{ "metadata": { "name": "", "signature": "sha256:2d895fa6539cb401c1ac187f55507dc2067d26b87e5503473e832266dbcbd295" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 5 : Nature of Heat" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.1 Page No : 159" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "# Input data\n", "v = 480. # The velocity of a lead bullet in m/s\n", "Sp = 0.03 # Specific heat of lead cal/g-K\n", "\n", "# Calculations\n", "m = 10. # Let us assume the mass of bullet in gms\n", "V = v * 100 # The velocity of the bullet in cm/s\n", "W = (1. / 2) * m * (V**2) # The work done in ergs\n", "J = 4.2 * 10**7 # The mechanical equivalent of heat in ergs/calorie\n", "H = W / J # The amount of heat produced in cals\n", "H1 = H / 2 # Half of the heat energy is used to raise the temperature of the bullet in cals\n", "t = H1 / (m * Sp) # The rise in the temperature in degree centigrade\n", "\n", "# Output\n", "print 'The rise in the temperature is t = %3.2f degree centigrade