] }, { "cell_type": "code", "execution_count": 37, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The roots of above equation are:\n", "[ 4.48928857 2.28916855 -0.77845712]\n", "let x1 = -0.7784571 x2 = 2.2891685 x3 = 4.4892886\n", "Now, since we want equation whose sum of roots is 0. sum of roots of above equation is 6, so we will decrease\n", "Value of each root by 2 i.e. x4 = x1-2\n", "x4 = -2.7784571\n", "x5 = 0.2891685\n", "x6 = 2.4892886\n", "Hence, the required equation is ( x−x4 ) ∗ ( x−x5 ) ∗ ( x−x6 ) = 0 −−>\n", "(x - 2.4892886)*(x - 0.2891685)*(x + 2.7784571)\n" ] } ], "source": [ "import numpy\n", "import sympy\n", "\n", "x = numpy.poly ([0]) \n", "x1 = numpy.poly ([0]) \n", "x2 = numpy.poly ([0]) \n", "x3 = numpy.poly ([0]) \n", "x4 = numpy.poly ([0]) \n", "x5 = numpy.poly ([0] ) \n", "x6 = numpy.poly ([0]) \n", "p = x**3-6*(x**2)+5*x+8\n", "print \"The roots of above equation are:\"\n", "print numpy.roots ([1, -6, 5, 8])\n", "print \"let x1 = -0.7784571 x2 = 2.2891685 x3 = 4.4892886\"\n", "x1 = -0.7784571\n", "x2 = 2.2891685\n", "x3 = 4.4892886\n", "print \"Now, since we want equation whose sum of roots is 0. sum of roots of above equation is 6, so we will decrease\"\n", "print \"Value of each root by 2 i.e. x4 = x1-2\"\n", "x = sympy.Symbol('x')\n", "x4 = x1-2\n", "print \"x4 = \", x4\n", "x5=x2-2\n", "print \"x5 = \", x5\n", "x6=x3-2\n", "print \"x6 = \", x6\n", "print \"Hence, the required equation is ( x−x4 ) ∗ ( x−x5 ) ∗ ( x−x6 ) = 0 −−>\"\n", "p1 =( x-x4 )*(x-x5)*(x-x6)\n", "print p1" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 1.8, page no. 28" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The roots of above equation are: [ 3. 2. 1. 0.5 0.33333333]\n" ] } ], "source": [ "import numpy\n", "\n", "x = numpy.poly ([0]) \n", "p = 6*(x**5)-41*(x**4)+97*(x**3)-97*(x**2)+41*x-6\n", "print \"The roots of above equation are:\",numpy.roots([6,-41,97,-97,41,-6])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 1.9, page no. 28" ] }, { "cell_type": "code", "execution_count": 38, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The roots of above equation are: [ 2.00000000+0.j -1.00000000+0.j 0.83333333+0.5527708j\n", " 0.83333333-0.5527708j 1.00000000+0.j 0.50000000+0.j ]\n" ] } ], "source": [ "import numpy\n", "\n", "x = numpy.poly([0]) \n", "p = 6*(x**6)-25*(x**5)+31*(x**4)-31*(x**2)+25*x-6\n", "print \"The roots of above equation are:\", numpy.roots([6,-25,31,0,-31,25,-6])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 1.10, page no. 29" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The roots of above equation are: [ 2.+3.46410162j 2.-3.46410162j -1.+0.j ]\n" ] } ], "source": [ "import numpy\n", "\n", "x = numpy.poly ([0]) \n", "p = x**3-3*(x**2)+12*x+16\n", "print \"The roots of above equation are:\", numpy.roots([1,-3,12,16])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 1.11, page no. 30" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The roots of above equation are: [ 0.28571429+0.24743583j 0.28571429-0.24743583j -0.25000000+0.j ]\n" ] } ], "source": [ "import numpy\n", "x = numpy.poly ([0]) \n", "p = 28*(x**3)-9*(x**2)+1\n", "print \"The roots of above equation are:\",numpy.roots([28,-9,0,1])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 1.12, page no. 31" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The roots of above equation are: [-5. +0.00000000e+00j 2. +2.90013456e-08j 2. -2.90013456e-08j]\n" ] } ], "source": [ "import numpy\n", "\n", "x = numpy.poly ([0]) \n", "p = x**3+x**2-16*x+20\n", "print \"The roots of above equation are:\",numpy.roots ([1,1,-16,20])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 1.13, page no. 31" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The roots of above equation are: [ 1.08727971+1.17131211j 1.08727971-1.17131211j -1.17455941+0.j ]\n" ] } ], "source": [ "import numpy\n", "\n", "x = numpy.poly ([0]) \n", "p = x**3-3*(x**2)+3\n", "print \"The roots of above equation are:\",numpy.roots ([1,-1,0,3])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 1.14, page no. 33" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The roots of above equation are: [ 6. 4. 3. -1.]\n" ] } ], "source": [ "import numpy\n", "\n", "x = numpy.poly([0]) \n", "p = x**4-12*(x**3)+41*(x**2)-18*x-72\n", "print \"The roots of above equation are:\",numpy.roots ([1,-12,41,-18,-72])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 1.15, page no. 34" ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The roots of above equation are: [-2.30277564 2.61803399 1.30277564 0.38196601]\n" ] } ], "source": [ "import numpy\n", "\n", "x = numpy.poly ([0]) \n", "p = x**4-2*(x**3)-5*(x**2)+10*x-3\n", "print \"The roots of above equation are:\", numpy.roots ([1,-2,-5,10,-3])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 1.16, page no. 35" ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The roots of above equation are: [ 3.73205081+0.j -2.00000000+1.73205081j -2.00000000-1.73205081j\n", " 0.26794919+0.j ]\n" ] } ], "source": [ "import numpy\n", "\n", "x = numpy.poly ([0]) \n", "p = x**4-8*(x**2)-24*x+7\n", "print \"The roots of above equation are:\",numpy.roots ([1,0,-8,-24,7])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 1.17, page no. 35" ] }, { "cell_type": "code", "execution_count": 16, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The roots of above equation are: [ 6.05932014 -1.65491082 1.59559067]\n" ] } ], "source": [ "import numpy\n", "\n", "x = numpy.poly ([0]) \n", "p = x**4-6*(x**3)-3*(x**2)+22*x-6\n", "print \"The roots of above equation are:\",numpy.roots ([1,-6,-3,22.-6])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 1.18, page no. 37" ] }, { "cell_type": "code", "execution_count": 18, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "From the graph, it is clear that the point of intersection is nearly x = 1.43\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXwAAAEZCAYAAACU3p4jAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xd41FXa//H3TZDQQlUQBRRRioAUBTuEFWmK+6wgiIoN\neKyouys+K4KEVdF1VUAsPxbFrthQF0GqmQRECF1KpAcQpBfpIcn5/TFJSIWZJJOZZD6v65rLmfm2\nk3G459znnO855pxDRERKvzLBLoCIiBQPBXwRkTChgC8iEiYU8EVEwoQCvohImFDAFxEJEwr4IsXM\nzKLNbGuwyyHhRwFfSgwzSzKzE2ZWM8f7S80szczqF/C8V5jZ92a2z8z2m9kqM3vezKoVTclFQoMC\nvpQkDtgI9M14w8xaABXSt/nNzK4BYoE5QGPnXHWgK5ACtMznmIiCXEsk2BTwpaT5GLg7y+t7gA8B\nAzCztma2w8wsYwczu9XMluVzvpeBCc65fznndgM457Y652Kcc3Hpx99rZj+Z2WtmtgcYbmYXmdmP\nZrbHzHab2cdmVjXLNZPM7B/p2cI+M5tgZpFZL2xmfzOznWa23czuLfxHI3J6CvhS0swHqphZk/Sa\ndh+8PwIAOOcWAnuBLlmO6Qd8kPNEZlYJuAr42ofrtgM2ALWAkXh/YF4A6gBNgXpATI5j7gA6Aw2B\nRsDQLNvOBaoA5wH9gTez/mCIBIICvpREH+Gt5d8IrAa25dj+IXAXgJnVwBt0P83jPNXx/hvYkfGG\nmb2c3o5/2MyeybLvdufcm865NOfccefcBufcbOfcSefcHmAU0CHL/g54wzm3zTm3H++PQ98s208C\n/3TOpTrnfgAOA439/SBE/FE22AUQ8ZPDG/DnAA3I0pyTxSfAKjOrCPQG4p1zO/M4134gDW8tfS2A\nc+4p4Ckz+wjI2lafbVSNmdUGxgDXAVF4fzj25Th/1mO24K3NZ9jrnEvL8vooUDmPMooUGdXwpcRx\nzm3B23nbDZiUx/bf8Db93Iq3pv9RPuc5AiwAeuax2cj+Q5KzU3gkkAo0d85VxdtslPPfU/0cz7fn\n/ReJFA/V8KWk6g9Uc84dM7O8vscfAv/A27ae60chi6eA6Wa2DXjPObfLzOoCF5Je689HZeAg8IeZ\nnQ8MzrHdgIfN7HvgGPAMMPHMf5ZI4KiGLyWSc26jc25J1rdy7DIJb636G+fc8dOc5yfgT0B7YI2Z\n7Qd+wDtUc2yWc+c8/wigDd6gPxlvx2/WfRzefoMZeDt71wHPn6a8IgFngVwAxcyexptSpwErgPuc\ncycCdkGRLMxsHfCAc+7HIFx7E9A/GNcWyU/AavhmdiEwEGjjnGuBtwPs9kBdTyQrM7sVcAq4IqcE\nsg3/D7xDzyqaWSpQkdzD50SKnJl5gCZ4O1JFJF2gm3T+F3gVb6fVdOec/gGKiARJIJt0GgJP4B3t\ncB5Q2czuDNT1RETk9ALZpHMFMM85txfAzCYB1+C9KYb09zRSQUSkAJxzOW84PKNADsv8FbjKzCqk\nT2TVCe9t8Nk45/Qoosfw4cODXobS9NDnqc8zVB8FFbCA75xbjvfml0XAL+lv/ydQ1xMRkdML6J22\nzrmX8U4/KyIiQaY7bUuR6OjoYBehVNHnWbT0eQZfQIdlnvHiZi6Y1xcRKYnMDFeATltNniYiBZJl\nUTEJoKKsFCvgi0iBKUMPrKL+UVUbvohImFDAFxEJEwr4IiJhQgFfRCRMKOCLSKl01113UadOHapU\nqcJFF13ECy+8EOwiBZ3G4YtIgaSPBc9z25Qp8bz++gxOnChLZGQKjz3WmZtuau/zuQt7PMCqVato\n2LAh5cuXZ82aNXTo0IH333+frl27+nWeYMrvM9Y4fBEJCVOmxPP449PZsOFUjXrDhmcAfArahT0+\nQ7NmzbK9Llu2LLVq1cq134YNG2jXrh2zZs2idevWbN++nZYtW/L111/Tvr1/PzIhL8gzvjkRKZny\n+/fbufMzDlyuR5cuQ306b2GPz+qhhx5yFStWdBEREe7tt9/Od7/x48e7Sy+91B09etR17tzZDR48\n2O9rBUJ+n3H6+37HXLXhi0iROnEi74aD6dMjMOOMjxkz8j7++PEIv8vy1ltvcfjwYWbNmsXQoUNJ\nSEjIc78BAwZw8cUX065dO3bu3BnS7f0/bir4Ms0K+CJSpCIjU/J8v0uX1Dzq7bkfnTvnfXz58qkF\nKo+ZER0dzW233cZnn31G9+7diYqKIioqis8++yxzvwEDBrBq1SoGDRrEWWedVaBrBZInycOgqYPo\n8VmPAp9DAV9EitRjj3WmYcNnsr3XsOEQBg26sViOz8/JkyepVKkSU6dO5dChQxw6dIi+ffsCcPjw\nYZ544gkGDBjA8OHD2b9/f6GuFQiX1b6M6RumM6brmAKfQ6N0RKRAzjRKZ+zYmRw/HkH58qkMGnSj\n36N0CnP87t27mT17Nj169KB8+fLMmjWL3r17M2vWLNq2bZtr//79+3P06FE+++wzHnjgAQ4cOMDn\nn3/u8/UCJeMzPpl6kq6fdKVV7Va82uXVAo/SUcAXkQI5XcAPtj179tCrVy+WL1+Oc45GjRoxdOhQ\nbrnlllz7fvfddzz66KOsWLGCatWqceTIEVq1asU///nPzAwgWMyMtLQ0Hvz+QbYf3s63fb4lokyE\nAr6IFK9QDvilhZkx6udRTFg6gZ/u/4moyKjM9xXwRaTYKOAHnplR55U6/Nz/Zy6odkG29wsS8APa\naWtmjc1saZbHQTN7LJDXFBEpTb7u/XW2YF8YxVbDN7MywDagnXNua/p7quGLlFCq4QdeUU+tUJzD\nMjsBGzKCvYiIFK/iDPi3A58W4/VERCSLYmnSMbNyeJtzLnXO7c7yvpp0REooNekEXkmdLbMbsDhr\nsM8QExOT+Tw6Opro6OhiKpKISMng8XjweDyFPk9x1fAnAj845z7I8b5q+CIllGr4gVfiOm3NrBLe\nDttJgb6WiEggjBs3jr/+9a9Fft4TJ07QtGlT9uzZU+TnzkvAA75z7ohz7mzn3KFAX0tExFf33Xdf\nrvc2b97MiBEjsr2XnJzMCy+8wFNPPVWg68TGxtKxY0eqVatGgwYNsm2LjIzk/vvv56WXXirQuf2l\n2TJFJGA8SZ6gHp/T1q1b+dvf/sbRo0cBWLlyJU899RQLFixg5MiRpKR4p2aeM2cOL774IuCda6dp\n06bUqVOnQNesXLkyAwYM4N///nee2/v27csHH3zAyZMnC3R+fyjgi0jABDPgb9++nZ49e1KrVi0u\nuugixo4dS7169ejZsyf9+vUjNjaWcePG8Y9//IMrr7yS5s2b8+CDDzJx4kSmT5/OE088AcAPP/xA\nhw4dMs/7+eefc9FFF3Ho0KHM7XXq1GHv3r15lqNt27bceeeduWr3GerWrUv16tX5+eefC/y3+koB\nX0RKnbS0NHr06JG5Ru3s2bMZPXo0M2bMwDmHmbe/s0yZMtk6RfN6f+XKlTRu3Dhznz59+nDNNdfw\n2GOPsXfvXgYMGMC7775LzZo1C1zepk2bsnz58gIf7ystYi4iRcqT5MmsmY+IG8GIuBGnP8BH0RdG\nE31htE/7Lly4kD179jB06FAAGjRowIABA5g4cSLVq1fno48+4uGHH2bAgAH861//omfPnqxYsYK3\n336bjz/+mI4dOzJmzBiefvppDhw4QFRUVLbzv/nmm1x22WV07NiRW265he7duxfqb4uKiuLAgQOF\nOocvFPBFpEjlDMwx0TEFPleMJ6ZAx2/evJnt27dTvXr1zPdSU1Np3749EyZMyHyvRYsWvPzyywBc\neeWVbN68GYD27dvTvr13wZXq1avzxx9/ZDt/1apV6dWrF6NGjWLSpFMDEEeOHJnZ9t+vXz/eeust\nn8p76NChbGUNFDXpiEipU79+fRo0aMD+/fszH3/88Qfff/995j7vvfderuMuuOAChg8fnu29yy67\njLVr12Z7b9myZbz33nvccccdDBo0KPP9IUOGZC6f6GuwB0hMTKRly5Y+719QCvgiEjC+NsEU9fHt\n2rUjKiqKl19+mWPHjpGamsrKlStZtGiR3+fq3r07cXFxma+PHz/OXXfdxYsvvsiECRPYtm0bb7/9\ndr7HO+c4fvw4J0+exDnHiRMnSE5Ozty+bds29u3bx1VXXeV32fzmnAvaw3t5ESmJQv3f7/bt213f\nvn3dueee66pXr+6uvvpqN3v2bL/Pk5yc7OrXr++2b9/unHPuiSeecN27d8/cvnz5clejRg23fv36\nPI+PjY11ZubMzJUpU8aZmevYsWPm9pdfftn9/e9/z/PY/D7j9Pf9jrla8UpECiScplYYP348q1ev\nZtSoUUV63hMnTtCqVSvmzJnD2WefnWt7UU+toIAvIgUSTgE/WErcXDoiIhIaFPBFRMKEAr6ISJhQ\nwBcRCRMK+CIiYUJTK4hIgWVMNiYlgwK+iBSIhmR6P4OHpjzE6t2r+eHOH6hUrlKwi3RaCvgiIgXg\nnOOv0//Ksh3LmNlvZsgHe1DAFxHxm3OOIbOHEL85nh/v+ZGoyKgzHxQCAtppa2bVzOwrM0s0s9Vm\nVgyzA4mIBNZz8c/x/brvmdFvBtXKVwt2cXwW6Br+GGCqc66XmZUFQj/nERHJhyfJw8JtC/l0xafE\n3RvH2RVzz38TygI2l46ZVQWWOucuOs0+mktHREqMbh93Y+2+tcTdG0fdKnWDVo5QnEunAbDbzN4z\nsyVmNt7MKgbweiIiATN+8Xjm/TaP2XfPDmqwL4xANumUBdoAjzrnFprZaOAfwLNZd4qJicl8Hh0d\nTXR0dACLJCLiH0+Sh1fmvUL85ngOJR/i/WXvA/6tsVvoMng8eDyeQp8nkE065wI/O+capL++DviH\nc+7mLPuoSUdEQtro+aMZs2AMs++ezYfLPyzUGr1FJeSadJxzO4CtZtYo/a1OwKpAXU9EpKi9NPcl\n3lz4JnH3xnFR9Xy7I0uMQI/SGQR8YmblgA3AfQG+nohIoTnnGBE3gs9XfU7cvXGcF3UeUPg1eoNN\nK16JiGThnOPp2U8zZd0UZvWbRe3KtYNdpFwK2qSjO21FRNJlTJcQvzme2HtiS9w4+zNRwBcRAdJc\nGg9PeZhlO5bx4z0/lqg7aH2lgC8iYS81LZUBkwewft96ZvSbQZXIKsEuUkBoARQRCVueJA8nU0/S\n75t+bDm4hWl3Tiu1wR5UwxeRMDZ742zGJozl2MljfN/3eyqcVSHYRQoo1fBFJCwdTznO56s+JzUt\nlW/6fFPqgz1oWKaIhBlPkodp66cxceVENh/czNDrhxJRJqJYp0oorIIOy1TAF5Gw8vuh3+n2STeu\nq38dNSrU4J8d/xnsIvkt5KZWEBEJNWv3ruXaCddy26W3MbbbWMpYeIVAddqKSFhI2JbAnyf+mec7\nPk//Nv2Bkj9Vgr/UpCMipd609dPo900/3r3lXW5pfEuwi1NomlpBRCQPHy3/iCdnPsm3fb7l2vrX\nBrs4QaWALyKl1ivzXuH1Ba8Te08sl55zabCLE3QK+CJS6qS5NAbPGMy0DdP46f6fqFe1XrCLFBIU\n8EWkVJm5YSbvL3+fzQc2M+e+OdSoUCPYRQoZ4TUmSURKtUMnDvHglAc5nHyYmf1mKtjnoFE6IlIq\n/H7od3p81oM0l0bCwATKlim9DRi68UpEwtY7S96hyRtNiCoXxdIdS3k+/nliPDF4kjzBLlpIUQ1f\nREq07379jgGTB/Bm9zfp3aw3MZ4YYqJjgl2sgArZcfhmlgT8AaQCJ51z7QJ9TREp/ZxzvPrzq4ya\nP4opd0yh3fkKLWdSHI1cDoh2zu0rhmuJSBhITk3m4SkPs2j7Iub3n59t2GW4TZfgj+Lq1fA79RAR\nycu+Y/vo+UVPqkRWYe79c6lcrnK27Qr4+SuOTlsHzDKzRWY2sBiuJyKl1Nq9a7nqnau4os4VTOo9\nKVewl9Mrjhr+tc65383sHGCmmf3qnJuTsTEmJiZzx+joaKKjo4uhSCJS0szeOJs7Jt3ByD+NzJzt\nMlx4PB48Hk+hz1Oso3TMbDhw2Dn3avprjdIRkdPyJHlYt3cdQ2OH8nmvz9VkQ4iO0jGzikCEc+6Q\nmVUCOgMjAnlNESk9UtNSeXrW0+w7vo+5983lkpqXBLtIJVqgm3RqA9+YWca1PnHOzQjwNUWkFNh3\nbB93TrqTHYd3sPiBxZomoQgENOA75zYBrQJ5DREpfd5Z8g6DZw6mSc0mJB1M4vUFrwOUqIXGQ1Hp\nnWxCREqkj5Z/xNOzn+btm97m9ua3h8Wds8VFAV9EQkJyajJ/n/53pm2YRuw9sTSv1TzYRSp1FPBF\nJOi2H9rObV/eRs0KNVk4cCHVylfL3KYmnKKj2TJFJKjmbJ5D2/Ft6XZxN769/dtswR4U8IuSavgi\nEhTOOcYmjOWFOS/w/p/fp9sl3YJdpFJPAV9EipUnyUO789sxcPJAVu1axc/9f+ai6hcFu1hhQU06\nIlKsJiVO4up3rybCIpjXf56CfTFSwBeRYjMpcRLvLnmXgW0G8sH/fEDFsyoGu0hhRQFfRAJuxoYZ\ntP1PW/p/15+jKUfZc3QPI+JGaAnCYqY2fBEJqMTdiQyeOZjGNRsz6+5ZjJo/SjdSBckZa/hm1tvM\nqqQ/H2Zm35hZm8AXTURKMucc7y19j/bvt+fRto/yea/PqVq+arCLFdZ8qeEPc859YWbXATcArwBv\nA1cGtGQiUmL9ceIPHpryEMt3LMdzj4dmtZplbtO4+uDxpQ0/Nf2/NwPjnXPfA+UCVyQRKckWbV9E\nm3FtqHxWZRIGJmQL9qCAH0y+BPxtZvYfoA8wxczK+3iciIQJT5IH5xyjfh5F90+68+INLzKuxziN\nwgkxZ1zxKn3hkq7AL865dWZWB2hRFPPaa8UrkdJh8IzBJO5JZPfR3UzsOZEG1RsEu0ilWkFXvMq3\npp7RUQtEArHAXjOrAZwAFhWolCJS6sRuimXc4nE0O6cZc++bq2AfwvKt4ZvZFOfcTWaWBOTayTlX\n6P+rquGLlFzT109nuGc4q3av4nDyYYZ3GA5okZLiUNAafrEuYp7r4gr4IiXSwm0Lufvbu2lZuyVv\ndn+TsQljNba+GBV5k06WE/fP8bqsmQ3390IiUvKdTD3Js7HPcvNnNxPTIYaJvSZSs2LNYBdLfOTL\nOPxOZtYTGADUAN4D4n29gJlF4G3z/80516NApRSRoFu1axV3f3s3tSvVZukDSzkv6rzMbWrCKRl8\natIxs9uBN4AjwJ3Oubk+X8Dsb8DlQJRz7pYc29SkIxLiUtNSGT1/NC/99BIj/zSSAW0GYOZ3a4IU\noUA26TQCHgMmAVuAu9KHavpSqLpAd+AdQN8QkRIiY1KzTfs30fGDjny35jsWDFjAwMsHKtiXYL7c\nQPVf4Fnn3P8CHYB1wEIfzz8KGAykFax4IhIMsZtiGb94PO3eacctjW8h9p5YzVtfCvjShn+lc+4g\ngHMuDXjVzCaf6SAzuxnY5ZxbambR+e0XExOT+Tw6Opro6Hx3FZFisO2PbXy68lOiykXlmgdHgsPj\n8eDxeAp9Hl/b8FsAlwLlSR+T75z78AzHjAT6ASnpx1UBvnbO3Z1lH7Xhi4SIHzf9yKvzXiU2KZZj\nKccYev1QIspEaFx9CArYOHwzi8HblNMMmAJ0A+Y653r5UbgOwJM5R+ko4IuEhsTdiQycPJA0l8b4\nHuP5cvWXGlcfwgLWaQv0AjoBvzvn7gNaAtX8vRB53K0rIsGVnJrMc3HPcf1719O3eV/m3j9XTTil\nmC9t+Mecc6lmlmJmVYFdQD1/LuKciwPiClJAEQmMn7f+zMDJA2lQvQFLH1hKvaqn/lmrCad08iXg\nLzSz6sB4vDdQHQHmBbRUIlLkPEkeoi+M5tCJQzzz4zN8ufpLRncZTe9mvXMNtVTAL53OGPCdcw+n\nP/1/ZjYdqOKcWx7YYolIUfMkeTiSfISHpz7MDQ1uYNXDq6hRoUawiyXFSJOniYSBXUd2ccMHN3A0\n5Sjjbh5Hp4s6BbtIUgiB7LQVkRJq9sbZdP+kOw1GN2Dl7pXc3ux25m6Zm3knrYSXfJt0zOwH4GHn\n3KZiLI+IFJGftvzEkzOfpGpkVRYMXMBXq7/SUMswd7oa/gRgupk9Y2ZnFVeBRKRwdh7eyT3f3kOf\nr/rw1DVPEXtPLM1rNQ92sSQE5FvDd859mV7LfxZYZGYfcWosvXPOvVYcBRQR36SkpfBmwps8P+d5\n7mt1H4mPJBIVGZW5XSNv5EyjdE4Ch/FOjRCFJkETCRkZwywB4jfH88jUR6hdqTbx98bT9JymufZX\nwJfTteF3BV4DJgOtnXNHi61UInJGniQPjWo2YvDMwczZPIdXO79Kr0t7afpiydfp2vCfAW5zzv2f\ngr1IaElOTWbe1nlc9vZlXFD1AhIfSeS2Zrcp2MtpnS7gt3fOrSq2kojIGcVuiqXPl30495Vzmblx\nJn2b96VcRDkWbvd1iQoJZ6frtNUdUSIhZOG2hQz3DOfA8QNM7DWReVvnaZil+EU3XomEuM0HNnPn\npDv5n8//h3ta3sPSB5bSuWHnYBdLSiAFfJEQdfD4QZ6e9TRt/tOGi6tfzJpH19C/TX8iykQAGnUj\n/lPAFwkhniQPJ1NP8tbCt2j8RmN2HtnJLw/+woiOI6hcrnK2fRXwxV+aPE0kRDjnuOPrO1i2cxnn\nR53PK51fodW5rYJdLAlBBZ08zZf58EUkwH7e+jNDfhzCyp0r+eAvH9Dt4m4aYilFTk06IkG0bMcy\nrn7narp+0pWoclHsObaHhG0JjIgboRktpciphi8SBL/u+ZVnY59lzpY5DLluCP97+f8SWTaSGE+M\nhlpKwAQ04JtZebxr2UYC5YDvnHNPB/KaIqFs0/5NjIgbwdR1U/n71X/nvT+/R6VylYJdLAkTAW3S\ncc4dBzo651oBlwEdzey6QF5TJJRkNMtsP7SdR6Y8whXjr+CCqhewbtA6/u+6/8sV7DXyRgIp4E06\nWebhKQdEAPsCfU2RUDF13VSmrJ3Cu0vf5f7W9/PrI79yTqVz8t1fAV8CKeAB38zKAEuAhsDbzrnV\ngb6mSLDtPrKb0fNHMzZhLPe1uo8VD63g/CrnB7tYEuaKo4afBrQys6p4V9CKds55MrbHxMRk7hsd\nHU10dHSgiyQSML8f+p3Hf3icyWsn06xWM46nHKdWpVqMXzKe6AujVYOXAvF4PHg8nkKfp1hvvDKz\nYcAx59wr6a9145WUClsObuHln17m0xWfcnfLu3nymiepW6WuRt1IQBT0xquAdtqa2dlmVi39eQXg\nRmBpIK8pEmhZx8dv2LeBgf8dSOtxral0ViUSH0lkdNfR1K1SN3gFFMlHoJt06gAfpLfjlwE+cs7N\nDvA1RQLKk+ShdqXavDj3Raaum8rDbR9m7aNrqVmxZq591YQjoURz6Yj4YfmO5dzx9R3sObaHx698\nnEfaPkLV8lWDXSwJMyHZpCNSGjjneOWnV2j4ekOum3Adq/espn/r/iSnJrN0h1oopeRQDV8kHydT\nT/L5qs95Zd4rpKSl8OQ1T9K3eV9enPuiOmIlqDRbpkgROXj8IOOXjGfMgjE0rtmYlzq9RJeGXTR7\npZR4CvgS9jxJHqIvjGbLwS2MmT+G95e/T7eLu/Hf2/9L6zqtc+2vjlgpqdSkI2HvgckPcPjkYaat\nn8Z9re7jsSsfo37V+sEulki+Ctqko4AvYSklLYXvfv2OsQljWfL7Ep7t8CwD2wzUiBspETRKR8QH\nu47s4oX4F6jzah3+Nv1vnFPxHA4lH+Jw8mFGzR+lRUekVFMbvpRKGe3yGRb8toA3Fr7B92u/p1fT\nXszqN4uW57YE0PQHEjYU8KVU8iR5uKruVXyx6gveSHiDPUf38EjbRxjTdQw1KtQIdvFEgkIBX0qd\nLQe3MHvjbN5a+BZt6rRheIfhdL24KxFlIvLcX6NuJFwo4EupkJKWwktzX+LD5R+y9eBWjqce59G2\nj1KzYk0qlauUb7AHBXwJHxqlIyXapv2beGfJO7y37D0aVG/AwDYDue3S2/j3vH+rXV5KLd1pK6Va\n1k7Y5NRkvvv1O/6z5D8s27GMu1rcxcx+M2lWq1lwCykS4hTwpUTwJHmoU7kO7yx5hw9/+ZBLz7mU\ngW0GcmvTWylftnyu/dVMI5KbmnQkpB1OPsykxEkMix3GiZQT3NPyHga0GcAlNS8JdtFEgkZNOlJq\npKal4kny8K+f/kX85njqV63PloNbGHr9UCLKRLDt0DYFfJECUA1fgiLnjVEAibsT+XD5h3y84mPO\nqXgOd7e8mzta3EGtSrV0c5RIFqrhS4mSEfD3HN3DxJUT+XD5h/z2x2/c2eJOpt4xlRa1WwS7iCKl\njgK+FLsTKSdI3J3IXz7/C7GbYrmp0U081/E5brjoBsqWyfsrqU5YkcILaJOOmdUDPgRqAQ74j3Pu\n9Szb1aQTJk6mnmTU/FF8uuJT1uxZw/HU49zS6BYuPedSulzcRQFdxA8hOT2ymZ0LnOucW2ZmlYHF\nwP845xLTt7vOnZ/hscc6c9NN7QNWDikeOdvlU9NSmbtlLhNXTuTrxK9pWKMhtze7ndua3cZ/Fv9H\nbfIiBRSSbfjOuR3AjvTnh80sETgPSMzYZ8aM59mw4RkABf0SzpPkocMFHUjYlsDElRP5YvUX1KpU\ni9ub3c6CAQtoUL1BsIsoEtaKbZSOmV0IxAHNnHOH099z3pYeuPHGYcyY8Vyex06ZEs/rr8/gxImy\nREamKCMIMc45lu1YxqAfBrHt0DYiIyLp27wvfZr3ocnZTfI8Jq9ROiLim5Cs4WdIb875Cng8I9if\nEgPAzJlzqF/fQ9u20TRrBpdeCs2awfr18QwePJ0NG17IPEIZQfCluTTm/zaf0T+PZsbGGZgZB44f\n4IHLH6B2pdp0uLBDvsEe1Akr4g+Px4PH4yn0eQJewzezs4DvgR+cc6NzbMtWw3/11edYvRpWrfI+\nVq+GNWuG4tzzuc6rjCDwctbCT6aeJG5zHJMSJ/HNr99wdsWz6dm0J7c2vZUWtVowIm6E2uVFikFI\n1vDNzIAK4+swAAARzklEQVR3gdU5g31WDRsO4fHHu9KiBbTIMfy6ffuyzJmT+5hZsyJo0oRs2YAy\ngqKVsYjIzA0z+TrxayavnczFNS7m1ia3EndvHI1qNgp2EUXED4Fu0rkWuAv4xcyWpr/3tHNuWsYO\nXboMY9CgrvkG4woVUvJ8v1OnVF577VQ28NVXMGIErFkzA+deyLbvhg0vMGbMsDyvoWwgt71H9zJt\n/TS+XP0lo+ePptW5rbi16a081/E56lWtl+9xaqYRCW2BHqUzlzMslD5tWt7NMhkee6wzGzY8k63G\nnpERNG8OzZtn39+fjGDv3nhee206GzeGTzaQV2epc441e9cwec1kPvrlI9bsWcOF1S9k7d61PHn1\nk1QqV4nLal922mAPCvgioS7k77TNCLxjxw7j+PEIypdPLbKM4IcfZnD0aO5sYOTIYXTq1J7IyNzn\nKekZQUbAP5l6kjlb5jB5zWQmr53MidQT3HzJzbzU6SU6XtiRCmdV0Pw1IqVMyAd88AZ9X4OqPxlB\ndHRZ4uJyn2Pp0giqVoULLyxdGcHeo3v5Zecv9PmqDzM2zOCSGpfQo1EPvur9FS1rt8Tb5SIipVWJ\nCPj+8CcjiIzMOxto3z6V776DtWvJHDX05ZcwbZp/GUGws4GUtBQStiUwbtE4Zm2axZ4je0hOS6ZH\nox7c3+p+ejTucdpmGDXRiJQupS7gg+8ZQX7ZwKBBXYmMJNeoIV8zgmbN4PjxeCZOnM7WrYHNBnK2\nyf/2x29MXz+daRumMXvjbOpVrUfXhl356C8fcW29a3lx7os+N9Mo4IuULqUy4PvK3/4BfzKCDz6Y\nwa5dubOBIUOGUb9+exo1okgyglkbZ5GSlsK09dOYtn4avx/+nRsvupGbLrmJMV3HcF7UeT5+GiJS\n2oV1wIei6R/IKyOIjy/Lrl25z7F9ewS9e8OmTQXLCFLTUlm2YxlvTB3P5JUz2Vc1iTemvM/NTTrz\n7i3vcsV5VxBRJiLfv0G1dpHwFfYB3x9F0T9w+eWpTJsGJ06cJiO40ANJ0WzY8AJPDxlKavVabGI2\ncVtn40nyUDa1HAd/L0Pyjuuh+kYOLhnA1E2zaVZ5Plf2vfK0f4MCvkj40hKHATJlSjyPPz49VzYw\nZkzePxDR0THExcV4X3T5K+xsCQ1mYw2/I8KqkbbhBmoduYHWVf/EmkVvsXFj+nQT0THg8R7Xpcuw\nfO9rCHYHsogUnZCcWiGcZc0GdpTfyrnH6+WbDSQdSGJv3SVwywC4IA6itsG6m2HjDVybVoX4b94g\nOdlYt86bDTw1P+//bYmJEUyc6G0iytpHkNePT0kaTioiRUMBP4Ay+gey3sDknGPdvnXEb44nbnMc\n8ZvjOZ5ynFqt61BhzSqObewMbf8f7L6U6vU/pvttvTAzIiPJvI9gwoQUtmxJv0hSdOb1zjorNXOK\niax9BMuWzch27wB4O5DHjtV0EyLhRAE/wNJcGruO7OLNhDeJ3xJP/OZ4ypYpS4cLOtDhgg4MvX4o\njWo2wsyYMiWesWNn8uumDjSJTGVQ/xfyDLTZOo/TA/6p5iLvPln7CBYt8j0jUDYgUnqpDb+A8lvA\n43DyYRK2JfDJL58QvzmerX9s5UTqCVrVbsUF1S7g9ua306dZn9Pe1erLlAYZPw6nOo9vzDcgd+ky\nlBkzck8x3bDhMFq1eo5Vq05lBPv3D2XXrtz7qn9AJHSoDb+YZSznt+XgFuZtnce8rfP4aetPrNm7\nhlbntuKautfw787/5uq6V/P2orf9mpPGl5E0RTGcNGdGsG4d9O6d93DSRYsiePbZU9NMKCMQKXkU\n8NP5suTesZPHWPL7EhK2JfDFqi8Yv2Q8KWkpXFvvWq6pdw19W/Tl8jqXE1k2j1nX/FDUQyd9GU6a\n0UdQr14KiYm5z3H++anAqWmok5K8GcG+fXnfYKb+AZHQo4CfLmfAT01L5dc9v5KwLYEF2xaQsC2B\nVbtWUbNiTc6LOo/EPYkMajeI6uWr07FBx5Cfk6aw002MHHkqGwDfM4KMyecaNYJZs5QNiASTAn66\nP078waTESSRsSyBhWwKLti+iVqVaXFn3Stqd1457Wt5Dq3NbUeGsCoBv7ewZQiHg+8rXm8t8zQi+\n+MLbcbxpE0RE5D35XH7ZACgjEClKpTrg57fYx7ZD21i8fTFfJ37N/N/ms/3Qdo6cPMLktZOpG1WX\nbpd048vbvqRmxZrBKXiQFUX/QF4ZwbXXlmXx4tzniI+PoGfP7FNRKyMQKXqlOuDHboqlQbUGLPl9\nCYt/X8zi3xez5PclOOe4/LzLubzO5fylyV9oU6cNE5ZOYETHET6fuyTV2gPJn4ygZs28p5to3TqV\n3r1PTUOd0UdQpowyApGiFOhFzCcANwG7nHMtzrT/mZyuYzUlLYU1e9awbMcylu9czvKdy5mzeQ7j\nFo/LDO4PXv4gl593OedHnZ9rWKS/i38o4J9S2P6BIUOyZwPgzQiuu64sixblPo8yApGCCXQN/z1g\nLPBhUZwsI+AfOH6A5Tu8QX35juUs27mMxN2J1K1SlzpRdYiwCGpXqs2xlGM8de1TgDdAh3rHamnn\n3+RzUKOG7xlBQfoIlA1IuAn0IuZzzOzCgh5/MvUk6/atY+WulazYuYIvVn/B+8veZ++xvbSo1YKW\ntVvS9vy2DGgzgBa1W1C5XOVsxzc+u3Gp7FgtyYqifyC/jMCfPoL16+MZPFjZgISXkGjDT3NpbD6w\n2RvYd61g5a6VrNy1knX71lGzQk2iIqOoVbEWa/eu5dG2j1KjQo0zDoWUks/fjMCXPoKM+wjWrJmB\nc7mzgTFj1D8gpVfQA/6V71zJ6t2rqVa+Gs1rNadFrRZ0vbgrT17zJE3Pbpo5DBL8GwoJqrWXBoHK\nCNq3L8ucObnPMWtWBE2anFqYRhmBlCZBD/jJs5JpWa4lF9e4mHtb30t0dHSRnVsBP7z4kxFUqJB3\nNtCpUyqvvebNBgqTESgbkKLk8XjweDyFPk/AJ09Lb8OfnNcoHX8nT/Nl+gMRX/i7QE379jHMmROT\n632zGBo1ismWDezdG89rr03PNiV1w4bPMGZMFwV9KRIhOXmamX0GdABqmtlW4Fnn3HsFPZ+CvRQV\nfxewP11G8Oqrp5aq/PJLmDYt79FCI0cOo1On9rkWrwdlBFI8Aj1Kp28gzy9SGEXRP/D4412zLV4P\nEB1dlri43OdYujSCatW8k85lZAPNmsGePbkzAvUPSCAEvQ1fpCQoigXs27dP5bvvsi9e/8UX/mcE\nygakoBTwRXxU2DuKBw3qSmQkfmUEVaueWqqyWTM4fjyeiROns3WrsgHxnwK+SBHzt3/An4zggw/y\nXn9gyJBh1K/fPtvi9RmUEUgGBXyRACiK/oG8MoL4+LzXH9i2LYLevbMvXl+QjEA/DqWbAr5IkBVF\n/8AVV6QybdqphWky7iPwJyPQcpWlnxYxFylB/L1/IDo6hri4mFzvn312DGefHZMtI1i2bCgbN2oB\n+5IgJMfhi0jRKqr+gcsvz50RLFqUdzhITIxg4sTsi9eDMoKSSDV8kVLMn4ygS5ehzJiRu4bfsOEw\nWrV6jlWrKFRGoGyg6KiGLyK5+JMR5Nd57P1x8L4uaEagbCA0qIYvIpmmTIln7NiZWX4cbsw3IPuT\nEezfP5Rdu9Q/UFRUwxeRQiuK4aR5ZQS9e+c9nHTRogiGDTs1jFQZQWAp4ItIgfjSXBQZCc2bQ716\nKSQm5j7H+eenYpZ9qUpvRpD3cFItYF84CvgiUmCFnW5i5Mjsi9OcOOG9s7hPn/wzgmefzb54vTIC\n3yngi0jA+dp5nHFn8ekyAjiVESQleTOCffv8ywjCNRtQwBeRYlEU/QN5ZQRn6iPImRHMmhW+2YAC\nvoiEHH8ygjP1EUD2PoKIiLynow6H/gEFfBEJSYHKCK69tiyLF+c+R3x8BD17Zl+8vrRlBAr4IlLi\n+ZMR1KyZ93QTrVun0rt39sXrC5IRhHI2oIAvIqVCYUcMDRmSPRsAb0Zw3XVlWbQo93nyygjWr49n\n8ODQzQYCvYh5V2A0EAG845z7VyCvJyJyJv5NRw01avieEaxZMwPncmcDY8aESP+Acy4gD7xBfj1w\nIXAWsAxommMfJ0UnNjY22EUoVfR5Fq2S+nl+/32ca9hwiAOX+WjY8Gn3/fdxufa9/vrh2fbLeJgN\nd40bO3frrc4NHercZ58598svzk2alNe5h+R57qzSY6ffcblMYH5GAGgHrHfOJTnnTgITgT8H8Hph\nz+PxBLsIpYo+z6JVUj/Pm25qz5gxXejSZRgdOsTQpcuwfNcfqFAh72ygU6dUvvoKevcGMzKf9+w5\nI1vzD2RkBDPzPM+UKfF06TK0wH9LIJt0zge2Znn9G3BlAK8nIhIQhe0fePzxrjRv7h1CmlX79mWZ\nMyf3eWbNiqBJk+z9A3v3xvPaa9PZuPEF4IXcB/kgkAFf02CKSFjxd4Ga02UEr712aqnKr76CH37I\nPVrIXwGbHtnMrgJinHNd018/DaS5LB23ZqYfBRGRAnAFmB45kAG/LLAGuAHYDiQAfZ1zedwPJyIi\ngRawJh3nXIqZPQpMxzti510FexGR4AnqilciIlJ8AjksEwAzm2BmO81sxWn2ed3M1pnZcjNrHegy\nlWRn+jzNLNrMDprZ0vRHwcdwhQEzq2dmsWa2ysxWmtlj+eyn7+gZ+PJZ6vvpOzMrb2YLzGyZma02\nsxfz2c/372ZBBu/78wCuB1oDK/LZ3h2Ymv78SmB+oMtUkh8+fJ7RwH+DXc6S8gDOBVqlP6+Mt98p\n5w2C+o4W3Wep76d/n2nF9P+WBeYD1+XY7td3M+A1fOfcHGD/aXa5Bfggfd8FQDUzqx3ocpVUPnye\nAH733ocr59wO59yy9OeHgUTgvBy76TvqAx8/S9D302fOuaPpT8vh7Qvdl2MXv76bAQ/4PsjrBq26\nQSpLaeCAa9LTu6lmdmmwC1RSmNmFeLOnBTk26Tvqp9N8lvp++sHMypjZMmAnEOucW51jF7++m6Ey\nW2bOX3z1JBfcEqCec+6omXUDvgUaBblMIc/MKgNfAY+n105z7ZLjtb6j+TjDZ6nvpx+cc2lAKzOr\nCkw3s2jnnCfHbj5/N0Ohhr8NqJfldd3096QAnHOHMtJA59wPwFlmViPIxQppZnYW8DXwsXPu2zx2\n0XfUR2f6LPX9LBjn3EFgCnBFjk1+fTdDIeD/F7gbMu/OPeCc2xncIpVcZlbbzCz9eTu8Q29ztvtJ\nuvTP6l1gtXNudD676TvqA18+S30/fWdmZ5tZtfTnFYAbgaU5dvPruxnwJh0z+wzoAJxtZluB4Xin\nS8Y5N845N9XMupvZeuAIcF+gy1SSnenzBHoBD5lZCnAUuD1YZS0hrgXuAn4xs4x/TEOA+qDvqJ/O\n+Fmi76c/6gAfmFkZvJXzj5xzs83sASjYd1M3XomIhIlQaNIREZFioIAvIhImFPBFRMKEAr6ISJhQ\nwBcRCRMK+CIiYUIBX0q19Cl7N5pZ9fTX1dNf1y+Cc/9U+BKKFB+Nw5dSz8wGAxc75x4ws3HARpdl\nbWWRcKEavoSDUcBVZvYEcA3wSl47mdk3ZrYoffGOgenvXWBma82sZvrMhXPMrFP6tsPp/61jZvHp\nC3qsMLPriunvEvGLavgSFsysC/ADcKNzbnY++1R3zu1Pn7ckAWif/ro/0AVYCFzknHsoff9Dzrko\nM/s7EOmcG5k+T0ylfGbcFAkq1fAlXHQDtgMtTrPP4+lzj/+Md9bBRgDOuXeBqsADwJN5HJcA3Gdm\nw4HLFOwlVCngS6lnZq2ATsDVwF/N7Nw89okGbgCucs61ApYBkenbKuL9AXBAVM5j01chux7vtLTv\nm1m/wPwlIoWjgC+lWnoTy9t4F+PYCvybvNvwqwD7nXPHzawJcFWWbf8CPsI7M+n4PK5RH9jtnHsH\neAfvSk8iIUcBX0q7gUBSlnb7t4CmZnZ9jv2mAWXNbDXwIt5mHcysA3A58C/n3KdAspndk35MRgdY\nR2CZmS0BegNjAvbXiBSCOm1FRMKEavgiImFCAV9EJEwo4IuIhAkFfBGRMKGALyISJhTwRUTChAK+\niEiYUMAXEQkT/x8QVA7U71nSYgAAAABJRU5ErkJggg==\n", "text/plain": [ "<matplotlib.figure.Figure at 0x7fa769850290>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "%matplotlib inline\n", "import matplotlib.pyplot as plt\n", "import numpy\n", "import math\n", "\n", "x = numpy.linspace(1 ,3 ,30)\n", "y1 = 3-x\n", "y2 = math.e**(x-1)\n", "plt.xlabel('X axis')\n", "plt.ylabel('Y axis')\n", "plt.title('My Graph')\n", "plt.plot(x, y1, \"o-\" )\n", "plt.plot(x, y2, \"+-\" )\n", "plt.legend([\"3-x\" ,\"e**(x-1)\"])\n", "print \"From the graph, it is clear that the point of intersection is nearly x = 1.43\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 1.19, page no. 40" ] }, { "cell_type": "code", "execution_count": 23, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "From the graph, it is clear that the point of intersection is nearly x=2.3\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEZCAYAAAB4hzlwAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl8lNW9x/HPL2FJWAMIshnZRKiyCYIghqCYICi4Veot\nilyxbqC1oq0CF1zA4u21CrUqWETQWiuggJEdB8Qqyo6AgEhEQDDKDiGQ5Nw/JokhTGASMpkl3/fr\nNS9m5jnzzMn4OL85z/n9zmPOOURERACigt0BEREJHQoKIiKSR0FBRETyKCiIiEgeBQUREcmjoCAi\nInkUFERCkJklmtn3we6HlD0KChJRzCzVzDLMrFaB51ebWbaZxRdzvx3M7EMz22dm+81sg5k9a2Zx\nJdNzkdCgoCCRxgHfArfnPmFmrYDYnG1FZmZdgI+BT4CLnXM1gJ5AJtCmkNdEF+e9RIJNQUEi0VvA\nnfkeDwCmAAZgZpeb2R4zs9wGZnazma0pZH/PA5Occ2Odc2kAzrnvnXOjnHNLcl5/l5l9amYvmNlP\nwEgza2Jmi83sJzNLM7O3zKx6vvdMNbM/5Yw69pnZJDOrmP+NzewPZrbXzHab2V3n/tGInJmCgkSi\nz4FqZtYi5xd7P7yBAgDn3JfAz0ByvtfcAbxZcEdmVhm4Apjux/t2BLYBdYAxeIPQaKAe0BK4ABhV\n4DX/BSQBTYHmwPB82+oC1YD6wN3Ay/mDikggKChIpJqKd7RwLbAR2FVg+xSgP4CZ1cT7xfxPH/up\ngff/kz25T5jZ8znzCkfMbFi+trudcy8757Kdc8edc9ucc4uccyedcz8BfwW65WvvgL8553Y55/bj\nDSC359t+EnjaOZflnJsDHAEuLuoHIVIU5YLdAZEAcHiDwidAY/KdOsrnbWCDmVUCbgOWOuf2+tjX\nfiAb76/9LQDOuceBx81sKpB/7uCUbCEzOx94CegKVMUbXPYV2H/+1+zAOyrI9bNzLjvf42NAFR99\nFCkxGilIRHLO7cA74XwdMMPH9p14TzPdjHfEMLWQ/RwFlgO3+NhsnBpsCk5kjwGygEudc9XxnqIq\n+P9cfIH7u33/RSKlQyMFiWR3A3HOuXQz83WsTwH+hPdc/2mBI5/HgXlmtgt4wzn3o5k1BBqRM3oo\nRBXgIHDIzBoAjxXYbsADZvYhkA4MA/519j9LJHA0UpCI5Zz71jm3Kv9TBZrMwPvr/H3n3PEz7OdT\n4GogAdhsZvuBOXjTVMfn23fB/T8FXIY3MMzGO1mdv43DO48xH+8E9Vbg2TP0VyTgLFAX2TGzGGAJ\nUBGoAMx0zj3ho904vEP8Y8BdzrnVAemQiA9mthW41zm3OAjvvR24OxjvLVKYgJ0+cs4dN7Puzrlj\nOUP3ZWbW1Tm3LLeNmfUCmjnnLjKzTsAreNP/RALOzG4GnL6URX4R0DkF59yxnLsV8GZpFMy86ENO\nbrhzbrmZxZnZ+YVkgYiUGDPzAC3wTv6KSI6ABgUziwJW4S3MecU5t7FAkwacmpK3E2gIKChIQDnn\nEkOgD42D3QeRggI60ZxTxNMW7xd9gpkl+mhWMH9ck2siIkFSKimpzrmDZpYCdAA8+TbtwpsOmKsh\np1eeYmYKFCIixeCcK/jD+4wCNlIws/NylxU2s1i8yw0UzCyaRc7CZWZ2BXCgsPkE55xuJXAbOXJk\n0PsQSTd9nvo8Q+X23nuOunUdF144DN8Z0v4J5EihHvBmzrxCFDDVObfIzO4FcM695pz7yMx6mdk3\nwFFgYAD7IyIScdLSYPBgWLsWZsyAffuSePjhYWzbNrpY+wtkSup6vIU7BZ9/rcDjwYHqg4hIJJs2\nDYYMgf79YfJkiI0Fb40ljB8/gnnzir5PLXNRxiQmJga7CxFFn2fJ0ufpW0rKUsaNm09GRjkqVsxk\nwIAkZs5MyBsddO58avvevRPo3TsBs2d97/AMAlbRXJLMzIVDP0VESlpKylIefnjeKaeDoqOH0adP\nMm+/nZAzOvDNzHBFnGhWUBCR0+S7KJ2ECV/fkcUJCjp9JCI+6YdY+CjJIK5VUkVEJI+CgoiI5FFQ\nEBGRPAoKIiKSR0FBRETyKPtIRPxWsIjqoYeS6N07odT3IYGjoCAifvFVRLVt2zAAv7/Uz3Uf27Zt\no2PHjixcuJB27dqxe/du2rRpw/Tp00lIUGApCTp9JCJ+GTdu/mmLrG3bNprx4xeU2j6aNm3K2LFj\n6d+/P+np6QwcOJCBAwcqIJQgjRRExC8ZGb6/LubNi8b/2inf+zh+PNrvfgwaNIjZs2fTsWNHoqOj\nGT26eKuBim8aKYiIXypWzPT5fHJyFs7h1y0pyfc+YmKyitSXQYMGsWHDBoYMGUL58uWL/LdI4RQU\nRMQvDz2URNOmw055rmnTJxky5NpS3ceRI0f4/e9/z6BBgxg5ciT79+/3+7VydloQT0ROk7OQ2mnP\np6QsZfz4BRw/Hk1MTBZDhlxbrOyjc9nH3XffzbFjx3jnnXe49957OXDgAO+++26R+hBpCvvvpVVS\nRaREFPYlE2wzZ85k8ODBrF+/nri4OI4ePUrbtm15+umnuf3224PdvaBRUBCRgArVoCC+lWRQ0JyC\niIjkUVAQEZE8CgoiIpJHQUFERPIoKIiISB4FBRERyaOgICIieRQUREQkj4KCiIS95557jnvuucfv\n9hs3buTyyy/3q+2tt97K3Llzi9u1QhW1z6VFFc0icppIr2i+5ZZb6NevH7fddttZ23755Zfcf//9\nrFixIuD9euedd/jwww8ZNWoUQ4cO5bPPPiMrK4vLL7+ccePG0bx5c5+vU0WziASVJ9UTEvsojh9+\n+AGPx8ONN97oV/vLL7+cQ4cOsXLlSp/bExMTWbJkSYn0LSUlhd69e3PgwAFuvPFGtmzZwt69e+nY\nsSN9+/Ytkfc4GwUFESmyYAaFsWPH0rBhQ6pVq0aLFi1YvHgxo0aN4o477gAgNTWVqKgopkyZwoUX\nXkjt2rUZM2ZM3usXLFhA+/btqVChAuC9xGetWrVYvXo1ALt376Z27dosXbo07zWJiYmkpKT47I+Z\nYT6uMpTbj4kTJ9KgQQPq16/P//3f/+Vtz99ngOzsbBYuXEjPnj25/PLLGThwIHFxcZQrV47f//73\nbN68uVSWCVdQEJGwsXnzZl5++WVWrFjBoUOHmD9/Po0aNfL5pfzpp5+yZcsWFi1axNNPP83mzZsB\nWL9+PRdffHFeO38u8dmyZUvWrl1brD57PB6++eYb5s+fz9ixY1m0aBHAaX3+4osvaNKkCTVr1jxt\nH0uXLqVevXrUqFGjWH0oCl2OU0T84kn15P26f2rJUzy15KkS23dio0QSGyWetV10dDQZGRls2LCB\nWrVqER8fD+DzfPrIkSOpWLEirVu3pk2bNqxdu5aLL76YgwcPUqtWrVPanu0Sn1WqVOHAgQOF9utM\n8y8jR44kNjaWSy+9lIEDB/LOO+9wzTXXnPaa3FNHBe3cuZPBgwfzwgsvFPoeJUlBQUT8UvCLe1Ti\nqHPa3yjPqCLvo1mzZrz44ouMGjWKDRs2kJycXOiXZd26dfPuV6pUiSNHjgBQo0YNDh8+fFr7QYMG\n0bdvXyZOnHjaJT4PHz5MXFxc3uO4uLi8X/pHjhzh+uuvp1w579fpE088weOPP57X9oILLsi7Hx8f\nz/r16332d86cOUycOPGU59LS0khKSuLBBx+kX79+Pl9X0nT6SETCyu23384nn3zCd999h5nxxz/+\n0efpo8K0bt2aLVu2nPLc2S7xuWnTJtq2bZv3+MCBA+zfv5/9+/fTtWtXUlJS8h7nDwgAO3bsOOV+\ngwYNTuvTnj17+OGHH2jXrl3ec/v37ycpKYkbb7yRJ554wu+/71wpKIhIkflzqicQ+9iyZQuLFy8m\nIyODihUrEhMTQ3R0tF+vzT1d06NHD1atWsWJEyfytj388MN07NiRCRMm0Lt3b+67775TXrt06VKu\nu+66s+7bl2effZb09HQ2bNjA5MmTff7inzNnzin7P3ToEMnJyXTt2vWUSfLSoKAgIkUWrKCQkZHB\nE088Qe3atalXrx4//fQTzz33HHDqxK2vkUPuc+effz5XX301H3zwAeC9xOf8+fN55ZVXAHjhhRdY\ntWoV77zzDuCtU6hatSodOnQotF9nGql069aNZs2a0aNHDx577DF69OiR95rc16WkpNCrV6+817z/\n/vusWLGCN954g6pVq1K1alWqVavGzp07z/4hnSMVr4nIaSK9eG3Tpk0MGDCAL7744qxtb731VgYN\nGkTPnj2L9B6pqak0adKEzMxMoqIK//2dmZlJvXr12L59O1WqVCnSe+TSNZpFJKAiPSiUBn+DQlpa\nGjNmzODee+8t9nspKIhIQCkonLvU1FSaNm3KyZMnzxgUSoKCgogElIJCeNHaRyIiEhAKCmVEUdaZ\nKeqaNIHct4iULgWFMBVKX9yhsm8ROXda5iJEeFI9RcrbLtg+KzuLfen7SDuWRtrRNH469lPe/Z/T\nf2bpd0v5Zt83pGemc+zkMdJPppOemX7Kv8dOHiM9M52MzAz+vOzPREdFE2VRRFvOv/ke594vF1WO\nIyeOsGj7IqpXrE61itWoVrFa3v3qMdVPebznyB7SjqZRq1Itouzsv0mK+rlIySlKlbBEDgWFEFHY\nl59zjgPHD5B6IJXtB7Z7/92/nYXbF7J4++K8L//96fupHlOd2pVqU7tybWpXqs3JrJMczDhIpfKV\nWL1nNY3iGlEuqhzdLuxGpwadiC0fS2y5WGLLx7J2z1q+3P0l5aPKM2bZGIZ2GUq2y+bKC67kyvgr\nycrOIstlke2yycrO4tMdn/Kfnf8h22Uz/ovx9GrWi4ysDBrHNaZhtYYczDjIoYxD/HDkBzb/vJkd\nB3eQkZnBdwe/Y8raKWRkZXBepfNoUqMJ9avWp36V+t5/C9yKMtmpAFJyQnWSOS0NBg+GtWth0KCl\nvPrqPLZt+2XxuqZNn+Sll3rSu3fCGfYiZ6KgEED+fkkdzzzO3iN7mbV5Ftv3bz81ABzYjnOOxjUa\nU6VCFTKzMqkRW4Ovf/qaTm06cWmdS7m2ybXccPENlIsq/D/n2RYfa16rOb++5NcAlI8uf9aFym67\n9DZuu9R71aqasTX9Xtgstx/HM4+z58gedh/eza5Du9h9eDe7D+9m408b2fDjBnYc3MHhjMOcyD7B\n66tfp1ZsLTrU60BSsySa12rORTUvomrFqqfsW0Ehsk2bBkOGQP/+MHkyxMYm0LIljB8/guPHo4mJ\nyWLIEAWEc6WgEEAFv6QyszPZtm8bX/34FV/9+BWLUxez4ccNHDh+gCyXxcLtC6kRU4P29dpzR+s7\naBTXiMY1GlMjpsZpQ/nirDAZSmLKxdAorhGN4hoV2sY5x+MLHufGFjeydd9Wtvy8hWkbp7F131a2\n/ryV6jHV8wJE81rN2fyTd0RyQbUL/Dr1oSASmlJSljJu3HwyMspRsWImAwYkMXNmAmvXwowZ0Lnz\nL217905QEChhAQsKZnYBMAWoAzhggnNuXIE2icBM4Nucp6Y7554NVJ9K085DO9ny8xbGLhvLV2ne\nILD5p83Ur1qfS+pcwqW1L+W+9vdxaZ1LaV6rOc8tey6gX/JF+fIr6hdloPZtZlSuUJkr472nsPLL\ndtnsPrybf2/4N4u3e4Pr57s+Z/aW2WS7bFqe15KrG19Nu3rtaFe3Hc1rNSc66tSF0xQUQk9KylIe\nfvjUU0KLFg2jTx9YvTqB2Nggdq6MCORI4STwiHNujZlVAVaa2QLn3KYC7ZY45/oEsB8lprAvkSMn\njrBi9wqW71zOh1s+ZM3eNWRnZ3Ms8xipB1KpU7kO97W/j/6t+1O5QuUS6UuofHEHa99RFkXDag35\nQ+c/8IfOfwB+GT39cPgHVu9ZzeofVjNj0wxGfDyCvUf20ur8VrSr6w0S7eq1Iys7q0h9kcAbN27+\nKQEBICtrNMeOjSA2ViOC0hCwoOCc2wPsybl/xMw2AfWBgkEhbFIcPKkeroq/ik0/bWL5zuUs37Wc\nz3d+zrb922h9fmuuaHAFD3Z8kE4NOtEorhFPLXnK71//gfwiDmfF+TvrVa1Hvar16HXRL6tOHjx+\nkDV71vDexvd4+cuX+eHwD/x47EemrptKfPV4rm9+Pfd1uI9qFav53KdGFaUjI8P3V9Lx4/4tjy3n\nrlTmFMysEdAOWF5gkwO6mNlaYBcw1Dm3sTT65K8TWSf4YtcXLN6+mDfXvskLn71A3Sp16dSwE50a\ndOKey+6hTd02VIiucE7voy+cc3emz7B6THW6NepGt0bd8p7708I/0b1Rdz7Z8Qkfbf2Ip5c8zUW1\nLuKq+KvoGt+VrvFdqV+1PqCgUBrS0uDrrzN9bouJ0aiutAQ8KOScOpoGPOycO1Jg8yrgAufcMTO7\nDvgAaO5rP6NGjcq7n5iYSGJiYon0z1e+/5o9a1i8fTGLUxezJHUJ1WOq0ySuCakHUnmsy2NUKl/J\nr2vK6kukdBX1844pF0Nys2SSmyUD3h8Aq35YxSfffcLb69/m/pT7qV6xOl3ju3Lg+AG+O/AdF8Zd\nGICeS25mUZcuSaxdO4xvvz01zXTIkKItW11WeTwePB7POe0joAvimVl54ENgjnPuRT/abwfaO+f2\nFXg+YAvijfx4JP0u7ecNAtsX40n1UK9qPa5udDVXN76abo26UTO2JhD+GT9yqrP9+l+8fTHTN05n\nx8EdfLj1QyqVq0Rs+Vi6XdiNuy+7m8RGiVQqX6lY+xav/HUHb7zhzSxKSVnK+PEL8qWZXqsMo2IK\nqVVSzZsT+Cbws3PukULanA/86JxzZtYR+LdzrpGPdiUaFA4eP8jcb+by4dYPeX/T+9SpXIerG3uD\nQPdG3alXtZ7P1ykolF2jPKP4n27/w+ofVjNv2zzmbZvHqh9W0alBJ5Kbekcbreq0ykuF1bFydvnr\nDp5+GmUWBUBxgkIgTx9dCfQH1pnZ6pznngTiAZxzrwG3AvebWSZwDPjNub5pYb/Qvtn3DbM3z+bD\nrR/y2fef0aBaAy6udTFHTx7lzjZ3AlC/av1CAwLodFBZF2VRtK/fnvb12/PkVU9yKOMQH2//mHnb\n5nHTuzeRfjKdpKZJJDdNJv1kerC7GzKKUncgwRdx11PI/YWWmZ3JZ99/xuwts5m9ZTYHjh/g+ouu\n54aLb+CaxtfkpYbqF534w5/TQW+ve5u317/Ntn3b2LJvC43jGtPyvJYMbDeQW391a+l0NMT4qjuI\njh5Gnz7JvP226g4CLaROH5Ukf4PC4YzDDJw5kJhyMcz5Zg7x1eO5ofkN3ND8BtrXb+9zATYFBQmE\nJxc9SYf6HXj/6/dJ2ZJCi/NacFOLm7ip5U00q9nslLaRPP+QnDyc+fNPr0dNTh7B3LnPBKFHZUuo\nnT4qFcdOHuP5Zc/z7sZ3+Xb/t5zIOkHvi3pzZ+s76duirzKEJCgqRFfg5pY3c3PLmzmRdQJPqocZ\nm2bQdVJX6lSuw00tbuLmljfT+vzWER0UVHcQfsIyKBzPPM7cb+by7oZ3mbN1Dh0bdGRo56Hc1PIm\nxi0fV6Rf/pH6P6MEV/7jqkJ0BZKaJpHUNImXe73M5zs/Z8amGdz07k0A1K1Sl74X96Vt3bYRtVy1\n6g7CU9gEhRNZJ1j47ULe3fAuszbPom3dtvS7pB/jeo6jduXawe6eyCkK+7ERHRXNlfFXcjL7JFUq\nVGHv0b28tvI1ur/ZnfJR5enboi/DE4afcaHAcDB9ujfVVHUH4Sds5hRqja3FxeddTL9L+nHrr27N\nqzQtKJKH4hKZRnlGMbLbSP7z/X94a91bvLfxPVrWbkn/Vv359SW/zquTyRXKx7jqDkJLRE80/37O\n76keU92vSmKRcFIw2eFE1gnmfjOXt9a9xbxt87i68dX8ttVvub759cSUiwnZ5Ijc0YHqDkJHRAeF\ncOinSHGc6Zf/weMHmbFpBm+tf4vVP6zm5pY3k5WdxaS+k4I6/5C/9sAsk8zMJNLSEvJGBxIaFBRE\nIpQn1cOszbNYv3c9C7cvpFZsLS6rdxkPXv4gfVv0LdW++Ko9qF59GJMmJXPzzTotFEoUFETKgJEf\nj+TaptcyYeUEZm2eRc9mPbnnsnvo3ri7z1qckqbag/BRnKAQ+CNIREqUmdE1vitTbprC9oe30zW+\nK4/Me4Tm45vz52V/Zs+RPae096R6SvT9d+5U7UEkU1AQCTP55x9qxNZgcMfBrL1vLW/f/DZbf95K\ni7+14JZ/38Lcb+aSlZ1VYkEhLQ369YPUVNUeRDIFBZEw42tS2szo1LAT/+j7D3Y8soOkJkkMWzyM\npuOa8umOT9mXvu/0HRXBtGnQujXEx8PUqUk0bTrslO3e2oNrz+k9JDRoTkEkAnlSPXhSPew+vJuJ\nqyZSMboil9S+hMEdBzOw3UC/9+Or7gBUexAuNNEsIqcZ5RnFfR3u47UVr/Hqyle5pPYlPNzpYXo3\n733GiWld7yD8KSiIyGnyF7tlZGbw3sb3eGn5S+xP3+8dObQdyLJFaxk3bj57Y3dS42BD1R1ECAUF\nETmNr+I45xyf7fyMccvHkfL1R0RtaM6hBf+EVv8EzyjVHUQIBQURKbJuNzzE0mNVof1ESI+DWZNg\nR1fVHUSAMnk9BRE5N98dPgRWE1beAwlj4PYb4EQVNv90Edkuu1QK4iR06L+2SBmVW3eQ9mVD8IyC\nxaPBMxKe/wnm/x8/n7+JVq+04s01b3Ii60SwuyulREFBpAw6Y92Bi6bp8TX8s9u/eDH5Raaum0qz\ncc148fMXOXLiyCn7KelqaQk+zSmIlCFnqzvYE/M9dY9fcFrdwYrdKxj76Vg8qR7u73A/QzoOoXbl\n2iG7jLd4aaJZRPLkX966YsVMLrssicmTE86p7mDrz1v5y3/+wnsb3+O3rX5Luahy/LXnX0u+81Ii\nFBREBPC9vHX58sMYMyaZoUPPLc3Uk+ph9ubZfL7zc/6z8z+0r9eeq+Kvom+LvroAVohR9pGIADBu\n3PxTAgLAyZOjWbhwxDkHhfxXP3x8weNEWzQTVk0gPTOdxnGNuTDuwnPavwSXJppFItDhw6WzvHWl\n8pV4rsdzbB68mZqxNblswmXcO/tevjvwXYm+j5QeBQWRCDN9OqxcWTrLW+eOGM6rdB5jrhnDlsFb\nOK/SeVw24TJ+N/t3pB5IzWurTKXwoKAgEiFy6w6GDYPRo0tneeuCcwi1KtVi9DWj2TJ4C3Uq16H9\nhPYMmjWIb/d/q6AQJjTRLBIBfK1oGgrLW+9L38dfP/srf1/xdy6sfiEf/OYD4qvHl2ofyjJlH4mU\nMYXVHYSK3Os6pJ9M5/n/PE9MuRjanN+GP135J25seWOwuxfxlH0kEsHOVHcweXJoXu8gf6ZSbPlY\n7utwH88ufZa7Z9/N6j2rebTLo1SrWC24nZRTKCiIhAFfdQcffzyMMWM45xTT0lS3Sl3+1utvPNr5\nUUZ6RnLR+It4vMvjPHD5A8SWD8GoVgZpolkkDBRed7AgSD0quvyT0o1rNGbKTVNYfOdiln2/jOZ/\na87ElRPJzP4la0oT08GhoCASBkqr7iCQfFU7X1LnEt7v9z7Tfj2Nf234F796+Ve8+9W7ZLtsBYUg\nUVAQCXHTppVe3UGwdGrYiUV3LuLvvf/OXz77C+0ntGfbvm3B7laZpKAgEqJy6w6GDy+9uoNgKxdV\njl7NenFRzYt4a/1bNBvXjPs/vF+jhlKkiWaREJS/7sCbWZRAy5YwfvyIfHUHPUu97iDQ8mcrjVg8\ngjqV6/DsJ89yMvskzWs1p37V+sHtYBmgOgWREBLqdQelKfdaDQeOH+C5T57j9dWvM6TjEIZ2GUqV\nClWC3b2wUJw6BZ0+EgmSlJSlJCcPJzFxFMnJw3niiaV5V0NbvbpsBwT4ZWI6LiaOsdeOZeXvVrJ1\n31aaj2/O66teJyv7l/kUnV4qOWcdKZjZbcBc59whMxsBXAY845xbVRodzOmDRgoSUQJ5vYNIt2L3\nCh6d/yj70vfxfI/n6dmsJ08teUpXgPMhUCOFETkBoStwDfAP4JXidFBEvCKh7iBYOtTvgGeAh9FX\nj+aReY+Q9FYSe47sCXa3IoY/QSF3jHY9MNE59yFQIXBdEol8kVB3EExmRrWK1fj1r35NhagKvLby\nNdq/1p7H5j+mU0nnyJ/so11mNgG4FvizmcWguQiRYisLdQelIX+m0h8X/JETWSeYvHYy9avWp8sF\nXagQrd+uxeHPl/ttwDwgyTl3AKgBPBbQXolEoLJYd1BaYsvH8teef2XpXUuZt20erV9pzZytc4Ld\nrbBU6ESzmVXLmUuo6Wu7c25fQHt2al800SxhLVSvdxApPKmevFGDc46Ptn7EI/Me4aJaF/FC0gtc\nfN7Fwe1gkJTo9RTMLMU519vMUoHTGjnnGherl8WgoCDhouDy1gMGJDFzZoLqDoLgRNYJxi8fz58/\n/TN3tr6TEd1GEBcTB5waRCKZLrIjEkS+0kyjo4fRp08yb7+dEJLXOygLfjz6I8MXD2fW5lk80/0Z\n/rvdf/PM0mfKRAprQFJSzezuAo/LmdnIonZOJNL5SjPNyhrNsWMLFBCCqE7lOky4YQJzfjuHqeum\n0mFiB3Yc3BHsboUsfyaae5jZR2ZW38wuBT4DznqpJDO7wMw+NrMNZvaVmT1USLtxZrbVzNaaWbsi\n9l8kZGRkKM00lB3MOEj3Rt1pWqMpb6x5gzavtmHo/KFKYS3grCmpzrnbzew3wDrgKPBb59wyP/Z9\nEnjEObfGzKoAK81sgXNuU24DM+sFNHPOXWRmnfAWxV1RrL9EJIjS0uDrr5VmGsryp7A+uehJsrKz\nmLRmEvHV4+ka35VyUVofFPw7fdQceAiYAewA+ptZ5bO9zjm3xzm3Juf+EWATUHCJwz7AmzltlgNx\nZnZ+kf4CkSCbPh1at4YuXZJo0kRppuGgQnQFxl47lqV3LWXm5pm0n9CeT777JNjdCgn+hMZZwGDn\n3EIziwIeAb4EfuXvm5hZI6AdsLzApgbA9/ke7wQaAnv93bdIsORf0XTGDOjcOYGUlMhf3joS5I4Y\nWtZuycJZ0ttjAAARrUlEQVQ7FvLexvf4rxn/RfdG3Xn+2uepW6VucDsYRP4siFfdOXewwHPNnXNb\n/HoD76kjD/Csc+6DAttmA392zn2a83gh8HjBxfbMzI0c+cvcdmJiIomJif68vUhATJ/uDQj56w4k\nvB05cYRnljzDpDWTGH7VcB7s+CDlosqFVfqqx+PB4/HkPX7qqacCk5JqZq3wjgxiyKlZcM5N8eN1\n5YEPgTnOuRd9bH8V8Djn/pXz+Gugm3Nub4F2SkmVoFDdQdmzKW0TQ+YM4cejP/Jyr5dZtH1R2Kav\nBqROwcxGAd2AS4AU4DpgmXPu1rO8zvDOF/zsnHukkDa98J6a6mVmVwAvOudOm2hWUJBgUN1B2eWc\n472N7/Ho/EepGVOTBXcuoE7lOsHuVpEFaunsW4EewA/OuYFAGyDOj9ddCfQHupvZ6pzbdWZ2r5nd\nC+Cc+wj41sy+AV4DHihK50UCSXUHZdeS75awMW0jd7S+g3U/rqPxi4254Z83sHj74mB3LeD8mWhO\nd85lmVmmmVUHfgQuONuLctJWzxp0nHOD/eiDSKlT3UHZlT99tUJ0BW5ueTP3fXgfwxcP59XrX6X1\n+a2D28EA8mek8KWZ1QAmAiuA1cB/AtorkSBT3YHk1/r81iz772Xc1fYuekzpwWPzH+PIiSPB7lZA\n+PNL/gHn3H7n3KtAEjAg5zSSSESaNk11B/KL3BFDlEXxu/a/46sHvmLv0b1c8vdLmPn1zOB2LgC0\nIJ5Ijvx1B7mZRVreWgrz8faPuT/lflqc14Jx140jvno8EForsGqVVJFi8nW9A5GzycjM4PlPn+el\n5S/xp65/4uFODzP6k9Ehk8Ja0tdTmAM84JzbXhKdOxcKClKS8tcemGWSmZlEWlqC6g6k2L7Z9w0P\npDzA3qN7ubz+5bze5/VgdwkoXlA4U/bRJGCemb0JPO+cO3lOvRMJAb5qD6pXH8akSd5lKkSKY+eh\nnXRu2JkNaRv4x+p/sG7vOq5pfA3JzZJD5lSSv854+ihniYr/AZKBqfxyBTbnnHsh8N3L64dGClIi\nkpOHM3/+sz6eH8Hcuc8EoUcSaf644I/sS9/H3G1z+dt1f6Nvi75B60sgitdOAkfwLm9RFaiSc6ta\nrB6KBNnOnao9kMCKLR/LxD4TmXrTVB5f+Di3/PsWdh/eHexu+a3QoGBmPfHWJFQG2jnnRjrnnsq9\nlVoPRUpAWhr06wepqao9kMDKPV2U2CiRtfet5Vfn/Yo2r7bh1RWvku2yg9s5P5xppDAM+LVz7o/O\nuWOl1SGRkpZbdxAfD1OnJtG0qWoPJHDyzyHElIvhmauf4eMBHzNl7RQS3khgY9rGvO2heNW3M000\nJ+hEvoSz0693AJBAxYq65oGUrkvrXMqy/17Gayteo9vkbjzQ4QGeuOqJkKppyKU6BQl7BZe3fuih\nJNLTE1R3ICFp16FdDJkzhI1pG+ncsDNv3PhGwN6rpFNSRUKerxTTTz8dRlwczJiRoLoDCTlb922l\n9fmtKR9VnslrJ7P+x/X0aNKDns16hsSoQUFBwpqv5a2PHh1N584jVHcgISn/CqyNFzZmX/o+3l7/\nNldecGVwO5bDn1VSRUJWYctbnzypFFMJfTHlYphwwwSm3DiFR+Y9wm+m/YYfj/4Y1D4pKEhYO3BA\nKaYSvnJHDN0bd2fd/euIrx5Pq1da8da6twjWPKommiUs5WYWffrpUmAeu3b9cgqpadMneeklZRRJ\neFqxewV3z7qbBlUb8Or1r+atvlocgbocp0hIyV93sHVrAq+9lkxy8gi6dRtFcvIIBQQJax3qd2DF\nPSvoGt+V9hPa8/IXL+cVvZVGXYNGChI2fF3vQCSSff3T1wyaNQiA1/u8zr+++leRluVWSqpEjIK1\nB5ddlsTkyQn07w+TJ6vuQMqGFue1YOnApby64lWueuMqWtdpzcmsk5SPLh+w99RIQUKOr9qD8uWH\nMWZMMkOH6rSQlC2eVA+eVA8Hjx/kxeUvUrdyXfq26MtvLv3NWesaNFKQiOCr9uDkydEsXDhCQUHK\nnPx1DdUqVqNJjSY8tuAx6lSuQ+eGnalYrmKJvp8mmiXkHD6s5a1FfDEzBrQdwNr71rJu7zraT2jP\nF7u+KNH3UFCQkDJtGqxcqdoDEV9yRwz1qtbj/X7vMyJhBH3e6cPjCx4n/WR6ibyHgoKEhNzrHQwf\nDqNHa3lrEV/yzyGYGf0u7cf6+9ez4+AO2rzahmU7lp3ze2iiWYJu2jROW9E0JWUp48cvyLe89bWq\nPRA5g/c3vc/gOYO5peUtjLlmDFUqVCnWRLOCggSN6g5ESta+9H38Yd4fWPLdEl6/4XV6NO2h7CMJ\nTao7EAm8mrE1uavtXZzMOslvZ/y2WPvQSEECTnUHIqXPOUdUVJTWPpLQU3jdwYIg9Ugk8pkVKRbk\nUVCQgFPdgUj4UFCQgFLdgUh4UVCQgFDdgUh4UvaRlLj8dQfezKIEWraE8eNH5Ks70DUPREKRso+k\nxKSlwYMPwrp1qjsQCQVaJVVKVf7ag/37M/nuuyTuuSeBN99U3YFIuFJQkGLxVXvQoMEwEhO9p4tE\nJDxpolmKxVftwa5doxk/XrUHIuFMQUGKLC0NVq1S7YFIJFJQkCJ57z1o1QoqV1btgUgkUlAQv+TW\nHYwYAe+/Dy+/rNoDkUikiWY5q9PrDgC8k8mqPRCJLKpTkDwFl7ceMCCJmTMTdL0DkTClOgUpNl8p\nposWDaNPH1i9OkF1ByJlhOYUBPCdYpqVNZpjxxYoIIiUIQoKAkBGhlJMRURBQfBmFn39tVJMRSTA\nQcHMJpnZXjNbX8j2RDM7aGarc27DA9kfOd306dC6NXTpkkSTJkoxFSnrAj3R/AYwHphyhjZLnHN9\nAtwPKSAtDQYPhrVrYcYM6Nw5gZQUpZiKlHUBT0k1s0bAbOdcKx/bEoFHnXM3nGUfSkktQdOnewNC\n//7w9NNa0VQkUoVjSqoDupjZWmAXMNQ5tzHIfYoo+WsPzDLJzEwiLS0hZ3QQ7N6JSKgJdlBYBVzg\nnDtmZtcBHwDNfTUcNWpU3v3ExEQSExNLo39hzVftQfXqw5g0yXu6SEQii8fjwePxnNM+gnr6yEfb\n7UB759y+As/r9FExJCcPZ/78Z308P4K5c58JQo9EpDQV5/RRUFNSzex8M7Oc+x3xBql9Z3mZ+Gnn\nTtUeiEjRBPT0kZm9A3QDzjOz74GRQHkA59xrwK3A/WaWCRwDfhPI/pQVuZlFqamqPRCRotGCeBEm\n/4qmnTsv5fHHT51TaNr0SV56SammImVBOGYfSQk5ve4AIIGKFVV7ICL+00ghAuQfHajuQERyaaRQ\nBqjuQEQCSUEhjKjuQEQCTaukhhFf1zw4eHA0EyYsCFKPRCTSKCiEEdUdiEigKSiEgbQ06NdPdQci\nEngKCiFu2jTv9Q7i42Hq1CSaNtU1D0QkcDTRHKJUdyAiwaA6hSDLn2JasWImDz2URHp6guoOROSc\nFadOQUEhiHylmFauPIy4uGTeey9BdQcick7CbpXUss5XiunRo6Np2XKBAoKIBIWCQhBlZPie0jl5\nUimmIhIcCgpBdOCAUkxFJLQoKARBbt3BTz8l0aCBUkxFJHQoJbWU5V/RdPLkBBYvVoqpiIQOZR+V\nkvx1B2+8oRVNRSTwtHR2iChYe3DZZUlMnpyQMzpQ3YGIhC6NFEqYr9qD8uWHMWZMMkOH6rSQiJQe\n1SmEAF+1BydPjmbhQi1vLSKhT0GhhB0+rOWtRSR8KSiUoGnTYOVK1R6ISPhSUCgBuXUHw4fD6NFa\n3lpEwpeyj87RqXUHEBubQMuWqj0QkfCk7KNiUt2BiIQ61SkEiOoORKSs0EjhLFR3ICLhSnUKAaC6\nAxEpSxQUzkJ1ByJSligonIHqDkSkrFFQ8EF1ByJSVin7qADVHYhIWVZms48KppkOGJDEzJkJqjsQ\nkYihOgU/+UozXbRoGH36wOrVCao7EJEyq0zOKfhKM83KGs2xYwsUEESkTCuTQSEjQ2mmIiK+lLmg\nkJYGX3+tNFMREV/KVFCYPh1at4YuXZJo0kRppiIiBZWJ7CNfK5qmpCxl/PgF+dJMr1WaqYhElOJk\nH0V8UJg+3RsQ+veHp5/WiqYiUnaU6ZTUM9UdzJihugMREX9ERFBQ3YGISMmIiIlm1R2IiJSMiAgK\nqjsQESkZYR8UVHcgIlJywjooTJumugMRkZIU0JRUM5sE9AZ+dM61KqTNOOA64Bhwl3NutY82p6Sk\nqu5AROTsQq5OwcyuAo4AU3wFBTPrBQx2zvUys07AS865K3y0ywsK+a93oLqDovN4PCQmJga7GxFD\nn2fJ0udZsooTFAJ6+sg59wmw/wxN+gBv5rRdDsSZ2fm+GnbvPpyrrlrK8OHeuoP//V8FhOLweDzB\n7kJE0edZsvR5Bl+w6xQaAN/ne7wTaAjsLdjQ43mW6tWHMWkSdO6s00IiIoEQChPNBYc2hZ7POnhw\nNBMmLAhwd0REyq6Ar31kZo2A2YXMKbwKeJxz/8p5/DXQzTm3t0C70F+gSUQkBIXb2kezgMHAv8zs\nCuBAwYAARf+jRESkeAIaFMzsHaAbcJ6ZfQ+MBMoDOOdec859ZGa9zOwb4CgwMJD9ERGRMwuLpbNF\nRKR0hMJEM+AtdDOzvWa2/gxtxpnZVjNba2btSrN/4eRsn6WZJZrZQTNbnXMbXtp9DCdmdoGZfWxm\nG8zsKzN7qJB2Oj794M/nqWPUP2YWY2bLzWyNmW00s+cKaef/semcC4kbcBXQDlhfyPZewEc59zsB\nnwe7z6F68+OzTARmBbuf4XID6gJtc+5XATYDLQu00fFZsp+njlH/P89KOf+WAz4HuhbYXqRjM2RG\nCq4EC93KOj8+Szg9FVgK4Zzb45xbk3P/CLAJqF+gmY5PP/n5eYKOUb84547l3K0ARAP7CjQp0rEZ\nMkHBD4UVuknROaBLzlDyIzP7VbA7FC5yUqzbAcsLbNLxWQxn+Dx1jPrJzKLMbA3eot+PnXMbCzQp\n0rEZ7JTUovK70E3OaBVwgXPumJldB3wANA9yn0KemVUBpgEP5/zCPa1Jgcc6Ps/gLJ+njlE/Oeey\ngbZmVh2YZ2aJzjlPgWZ+H5vhNFLYBVyQ73HDnOekiJxzh3OHnM65OUB5M6sZ5G6FNDMrD0wH3nLO\nfeCjiY7PIjjb56ljtOiccweBFKBDgU1FOjbDKSjMAu4EOFOhm5ydmZ1vZpZzvyPe1OSC5yElR85n\n9Q9go3PuxUKa6fj0kz+fp45R/5jZeWYWl3M/FrgWKHj5gSIdmyFz+kiFbiXnbJ8lcCtwv5ll4r2O\nxW+C1dcwcSXQH1hnZrn/wz0JxIOOz2I46+eJjlF/1QPeNLMovD/ypzrnFpnZvVC8Y1PFayIikiec\nTh+JiEiAKSiIiEgeBQUREcmjoCAiInkUFEREJI+CgoiI5FFQkDIvZynnb82sRs7jGjmP40tg35+e\new9FSo/qFEQAM3sMaOacu9fMXgO+dc6NDXa/REqbRgoiXn8FrjCz3wNdgL/4amRm75vZipyLw9yT\n89yFZrbFzGrlrFj5iZn1yNl2JOffema2NOeCMevNrGsp/V0iRaKRgkgOM0sG5gDXOucWFdKmhnNu\nf846M18ACTmP7waSgS+BJs65+3PaH3bOVTWzR4GKzrkxOWv6VC5kpVWRoNJIQeQX1wG7gVZnaPNw\nztr1n+FdbbI5gHPuH0B14F5gqI/XfQEMNLORQGsFBAlVCgoigJm1BXoAnYFHzKyujzaJwDXAFc65\ntsAaoGLOtkp4g4QDqhZ8bc7V8K7Cu2TxZDO7IzB/ici5UVCQMi/ndM4reC/28j3wv/ieU6gG7HfO\nHTezFsAV+baNBabiXZF2oo/3iAfSnHOvA6/jvdqYSMhRUBCBe4DUfPMIfwdamtlVBdrNBcqZ2Ubg\nObynkDCzbkB7YKxz7p/ACTMbkPOa3Em77sAaM1sF3Aa8FLC/RuQcaKJZRETyaKQgIiJ5FBRERCSP\ngoKIiORRUBARkTwKCiIikkdBQURE8igoiIhIHgUFERHJ8//DJctyqZFS9wAAAABJRU5ErkJggg==\n", "text/plain": [ "<matplotlib.figure.Figure at 0x7fa7698ce210>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "%matplotlib inline\n", "import matplotlib.pyplot as plt\n", "import numpy\n", "import math\n", "\n", "x = numpy.linspace(1 ,3 ,30)\n", "y1 = x\n", "y2 = numpy.sin(x)+math.pi/2\n", "plt.xlabel('X axis')\n", "plt.ylabel('Y axis')\n", "plt.title('My Graph')\n", "plt.plot(x, y1, \"o-\")\n", "plt.plot(x, y2, \"+-\")\n", "plt.legend([\"x\", \"sin(x)+pi/2\"])\n", "print \"From the graph, it is clear that the point of intersection is nearly x=2.3\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 1.20, page no. 41" ] }, { "cell_type": "code", "execution_count": 29, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "From the graph, it is clear that the point of intersection is nearly x=2.3 \n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAEZCAYAAACJjGL9AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl8VPW5+PHPk8kGJISwJWwKBVwQL1iVVWGgQFhsvW1d\n4Nbdq168Ym+vtVUWiVcBl1arqL3WinX3p7eLLCJQNeCCoKKogAooEvY1QICEZPL8/jiTMEkmk5nJ\nTGYmed6v13nNzDnfOfM9GTjPPOe7HFFVjDHGmLokxboCxhhj4psFCmOMMQFZoDDGGBOQBQpjjDEB\nWaAwxhgTkAUKY4wxAVmgMCZBiIhbRApjXQ/T/FigME2eiGwRkVIRaVdj/aciUiEip4S53/NEZKGI\nHBCRgyKyTkTuFZE2kam5MfHBAoVpDhT4FphUuUJEzgZaeLeFTESGAO8A7wKnq2o2MBYoB/rV8R5X\nOJ9lTKxZoDDNxQvAVT6vrwaeAwRARM4XkV0iIpUFRORnIvJZHft7AJinqver6l4AVS1U1XxVXe59\n/zUi8r6IPCQi+4CZIvIDEXlbRPaJyF4ReUFEsnw+c4uI3OHNTg6IyDwRSfP9YBH5bxHZLSI7ROSa\nhv9pjAnMAoVpLj4EWovIGd5f9pfjBA8AVPUjYD+Q5/OeK4Fna+5IRFoBg4C/BvG5A4DNQEdgNk5g\nmgV0As4EugH5Nd7zb8AYoCdwGjDdZ1su0BroDFwPPO4baIyJBgsUpjl5HierGA2sB7bX2P4ccAWA\niLTFOVm/5Gc/2Tj/d3ZVrhCRB7ztFMUiMs2n7A5VfVxVK1S1RFU3q+pbqlqmqvuAh4HhPuUVeExV\nt6vqQZygMslnexnwP6rqUdXFQDFweqh/CGNCkRzrChjTSBQnULwL9MDnspOPF4F1ItISuAxYoaq7\n/ezrIFCBkxV8A6CqvwF+IyLPA75tEdV6KYlIDvAIcAGQiRNwDtTYv+97tuJkD5X2q2qFz+tjQIaf\nOhoTMZZRmGZDVbfiNGqPA/7mZ/s2nEtUP8PJLJ6vYz9HgVXAz/1sFqoHoJqN5bMBD9BXVbNwLm/V\n/H94So3nO/wfkTGNwzIK09xcD7RR1eMi4u/f/3PAHThtB7WCiY/fAEtEZDvwjKruEZGuQHe8WUYd\nMoBDwGER6QLcXmO7ADeLyELgODANeKX+wzImeiyjMM2Kqn6rqmt8V9Uo8jecX/F/V9WSAPt5HxgJ\nDAO+FpGDwGKcLrNzffZdc/93Az/ECRYLcBrEfcsoTrvIUpxG8I3AvQHqa0zUSaxuXCQi3XB+vXXE\n+cf/J1V91NuI+P+AU4EtwGWqWhSTSppmSUQ2Ajep6tsx+OzvgOtj8dnG1CWWGUUZ8CtVPQunq+F/\nisiZOGn/MlU9DXjL+9qYRiEiPwPUTtTGnBSzNgpV3YW3e6GqFovIBqAL8BNOdhd8FijAgoVpBCJS\nAJyB08BsjPGK2aWnapUQ6Q4sB/oCW73TIeAdJXug8rUxxpjGF/PGbBHJwGnQ+6WqHvHdpk4Ui30k\nM8aYZiym3WNFJAUnSDyvqv/wrt4tIrmquktEOgF7/LzPgocxxoRBVWsONK1XzDIK72Wlp4H1qvoH\nn03zcSZsw/v4j5rvBVDVJrvMnDkz5nWw47Pja47H15SPTTX839exzCiG4ox+/VxEPvWuuxO4D3hV\nRK7H2z02NtUzxhgDse319B51ZzSjGrMuxhhj6hbzxmxTm9vtjnUVosqOL7E15eNrysfWEHHRPTZU\nIqKJWG9jjIklEUHDaMy2SQGNMTHlc1NBE0GR/DFtgcIYE3N2hSCyIh18rY3CGGNMQBYojDHGBGSB\nwhhjTEAWKIwxJkZKS0s566yz2L3b363Zq3vssce4447YTKRt3WONMTHl7bIZ62rExNy5c9mwYQNP\nPPFEvWVLS0vp1asXa9asoUOHDgHL1vU3Dbd7rAUKY0xM1XVSW7RoBY8+upTS0mTS0sq59dYxTJgw\nLKR9R2If0dS3b1+eeuopBg8eHFT5G2+8kdNPP53bbrstYLlIB4qYT1IV5sRWaoxpGvz9f164cLn2\n7DlVQauWnj2n6sKFy4PebyT24WvVqlV67rnnauvWrTUnJ0f/+7//u2rbypUrdfDgwdqmTRvt16+f\nFhQUVG3bv3+/XnPNNdq5c2fNzs7Wf/3Xf1VV1e+//15btGihHo9HVVVLS0u1f//+OnfuXFVVLS8v\n1yFDhug999xTta8XX3xRR4wYUW9d6zpHeteHfs4N502xXixQGNN0+Pv/PGbMtGon+MolL2960PuN\nxD58DRo0SF944QVVVT169Kh++OGHqqq6bds2bdeunS5evFhVVZctW6bt2rXTffv2qarq+PHjdeLE\niVpUVKRlZWW6YsUKVVVduHChnnXWWdU+48svv9Ts7GzdsGGD3nvvvTp48GCtqKio2v7JJ59o27Zt\n661rpAOFDbgzxsSd0lL/p6YlS1wEP5bM/z5KSlxh1Sk1NZWNGzeyb98+2rdvz8CBAwF44YUXGD9+\nPGPHjgVg1KhRnHfeeSxatIjRo0fz5ptvcuDAAbKysgC48MILASgqKiIzM7PaZ5x11llMnz6diy++\nmH379rF69epqg+cyMzM5dOhQWPVvCOv1ZIyJO2lp5X7X5+V5/OQI/pcxY/zvIz3dE1QdXnzxRTIz\nM8nMzGTChAnMmzePb775hjPPPJMBAwawaNEiAL7//ntee+01srOzq5b333+fXbt2UVhYSNu2bauC\nhK/s7GyOHDlSa/1VV13F1q1bGT9+PD179qy27ciRI373FXXhpCGxXrBLT8Y0Gf7+P/tvX7gzAm0U\noe2jLv/3f/+n6enpevToUZ0zZ47ecMMNfsvt2LFDk5KStKioqNa2wsJCbdmyZVUbRaVLL71UL7nk\nEm3fvr2+99571ba98MILOnLkyHrrV9c5Erv0ZEzii/deOo2l8pjnzp1BSYmL9HQPU6aMDelvEYl9\n+HrhhRfIy8ujQ4cOZGVlISK4XC6uuOIKzj//fJYuXcqPfvQjysrK+PDDD+nduzddunRh3Lhx3Hzz\nzTz++OO0atWKlStXMmzYMLp27UqvXr1YtWpVVa+n559/nk8//ZS1a9fy+uuvc/XVV7N27VpatWoF\nwPLlyxk3blxY9W+QcKJLrBcsozBNUKR76SSKRPn/fMUVV2jHjh01IyND+/btq6+//nrVtlWrVunw\n4cO1bdu22qFDB73ooot069atqqp64MABvfrqqzUnJ0ezs7P15z//edX7Hn/8cZ08ebKqOr2g2rVr\npx988EHV9ssvv1xvvPFGVVU9fvy4du3aVffs2VNvXev6mxJmRmHjKIyJE3l501m69F4/62fw5pv3\nxKBGjaM5D7g7ceIE55xzDm+//TY5OTkByz722GNs27aN++67r979RnochV16MiZO1NXTJ9xeOib+\npaamsm7duqDK3nLLLVGuTd1i2utJROaJyG4R+cJnXVsRWSYi34jIUhFpE8s6GtNY6urpE2wvHWOi\nJdbdY58BxtZYdwewTFVPA97yvjamybv11jH07Dmt2rquXacyZcroGNXIGEfM2yhEpDuwQFXP9r7+\nChiuqrtFJBcoUNUzarzH2ihMk7Ro0QqmTFmGqouMDA/Hjo3m66+HkdyELxI35zaKaGlykwL6CRQH\nVTXb+1yAA5Wvfd5jgcI0Wf/xH9Cvn/M4ahSMHw/1zAGX0CxQRJ6/v+nRE0fJSMtoeo3ZqqoiYv+C\nTLNSVARt2oAIPPkkDBoEP/sZ9OgR65qZRLLv2D7e2/oeL33+Eu8Xvs+eY3vC3lc8BordIpKrqrtE\npBPg9+jy8/Ornrvdbtxud+PUzpgoKyqCbG8O3asX/PrXMHkyLF5MCPMcmeau56M9Of3I6WTsyGBM\n1hg6Z3ZmNrPD2lc8Xnp6ANivqveLyB1AG1W9o8Z77NKTabIGDoRHHnEyCYCyMjjvPPjNb+AXv4ht\n3aLBLj1FnohQ5ikjOSm51vpwLj3Funvsy8AHwOkiUigi1wL3AaNF5BtgpPe1Mc2Gb0YBkJICTz3l\ntFPs2xe7epmGcbvdPP300wHLDB06lLVr19a7rwULFjBx4sSAZWoGiYaIaaBQ1Umq2llVU1W1m6o+\no6oHVHWUqp6mqmNUtSiWdTSmsR086LRR+BowACZOdC5DmcQkItWmDK9pwYIFZGVl0a9fv3r39eMf\n/5h169bxxRdf1Fs2EmI9jsIY40P1ZGN2TffeC++8A//8Z+PXK5YKthTExT6i7X//93+58sorgy4/\nadIk/vSnP0WxRidZoDAmjhw7BsnJkJZWe1tGBjzxBNx0k1OuuYhloCgsLORnP/sZHTt2pH379kyZ\nMgVV5d5776V79+7k5ORw9dVXc/jwYQBKSkq44ooraN++PdnZ2QwYMIC9e/dW7W/Lli1ccMEFtG7d\nmry8PPbv3w84cz698847DB8+vKrshAkT+LVPCjlx4kSuv/76qtdut7vqnhjRZoHCmDhSs32ipgkT\n4Pzz4e67G69OzZXH4+Giiy6iR48efP/99+zYsYOJEyfyzDPP8Oyzz1JQUMC3335LcXFx1TxMzz77\nLIcPH2bbtm0cOHCAJ598kvT0dMCZqfull17iL3/5C3v27OHEiRP87ne/A2Djxo0kJSXRuXPnqs+f\nN28ezz//PO+88w4vvvgiH3/8MY8++mjV9jPOOIMtW7ZQXFwc9b9FPHaPNabZ8tc+UdMjj8DZZ8Ok\nSdC/f+PUq7EVbCmoygLuXn43dy+PXGR0d3fj7u6ut9zq1avZuXMnDz74IElJzm/qoUOHctddd3Hb\nbbfRvXt3AObMmUPfvn155plnSE1NZf/+/WzcuJGzzz6bc845p2p/IsJ1111Hr169ALjsssuYP38+\n4P+2qDk5Ofzxj3/kqquuoqSkhNdff73qvhRAVfmioiIyMjLC/nsEwwKFMXGkvowCICcH5syBG26A\nDz8EVxOcXLbmyTzfnd+g/eUX5Ie8j8LCQk499dSqIFFp586dnHrqqVWvTznlFMrLy9mzZw9XXnkl\nhYWFTJw4kaKiIq644gpmzZpFsncOltzc3Kr3tWjRoiobqOu2qBdddBG33HILZ5xxBkOGDKm2rbJ8\nm/p+WUSAXXoyJo4Ek1EAXHed02Zx000ryMubjtudT17edBYtWhH9SjYT3bp1Y+vWrXg81Wfv7dy5\nM1u2bKl6vXXrVpKTk8nJySE5OZm77rqLdevW8cEHH7Bw4UKee+65ej+rV69eqCo7d+6stn7atGn0\n6dOHnTt38sorr1TbtmHDBrp37x71bAIsozAmrtTV46kmEZg0aQWTJy+homJW1frNm53ZZ5vS7VOD\nuUwUjX0MHDiQTp06cccdd3D33XeTlJTEJ598wqRJk7j//vsZN24c7du3Z+rUqUycOJGkpCQKCgpo\n164dffr0ITMzk5SUFFw+KV9dAwtTU1MZNWoUBQUFTJo0CYAVK1bwl7/8hc8//5zNmzfz05/+lGHD\nhlW1Yyxfvpzx48eH/scIg2UUxsSRgwfrv/RU6a9/XVotSABs3jyLuXOXRaFmsROrQJGUlMSCBQvY\ntGkTp5xyCt26deO1117juuuu48orr2TYsGH84Ac/oGXLlsydOxeAXbt2cemll5KVlUWfPn1wu93V\nurz6jqOoOa7ipptu4vnnnwfg8OHDXH311Tz++ON06tSJCy64gOuvv55rr722qvwrr7zCTTfdFPJx\nhSPmU3iEw6bwME3V//yPM2XHPUHc+dTtzmf58vxa64cPz6egoPb6eFSwpYARPUbYFB5eF1xwAY8/\n/ni9g+4WLFjAiy++WOtyVKVITzNuGYUxcSSUjKKuO+Lt2+ehpCSClQpBqOMVEmEgXGN67733gh6Z\nXVeQiAYLFMbEkWDbKMD/HfE6dZpKWtpoevSAWbPAO56rQUI5mddVVlU5VHKIDXs38M9v/8lza59j\nzrtzWPRN4wwYMw1jjdnGxJFQMorKBuu5c2dQUuIiPd3DlCljmTBhGF98AQ895ExTfsUV8KtfwYYN\nK3j00aXsbrGNnONdufXWMUE1ehdsKajzGr+qcrj0MLuKd7H76G6+3PMlD698mB1HdrD9yHZ2HNlR\n9VwQurTuQsvklnjUQ2ZqJh/v/DjYP42JIQsUxsSRUDIKcILFhAnDap3Mzz4bnnnGySrmzoV+/Vag\nuoSjR2eBOx8K8uvsIaWqFJUUsffYXvYe3cuGvRt44qMn2F28m13Fu9h1dNfJ58W7SJIk0pPTyUjN\noPBwIYWHCslMy2Rgl4H8+w//nc6ZnemS2YXMtOoDysAZ33A3Nsw83lmgMCaOVGYUgX7F+1NX+c6d\n4e57T/DeZ3/jvU9ugPYroP0GOPdJNrdqwY1//zXDS3qx5+ieqsCw79g+UlwpJFW4KDsGpWlHWLx6\nBafm5jDqrBFc0+8acjNyycnIIadVDq1ST44WDmdgm4l/FiiMCVOkTua+KjOKf/gpW1peysGSgxw8\nfpCDJQc5cPxA1fOCLQVMeWMK+4/vd5ZjJx+Plx9Hz3XB2S9CWQtoUwhtN0JZK3bthvm/n8CZp3Rg\n0BkdGNq/Iz8a3J7PPl7FL3+5hM2bnQzkSEE+x3tOY9QjeUw4M3JjNNzd3ZZRJAALFKZJi8bJPJyy\nqsqyzcs4vd3pHCo9xKGSQxwqPURRSVHV80Mlh9h5ThF3rD7Ep7tX8dZ3b1UFgoPHD1JWUUZ2ejbZ\nLbLJTs+mQis4Xn6cFskt+GjHR6Qnp9MypSUju49kRI8RtGvRjnYt25GVlsXYsTNYuvRepzLeS08A\no/Nm8Mxff8Hq1bB6NTz3GEy5GsrKlnL8uL8xGjP8tmssWnSy/WPlnOn1tn9Uli8tdU5Bge7TYGLP\nAoWJuHg5OTe0vKfCw9GyoxSfKK62HCk9QvGJYtbsXMPDKx/mcOlhDpce5siJI/6flzrPK7SCP3/6\nZ7LSsmiT3oas9Cyy0rKqXu8/doCyzJ0c96TzzYFvGNxtMC06tGBE9xGMP208rVJa1XlCre+Sz623\njmHz5mlOhuDVs+dUpkwZS6dOcPHFzgJQUQEDBybzcWU785aTf7+33nIxcCCceqqzdO8Oe/as4Jln\nllBYGNwI8UWLVpzMVpza07PnNB55JC9gECotTSYtrTzoRngTORYoGihRT4pNYd/lFeUcLzvOsbJj\nHC93Ho+VHau27ovdX/DUJ09xtOwoR08crXo8VnbMeV5jfeHhQp746AmKTxRTUl5Cq9RWZKRmkJGa\nQWZqZtVnprpSWb9vPXuO7iHNlUafDn04t9O5tE5rTeu01mSmZdI6rTXr967n052fkpacxqx3ZzH5\nvMmA/xlMDxyA+dfD689H/lq/bw+pXemF5ObNqOohVVNSErRt6zNGwydQXHCBh9mz4fvvYcsW+PJL\neO21pezfXzv7uPbaGVx00TDat4f27aFDB+fx3nuXVgtYleX9ZSu1g0r905SEGlhCKR9P+25MzSJQ\nNIWTYjztW1Upryin1FPKCc8JTnhOUFp+8vnOIztZWbiSkvISSj2llJaX+n1eUl5CaXkpb333VtW1\n9JLyEkrKS6qeHy+rvm7v0b08/OHDHC87jkc9tExpScuUlrRIbuE8prTghOcEx8qOkZKUwtf7v+a7\nou9IdaXSM7snfTr0oWOrjrRKaUXLlJa0Sm3Fpv2b2LBvAymuFJ785EluG3wbqa5URv1gFCN7jKzz\nbxLMybx/bn/+7ex/A5x7GAcqH+yEgP4E811W9pAKRl0ZyK9/PZbBg2Hw4JNlN2xIZvny2vvo2NHF\n0KHOfb737oUNGyof/Z92VqxwspXWrU8ub721tFqmAk5QueuuGbRqNYyWLalaWrSAd99dwdSpwQeW\nUAJRqEErmvuufE+oQShccRkoRGQs8AfABfxZVe9vyP4iecJVVSq0omop85Rx9MRRKrQCj3qq1nsq\nfJ5713sqPOw/tp8NezfgUQ+eCk+tx/KK8qrnmw5sYuE3C6vW+y4erb3u/a3vM2vFLMoqyiivKKfM\n4330eV35/NNdn7J291rKPGWc8JygrML7WMfropIiHlr5UFVwSE5KJtWVSqorlTRXGhVaQXlFOa4k\nF/uO7WPRxkUkJyXToVUHOmV0Ij05nbTkNNJdzuOe4j3sLN5JclIyK7etJCsti+SkZM7ueDY/7PxD\n0pPTSU9Op0VyC77c8yWf7/6c5KRkHl39KL8d+ltSklIY2cO5Fh9IqL/MczNyY9Zrx3eK8VDnJorE\nfEi+Ao3RqKmuEeJdu3rwuSFblby8cpb6OWf98Icefvc7OHIEDh92lnff9X+K+u47F/n5zp3+fJd9\n+5bi8dQOLJdeOoMePYaRlubcPTA93Xlcs2Ype/fWLn/LLTN4771hpKZCSgqkpsK8ef4zoWnTZnDi\nxDCSk6m23H23//Jz5sygV69huFxULQ884L/sH/4wgxEjnLJJSSeXN94INwhV/4xgxV2gEBEX8Bgw\nCtgOfCQi81V1g2+5Lg91AarPxqj4PPdZf+TEEZ746AkURVXrfSz1lHL/+/dToRXVAkPl/gWpeqyg\nggc+eABBSHGlkOZKI0mSSJIkXEkukiSp6oQrCEWlRbz85cuICJmpmWSlZ+ESF64kF8lJyVXXs5Mk\nie+KvmPV9lUkSRI5rXLolNmJ5KRkXOKUTU5KrurPLiKs2r6KkvISkiSJntk9Oa39aaQkpZCclEyK\nK4XNBzaz6cAmXEku1u9dT98OfWmR3IL+uf05v/P5pLhSSHWlkpLkPK7ZuYZPdn5CkiTx8IcPc8fQ\nO3AluRjZY2SDf2mHUn7oKUOrnme3yI6b7peRPpn7ZhSRPvGHI9gMJFD7Ryjl77xzLIMGVS/7yivl\nbN5cex8DBnh4883a691u/9nN2We7ePppKC11lpIS5/H225PxuVNplaQkF5mZzrxbx487Qau42P/p\ncvt2F889B+Xl1Zevv/Zffs0aFz/+MXg8J5fdu/2XffttF+3aOe1GvgsspeZJf/PmWfzkJzNo0WIY\nIs4Mw0lJcPToUsrLwwsQleIuUAADgE2qugVARF4BLgaqBYrLz7ocgMFdB1c7kVSexD8o/ICV21YC\n8PuVv2fyeZMRhKHdhnLBqRcgODM3Vj6+t/U93t/6PgD3vX8fvxnyG0SE4acOZ0SPESRJUlVZX5E+\nKcbTvs/qeBZX9nNmvmyd1jpuTtChiOYv80jvO5ibFsWjULKPUMuHGoTqym6ysz307Vt7/R/+UM66\ndbXX9+7tYerU6uvWri1n+/baZc8918Pf/157fV2Z07BhtYNcXWVHj/YfEIcPT2aFn1uPDBniYvFi\nJ5ioOsuECcl88EHtsqGIx0DRBSj0eb0NGFiz0EN5DwXcyc/7/Jyf9/k5ABmpGfWe5C467SIuOu0i\nANKS0xLypBgvEunk3NDykdSQNopYC6X9I5TyoQahSGU3/srH077T0/0HxFatPNS8j1FGhv+yoYjH\nQBHUfMM9ew5j4MCenHbaqbjdbtxud60ylQ04X3d6L6S+3cGUD7ffeLDlIXFPuPG070SSqBlFtIUS\nhKKZ3cTTvoMNLM6NlLaTnX0hBw/+yO++gqKqcbUAg4A3fV7fCfy2RhkF1Z49p+rChcvVn4ULl2vP\nnlOd5Kv7OxEtX62sdwl630GWHzNmmg4fPlPHjJlWZ7lwyoe6b9N47rxT9d57Y10LkygWLlyueXnT\ndfjwmZqXN73e//d5edPVOeWHcV4O503RXHCynM1AdyAV+Aw4s0aZqhPuOedM13/8Q6uW1193lv79\np1U7MVcu5547XRcvVn3zTdUlS1SXLlVdtkz13HP9lx84cLquXKm6apXq6tWqH3+sOniw/7IXXjhd\nv/1WdcsW1cJC1e3bVXftUnW7/ZfPy5vu9wuNVhAKdd+V77Eg1DgmT1Z97LFY18I0ZeEGiri79KSq\n5SJyC7AEp3vs01qjx5Ov7793MW9e5XtPrt+61f+hffuti4cfrn3a3rTJf/n1613813+d7G2gWndv\nhtWrXYwc6fRiqKg42aPh4EH/5ZcsceFyOV3pKh+PH6/dQ2Hz5llcfrnTpS4lxemul5zsPK5d63+w\n0+TJM7jkkpPdAVNT4dln/XfBy8+fQVbWMFq0oNqyfLnTJ/3bb2PfD7w5CGWKcWMaU9wFCgBVXQws\nDqbs+ed7eP312uvr6kVQV7e6usoPGRJ8DwW3O7R95+V5WLToZHc6jwfGjfPfQ+HMM1386U9Od72y\nMqd8WRn86lfJfm9Ok5rqoksXpwvgiRNO3/SjR/1/3Rs3uvjtb51ugL7L/v3++6RPmjSD/v2HkZEB\nmZmQkQH//OdStm6tXfaee2bQu/cwsrOdk2CytwrhDF5q6kEl1CnGjWkscRkoghWpHgehlo/kvisH\n3KSlOevr6qHQrp2Hc86pvb5z53K+/LL2+l69PNx2W/V1a9b47943aFBofdJ793Zxzz1QXOwsR47A\n8uX+/ymtW+diwgRneopDh5wRtG3bwoEDSzlypHZgmTlzBqeeOowuXZyTpkh42UoisozCxKuEDRR5\nAeaqgfjqoRDNfuPRDHB19Unv0MHD8OHV1732mv+BUUOHngxCFRXOwKWDB+GSS5JZs6Z2+c2bXVx2\nGezY4WRDnTs7QaWoKPiZTCExMxDLKEzcCqdhI9aLU+2mK5TeDKGWD7Vs7cbvO0NoKPdfVlV1zJj6\nG/iPHFH95hvVfv1m+i3rcs3UIUNUb7xR9dFHVd9+W3XPnvAa7eNBx46qO3fGuhamKSPMxmxR3xbg\nBCEimoj1TkSLFq1g7txlPpnQ6IC/4kMpW/NyUs+eU3nkkdqZVl7e9JP3UvAxYsQM7rrrHtatc2Yx\nrVyOHp1OWVnt8nl5M3jzzXtCOfxGo+rMP3TokPNoTDSICKoa8s0/LFCYmAk2sIQSVFRhyJB8Pvww\nv9Z+zjwzn1Wr8smsfevmmDt+3Gm7OX481jUxTVm4gSJh2yhM4ovGNA4i0Lq1/7aVvXs9dO0KI0fC\npZfCj39MVdCIdZtGIk/fYZo+CxQmIUTiXgqPPDKWIUPg9dfhpZdg8mQYMQJ69VrB3/62hO++i12v\nKpu+w8RgUSxgAAAVmElEQVQzu/RkmqRgLmsVFcH8+XDbbdPZty+2bRrvvw+3306DZ/k0JhC79GSM\nj2AykDZt4KqrYN48/+NFSkpcUapdbZZRmHiWFOsKGBNrdY0XSU/3NFodrI3CxDMLFKbZu/XWMfTs\nOa3auqSkqQwaNLrR6mAZhYlndunJNHv+elWNHj2WBx8cRvfucM010a+DZRQmnlmgMAb/bRoTJsC4\ncbBzJ9xxh9P1NlqKipzpSoyJR3bpyZg6nHGG0xvplVfg1lud2X2jxTIKE88sUBgTQOfOsGKFMzXI\npElQUhKdz7E2ChPPLFAYU4+sLKpmwB03Dl59dQV5edNxu/PJy5vOokUrGvwZllGYeGZtFMYEIS0N\nXn4ZLr54BVdeuYQTJyI7itumGDfxzDIKY4LkckFZ2dJqQQIq742xrEH7tpsWmXhmgcKYEJSW+k/C\nGzqK2zIKE89iEihE5FIRWSciHhH5YY1td4rIRhH5SkTGxKJ+xtQlGqO4PR7ndrJZWWHvwpioilVG\n8QXwU6BaK6CI9AEuB/oAY4EnRMSyHhM3/I3idm4nG/4o7sOHnenOk+xfuolTMWnMVtWvwJnJsIaL\ngZdVtQzYIiKbgAHAh41bQ2P8q2ywfvDBGXzwgYuRIwPfLz0Y1j5h4l289XrqTPWgsA3oEqO6GOPX\nhAnDGDNmGC1bwqJFTiN3Q1j7hIl3UQsUIrIMyPWzaaqqLghhV35vPJGfn1/13O1243a7Q6meMQ2S\nkuKc3Pfvh44dG7YvG2xnoqWgoICCgoIG7ydqgUJVw7loux3o5vO6q3ddLb6BwphYyM2FXbsaHihs\nsJ2Jlpo/ou++++6w9hMPzWe+DRXzgYkikioiPYDewOrYVMuYwCoDRUNZRmHiXay6x/5URAqBQcAi\nEVkMoKrrgVeB9cBi4Ga756mJV5EKFJZRmHgXq15Pfwf+Xse22cDsxq2RMaGzjMI0F/Fw6cmYhGQZ\nhWkuLFAYE6bcXNi9u+H7sYzCxDsLFMaEKSfHMgrTPFigMCZM1kZhmgsLFMaEydooTHNhgcKYMLVt\n68z6WlrasP3YFB4m3lmgMCZMSUnOqOw9exq2H5sU0MQ7CxTGNEBDLz+VlIAqpKdHrk7GRJoFCmMa\noKGBojKbqD3jvjHxwwKFMQ3Q0EBh7RMmEdQbKETkMhFp7X0+Q0T+XvP2pcY0V5HKKIyJZ8FkFDNU\n9bCIXAD8CHga+GN0q2VMYrCMwjQHwQSKyrvGXwQ8paoLgdToVcmYxGEZhWkOggkU20XkT8DlOFOC\npwf5PmOaPMsoTHMQzAn/MmAJMEZVi4Bs4Pao1sqYBBGJQGEZhYl3dQaKygZsIA14B9gvIm2BUuDj\nRqibMXGvMlCEe3stm77DJIJANy56GZgArAH8/TfoEZUaGZNAMjKcMRDFxZCZGfr7i4rgjDMiXy9j\nIqnOQKGqE7yP3RutNsYkoMqsIpxAYRmFSQTBjKO4vsbrZBGZGb0qGZNYcnLCv4GRtVGYRBBMY/Yo\nEXlDRDqLSF9gJdC6vjcFIiIPisgGEVkrIn8TkSyfbXeKyEYR+UpExjTkc4xpDA1p0LaMwiSCegOF\nqk4CngM+BxYBv1LV2xr4uUuBs1S1H/ANcCeAiPTB6YbbBxgLPCEi1hXXxLWGBArLKEwiCObS02nA\nrcDfgK3AFSLSqiEfqqrLVLXC+3IV0NX7/GLgZVUtU9UtwCZgQEM+y5hos4zCNHXB/FqfD9ylqjcC\nw4GNwEcRrMN1wBve552BbT7btgFdIvhZxkRcuIGiosK58VFWVv1ljYmlQN1jKw1U1UMA3izg9yKy\noL43icgyINfPpqmqusBbZhpwQlVfCrArvz3U8/Pzq5673W7cbnd9VTImKsINFIcPQ6tW4HJFvk7G\nABQUFFBQUNDg/YgGMVJIRM7GaTdIx3viVtXnGvTBItcANwA/UtUS77o7vPu+z/v6TWCmqq6q8V4N\npt7GNIaPPoLJk+HjEIehbtkCw4fD999HpVrG1CIiqGrIdz8Jpo0iH3gUmAu4gQeAn4T6QTX2ORZn\nGpCLK4OE13xgooikikgPoDewuiGfZUy0hZtR2ISAJlEEc+npEqAfsEZVrxWRHODFBn7uXJwZaJeJ\nc2uvlap6s6quF5FXgfVAOXCzpQ4m3lXeN7uiwrmPdrBsQkCTKIIJFMdV1SMi5d7xDnuAbg35UFXt\nHWDbbGB2Q/ZvTGNKS3NGZR84AO3bB/8+yyhMogjm989HIpINPIUzGeCnwAdRrZUxCSacy0+WUZhE\nUW9Goao3e5/+r4gsAVqr6troVsuYxFIZKPr2Df49llGYRBHMpacqqvpdtCpiTCKzjMI0ZTY9hjER\nEG6gsIzCJIJANy5a7O2iaoypRziBwqbvMIkiUEYxD1giItNEJKWxKmRMIrKMwjRlgW5c9JqILAbu\nAj4Wkec5OZ2GqupDjVFBYxKBZRSmKauvMbsMKMaZuiMTqAhc3JjmKSfHMgrTdNUZKLzTbDwELADO\nUdVjjVYrYxJMbm7od7mzjMIkijonBRSRd4H/UNV1jVul+tmkgCbeeDyQng7HjkFKkC16LVvCvn3O\nozGNIRqTAg6LxyBhTDxyuaBDB2fOp2CUlkJ5ObRoEd16GRMJdQYK+8luTGhCadCubJ+QkH/bGdP4\nbMCdMRESSqCw9gmTSCxQGBMh4WQUxiQCCxTGRIhlFKapskBhTISEmlFYoDCJwgKFMRESakZhl55M\norBAYUyEWEZhmioLFMZEiGUUpqmKSaAQkXtEZK2IfCYib4lIN59td4rIRhH5SkTGxKJ+xoTDMgrT\nVMUqo3hAVfupan/gH8BMABHpA1wO9AHGAk+IiGU9JiFkZjpTeRQX11/WMgqTSGJyElbVIz4vM4B9\n3ucXAy+rapmqbgE2AQMauXrGhEUk+MkBLaMwiSRmv9ZFZJaIbAWuAeZ4V3cGtvkU2wZ0aeSqGRO2\nYC8/2YA7k0jqux9F2ERkGZDrZ9NUVV2gqtOAaSJyB/AH4No6duV3zqn8/Pyq5263G7fb3aD6GhMJ\nwd6XwgbcmcZQUFBAQUFBg/dT5zTjjUVETgHeUNW+3qCBqt7n3fYmMFNVV9V4j81ZaOLS5MnQty/8\n538GLteuHXzzjfNoTGOJxjTjUSMivX1eXgx86n0+H5goIqki0gPoDaxu7PoZE65g2igqKuDQIcjK\napw6GdNQUbv0VI85InI64AE2A5MBVHW9iLwKrAfKgZstdTCJJDcXPvkkcJniYudmRcmx+t9nTIhi\n8k9VVS8JsG02MLsRq2NMxATTmG3tEybR2BgFYyIomEBhPZ5MorFAYUwEWUZhmiILFMZEUE6O05gd\nqGXNMgqTaCxQGBNB6elOQ/XBg3WXsYzCJBoLFMZEWH2Xn2z6DpNoLFAYE2H1BQqbENAkGgsUxkSY\nZRSmqbFAYUyEWUZhmhoLFMZEmGUUpqmxQGFMhFlGYZoaCxTGRJhlFKapsUBhTITVd08KG3BnEo0F\nCmMiLJhLT5ZRmEQS8xsXhcNuXGTimcfjjNA+frz2VOInTkCrVs6jhHz7GGMaJqFuXGRMU+ZyOXeu\n27u39rbK9gkLEiaRWKAwJgrquvxk7RMmEVmgMCYK6goU1j5hEpEFCmOiwDIK05RYoDAmCiyjME1J\nTAOFiNwmIhUi0tZn3Z0islFEvhKRMbGsnzHhsozCNCUxCxQi0g0YDXzvs64PcDnQBxgLPCEilvWY\nhGMZhWlKYnkSfgj4TY11FwMvq2qZqm4BNgEDGrtixjSUZRSmKYlJoBCRi4Ftqvp5jU2dgW0+r7cB\nXRqtYsZEiGUUpilJrr9IeERkGZDrZ9M04E7At/0h0PAjv0Ow8/Pzq5673W7cbnfIdTQmWgJlFBYo\nTGMpKCigoKCgwftp9Ck8RKQv8BZwzLuqK7AdGAhcC6Cq93nLvgnMVNVVNfZhU3iYuKYKLVrAgQPQ\nsuXJ9aNHw+23wxjrpmFiIGGm8FDVL1U1R1V7qGoPnMtLP1TV3cB8YKKIpIpID6A3sLqx62hMQ4k4\nWcXu3dXXW0ZhElE89CiqSg1UdT3wKrAeWAzcbKmDSVT+Lj/ZTYtMIopaG0WwVPUHNV7PBmbHqDrG\nRIy/QGEZhUlE8ZBRGNMk1byBkaoFCpOYLFAYEyU1M4riYuc+FSkpsauTMeGwQGFMlNQMFDbYziQq\nCxTGREnNQGGD7UyiskBhTJTU7B5rGYVJVBYojIkSyyhMU2GBwpgoqez1VDkSyDIKk6gsUBgTJS1b\nQloaHDrkvLaMwiQqCxTGRJHv5SfLKEyiskBhTBT5BgrLKEyiskBhTBRZRmGaAgsUxkSRZRSmKbBA\nYUwU1cwoLFCYRGSBwpgoqplR2KUnk4gsUBgTRZZRmKbAAoUxUWQZhWkKLFAYE0WVo7PLyqCkBDIy\nYl0jY0JngcKYKOrQAfbvd5Y2bZx7aRuTaGISKEQkX0S2icin3mWcz7Y7RWSjiHwlImNiUT9jIiUl\nxbnctHGjtU+YxBWre2Yr8JCqPuS7UkT6AJcDfYAuwD9F5DRVrYhBHY2JiNxc+Oora58wiSuWl578\nJeEXAy+rapmqbgE2AQMatVbGRFhloLCMwiSqWAaKKSKyVkSeFpHK/0KdgW0+ZbbhZBbGJCzLKEyi\ni1qgEJFlIvKFn+UnwB+BHkB/YCfw+wC70mjV0ZjGkJsLGzZYRmESV9TaKFR1dDDlROTPwALvy+1A\nN5/NXb3rasnPz6967na7cbvd4VTTmKjLzYUtWyyjMI2voKCAgoKCBu9HVBv/B7uIdFLVnd7nvwLO\nV9V/8zZmv4TTLtEF+CfQS2tUUkRqrjImbr30EvziFzB7Ntx5Z6xrY5ozEUFVQ+6kHateT/eLSH+c\ny0rfATcBqOp6EXkVWA+UAzdbRDCJLjfXebSMwiSqmAQKVb0qwLbZwOxGrI4xUVUZKKyNwiQqG5lt\nTJR9/vkKYDqzZ+eTlzedRYtWxLpKxoQkVpeejGkWFi1awfTpS4BZfPEFfPEFbN48DYAJE4bFtnLG\nBMkyCmOi6NFHl7J586xq6zZvnsXcuctiVCNjQmeBwpgoKi31n7SXlLgauSbGhM8ChTFRlJZW7nd9\nerqnkWtiTPgsUBgTRbfeOoaePadVW9ez51SmTAlqPKoxcSEmA+4aygbcmUSyaNEK5s5dRkmJi/R0\nD1OmjLaGbBMT4Q64s0BhjDHNRLiBwi49GWOMCcgChTHGmIAsUBhjjAnIAoUxxpiALFAYY4wJyAKF\nMcaYgCxQGGOMCcgChTHGmIAsUBhjjAnIAoUxxpiALFAYY4wJKGaBQkSmiMgGEflSRO73WX+niGwU\nka9EZEys6meMMcYRk0AhIiOAnwD/oqp9gd951/cBLgf6AGOBJ0Sk2WU9BQUFsa5CVNnxJbamfHxN\n+dgaIlYn4cnAHFUtA1DVvd71FwMvq2qZqm4BNgEDYlPF2Gnq/1jt+BJbUz6+pnxsDRGrQNEbGCYi\nH4pIgYic513fGdjmU24b0KXRa2eMMaaK/xv6RoCILANy/Wya5v3cbFUdJCLnA68CP6hjV3bjCWOM\niaGY3LhIRBYD96nqcu/rTcAg4N8BVPU+7/o3gZmquqrG+y14GGNMGMK5cVHUMop6/AMYCSwXkdOA\nVFXdJyLzgZdE5CGcS069gdU13xzOgRpjjAlPrALFPGCeiHwBnACuAlDV9SLyKrAeKAdutnueGmNM\nbCXkPbONMcY0nrgeoyAiY70D7zaKyG/rKPOod/taETmnsevYEPUdn4i4ReSQiHzqXabHop7hEJF5\nIrLbmzXWVSaRv7uAx5fg3103EXlHRNZ5B8TeWke5hPz+gjm+BP/+0kVklYh8JiLrRWROHeWC//5U\nNS4XwIUzjqI7kAJ8BpxZo8x44A3v84HAh7Gud4SPzw3Mj3Vdwzy+C4FzgC/q2J6w312Qx5fI310u\n0N/7PAP4uon93wvm+BL2+/PWv6X3MRn4ELigId9fPGcUA4BNqrpFnYF5r+AMyPP1E+BZAHV6RrUR\nkZzGrWbYgjk+gIRsuFfVd4GDAYok8ncXzPFB4n53u1T1M+/zYmADzhgnXwn7/QV5fJCg3x+Aqh7z\nPk3F+VF6oEaRkL6/eA4UXYBCn9f+Bt/5K9M1yvWKlGCOT4Eh3tTwDe8UJ01FIn93wWgS352IdMfJ\nnFbV2NQkvr8Ax5fQ35+IJInIZ8Bu4B1VXV+jSEjfX6x6PQUj2Fb2mlE/UVrng6nnGqCbqh4TkXE4\n3YpPi261GlWifnfBSPjvTkQygP8Dfun95V2rSI3XCfX91XN8Cf39qWoF0F9EsoAlIuJW1YIaxYL+\n/uI5o9gOdPN53Y3q03v4K9PVuy4R1Ht8qnqkMoVU1cVAioi0bbwqRlUif3f1SvTvTkRSgL8CL6jq\nP/wUSejvr77jS/Tvr5KqHgIWAefV2BTS9xfPgeJjoLeIdBeRVJxZZefXKDMf7xgMERkEFKnq7sat\nZtjqPT4RyRER8T4fgNOduea1xkSVyN9dvRL5u/PW+2lgvar+oY5iCfv9BXN8Cf79tReRNt7nLYDR\nwKc1ioX0/cXtpSdVLReRW4AlOI0xT6vqBhG5ybv9SVV9Q0TGe6cAOQpcG8MqhySY4wMuASaLSDlw\nDJgYswqHSEReBoYD7UWkEJiJ07sr4b87qP/4SODvDhgKXAF8LiKVJ5ipwCnQJL6/eo+PxP7+OgHP\ninOLhiTgeVV9qyHnThtwZ4wxJqB4vvRkjDEmDligMMYYE5AFCmOMMQFZoDDGGBOQBQpjjDEBWaAw\nxhgTkAUKY/zwTkX9rYhke19ne1+fEoF9v9/wGhrTeGwchTF1EJHbgV6qepOIPAl8q6r3x7pexjQ2\nyyiMqdvDwCAR+S9gCPA7f4VE5O8i8rH3Jjg3eNedKiLfiEg770ye74rIKO+2Yu9jJxFZ4b0xzhci\nckEjHZcxIbGMwpgARCQPWAyMVtW36iiTraoHvfPqrAaGeV9fD+QBHwE/UNXJ3vJHVDVTRG4D0lR1\ntndeoVZ1zNJqTExZRmFMYOOAHcDZAcr80jv3/0qcWThPA1DVp4Es4Cbg137etxq4VkRmAv9iQcLE\nKwsUxtRBRPoDo4DBwK9EJNdPGTfwI2CQqvbHuaVtmndbS5zAoUBmzfd675J3Ic70zn8RkSujcyTG\nNIwFCmP88F4K+iPOTW0KgQfx30bRGjioqiUicgYwyGfb/cDzODPLPuXnM04B9qrqn4E/49xpzZi4\nY4HCGP9uALb4tEs8AZwpIhfWKPcmkCwi64E5OJefEJHhwLnA/ar6EnBCRK72vqeyYXAE8JmIrAEu\nAx6J2tEY0wDWmG2MMSYgyyiMMcYEZIHCGGNMQBYojDHGBGSBwhhjTEAWKIwxxgRkgcIYY0xAFiiM\nMcYEZIHCGGNMQP8fXmj88edlNkgAAAAASUVORK5CYII=\n", "text/plain": [ "<matplotlib.figure.Figure at 0x7fa7696dc7d0>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "%matplotlib inline\n", "import matplotlib.pyplot as plt\n", "import numpy\n", "import math\n", "\n", "x = numpy.linspace(0, 3, 30)\n", "y1 = -1/numpy.cos(x)\n", "y2 = numpy.cosh(x)\n", "plt.xlabel('X axis')\n", "plt.ylabel('Y axis')\n", "plt.title('My Graph')\n", "plt.plot(x, y1, \"o-\" )\n", "plt.plot(x, y2, \"+-\" )\n", "plt.legend ([\"-sec(x)\", \"cosh(x)\"])\n", "print \"From the graph, it is clear that the point of intersection is nearly x=2.3 \"" ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.10" } }, "nbformat": 4, "nbformat_minor": 0 }