{ "metadata": { "name": "", "signature": "sha256:e30b9c00a7a64c549fe856050903690b0947bb9d968fe683f359ed69004ad2d0" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 8 : Transmission of Heat" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 8.1 Page No : 462" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "# Input data\n", "l1 = 10. # Length of the copper rod in cm\n", "l2 = 4. # Length of the iron rod in cm\n", "K1 = 0.9 # The thermal conductivity of copper\n", "\n", "# Calculations\n", "K2 = (l2**2 / l1**2) * K1 # The Thermal conductivity of iron\n", "\n", "# Output\n", "print 'The thermal conductivity of iron is K2 = %3.3f ' % (K2)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The thermal conductivity of iron is K2 = 0.144 \n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 8.2 Page No : 469" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "# Input data\n", "K = 0.2 # The thermal conductivity of the plate\n", "d = 0.2 # The thickness of the plate in cm\n", "A = 20. # The area of the plate in cm**2\n", "T = 100. # The temperature difference in degree centigrade\n", "t = 60. # The given time in seconds\n", "\n", "# Calculations\n", "# The quantity of heat that will flow through the plate in one minute in cal\n", "Q = (K * A * T * t) / d\n", "\n", "# Output\n", "print 'The quantity of heat that will flow through the plate in one minute is Q = %3.4g cal ' % (Q)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The quantity of heat that will flow through the plate in one minute is Q = 1.2e+05 cal \n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 8.3 Page No : 473" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "# Input data\n", "l = 30. # The length of the bar in cm\n", "A = 5. # The uniform area of cross section of a bar in cm**2\n", "ta = 200. # The temperature maintained at the end A in degree centigrade\n", "tc = 0. # The temperature maintained at the end C in degree centigrade\n", "Kc = 0.9 # The thermal conductivity of copper\n", "Ki = 0.12 # The thermal conductivity of iron\n", "\n", "# Calculations\n", "# The temperature after the steady state is reached in degree centigrade\n", "T = ((Kc * A * ta) + (Ki * A * tc)) / ((Kc + Ki) * A)\n", "# The rate of flow of heat along the bar when the steady state is reached\n", "# in cal/sec\n", "Q = (Kc * A * (ta - T)) / (l / 2)\n", "\n", "# Output\n", "print 'The rate of flow of heat along the bar when the steady state is reached is Q = %3.2f cal/s ' % (Q)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The rate of flow of heat along the bar when the steady state is reached is Q = 7.06 cal/s \n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 8.4 Page No : 477" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "# Input data\n", "d1 = 1.75 # The thickness of the wood in cm\n", "d2 = 3. # The thickness of the cork in cm\n", "t2 = 0. # The temperature of the inner surface of the cork in degree centigrade\n", "t1 = 12. # The temperature of the outer surface of the wood in degree centigrade\n", "K1 = 0.0006 # The thermal conductivity of wood\n", "K2 = 0.00012 # The thermal conductivity of cork\n", "\n", "# Calculations\n", "# The temperature of the interface in degree centigrade\n", "T = (((K1 * t1) / d1) + ((K2 * t2) / d2)) / ((K1 / d1) + (K2 / d2))\n", "\n", "# Output\n", "print 'The temperature of the interface is T = %3.2f degree centigrade ' % (T)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The temperature of the interface is T = 10.75 degree centigrade \n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 8.5 Page No : 483" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "# Input data\n", "x1 = 3. # The thickness of the ice layer on the surface of a pond in cm\n", "x = 1. # The increase in the thickness of the ice when the temperature is maintained at -20 degree centigrade in mm\n", "# The increased thickness of the ice layer on the surface of a pond in cm\n", "x2 = x1 + (x / 10)\n", "T = -20 # The temperature of the surrounding air in degree centigrade\n", "d = 0.91 # The density of ice at 0 degree centigrade in g/cm**3\n", "L = 80. # The latent heat of ice in cal/g\n", "K = 0.005 # The thermal conductivity of ice\n", "\n", "# Calculations\n", "# The time taken to increase its thickness by 1 mm in sec\n", "t = ((d * L) / (2 * K * (-T))) * (x2**2 - x1**2)\n", "t1 = t / 60 # The time taken to increase its thickness by 1 mm in min\n", "\n", "# Output\n", "print 'The time taken to increase its thickness by 1 mm is t = %3.2f s' % (t)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The time taken to increase its thickness by 1 mm is t = 222.04 s\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 8.6 Page No : 485" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "# Input data\n", "x1 = 10. # The thickness of the ice layer on the surface of a pond in cm\n", "x = 5. # The increase in the thickness of the ice when the temperature is maintained at -10 degree centigrade in cm\n", "# The increased thickness of the ice layer on the surface of a pond in cm\n", "x2 = x1 + (x)\n", "T = -10 # The temperature of the surrounding air in degree centigrade\n", "d = 0.90 # The density of ice at 0 degree centigrade in g/cm**3\n", "L = 80. # The latent heat of ice in cal/g\n", "K = 0.005 # The thermal conductivity of ice\n", "\n", "# Calculations\n", "# The time taken to increase its thickness by 5 cm in sec\n", "t = ((d * L) / (2 * K * (-T))) * (x2**2 - x1**2)\n", "# The time taken to increase its thickness by 5 cm in hours\n", "t1 = t / (60. * 60)\n", "\n", "# Output\n", "print 'The time taken to increase its thickness by 5 cm is t = %3.0g s (or) %3.0f hours' % (t, t1)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The time taken to increase its thickness by 5 cm is t = 9e+04 s (or) 25 hours\n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 8.7 Page No : 490" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "# input data\n", "# The temperature maintained on one sphere (black body radiat(or) in K\n", "T1 = 300.\n", "# The temperature maintained on another sphere (black body radiat(or) in K\n", "T2 = 200.\n", "s = 5.672 * 10**-8 # Stefans constant in M.K.S units\n", "\n", "# Calculations\n", "# The net rate of energy transfer between the two spheres in watts/m**2\n", "R = s * (T1**4 - T2**4)\n", "\n", "# output\n", "print 'The net rate of energy transfer between the two spheres is R = %3.2f watts/m^2' % (R)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The net rate of energy transfer between the two spheres is R = 368.68 watts/m^2\n" ] } ], "prompt_number": 7 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 8.8 Page No : 495" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "# Input data\n", "T1 = 400. # The given temperature of a black body in K\n", "T2 = 4000. # The given temperature of a black body in K\n", "s = 5.672 * 10**-8 # Stefans constant in M.K.S units\n", "\n", "# Calculations\n", "R1 = s * T1**4 # The radiant emittance of a black body at 400 k in watts/m**2\n", "# The radiant emittance of a black body at 4000 k in kilo-watts/m**2\n", "R2 = (s * T2**4) / 1000\n", "\n", "# Output\n", "print 'The Radiant emittance of a black body at a temperature of ,\\n (i) 400 K is R = %3.0f watts/m^2 \\n (ii) 4000 K is R = %3.0f kilo-watts/m^2' % (R1, R2)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The Radiant emittance of a black body at a temperature of ,\n", " (i) 400 K is R = 1452 watts/m^2 \n", " (ii) 4000 K is R = 14520 kilo-watts/m^2\n" ] } ], "prompt_number": 8 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 8.9 Page No : 500" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Input data\n", "e = 0.35 # The relative emittance of tungsten\n", "A = 10.**-3 # The surface area of a tungsten sphere in m**2\n", "T1 = 300. # The temperature of the walls in K\n", "T2 = 3000. # The temperature to be maintained by the sphere in K\n", "s = 5.672 * 10**-8 # Stefans constant in M.K.S units\n", "\n", "# Calculations\n", "# The power input required to maintain the sphere at 3000 K in watts\n", "R = s * A * e * (T2**4 - T1**4)\n", "\n", "# Output\n", "print 'The power input required to maintain the sphere at 3000 K is R = %3.0f watts' % (R)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The power input required to maintain the sphere at 3000 K is R = 1608 watts\n" ] } ], "prompt_number": 9 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 8.10 Page No : 507" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Input data\n", "e = 0.1 # The relative emittance of an aluminium foil\n", "T1 = 300. # The temperature of one sphere in K\n", "T2 = 200. # The temperature of another sphere in K\n", "s = 5.672 * 10**-8 # Stefans constant in M.K.S units\n", "\n", "# Calculations\n", "# The temperature of the foil after the steady state is reached in K\n", "x = (((T1**4 + T2**4) / 2)**(1. / 4))\n", "# The rate of energy transfer between one of the spheres and foil in watts/m**2\n", "R = e * s * (T1**4 - x**4)\n", "\n", "# Output\n", "print '1)The temperature of the foil after the steady state reached is x = %3.1f K \\\n", "\\n2)The rate of energy transfer between the sphere and the foil is R = %3.1f watts/m^2' % (x, R)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "1)The temperature of the foil after the steady state reached is x = 263.9 K \n", "2)The rate of energy transfer between the sphere and the foil is R = 18.4 watts/m^2\n" ] } ], "prompt_number": 11 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 8.11 Page No : 513" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Input data\n", "A = 5. * 10**-5 # The surface area of the filament in m**2\n", "e = 0.85 # The relative emittance of the filament\n", "s = 5.672 * 10**-8 # Stefans constant in M.K.S units\n", "t = 60. # The time in seconds\n", "T = 2000. # The temperature of the filament of an incandescent lamp in K\n", "\n", "# Calculations\n", "E = A * e * s * t * (T**4) # The energy radiated from the filament in joules\n", "\n", "# Output\n", "print 'The energy radiated from the filament is E = %3.0f joules ' % (E)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The energy radiated from the filament is E = 2314 joules \n" ] } ], "prompt_number": 12 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 8.12 Page No : 520" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Input data\n", "E = 1.53 * 10**5 # The energy radiated from an iron furnace in calories per hour\n", "A = 10.**-4 # The cross section area of an iron furnace in m**2\n", "e = 0.8 # The relative emittance of the furnace\n", "t = 3600. # The time in seconds\n", "s = 1.36 * 10**-8 # Stefans constant in cal/m**2-s-K**4\n", "\n", "# Calculations\n", "T = ((E) / (A * e * s * t))**(1. / 4) # The temperature of the furnace in K\n", "\n", "# Output\n", "print 'The temperature of the furnace is T = %3.0f K ' % (T)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The temperature of the furnace is T = 2500 K \n" ] } ], "prompt_number": 13 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 8.13 Page No : 524" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Input data\n", "S = 2.3 # Solar constant in cal/cm**2/minute\n", "r = 7. * 10**10 # The radius of the sun in cm\n", "R = 1.5 * 10**13 # The distance between the sun and the earth in cm\n", "s = 1.37 * 10**-12 # Stefans constant in cal/cm**2/s\n", "\n", "# Calculations\n", "E = (S / 60) * (R / r)**(2) # The energy radiated from the sun in cal/s\n", "T = (E / s)**(1. / 4) # The black body temperature of the sun in K\n", "\n", "# Output\n", "print 'The black body temperature of the sun is T = %3.0f K ' % (T)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The black body temperature of the sun is T = 5987 K \n" ] } ], "prompt_number": 14 } ], "metadata": {} } ] }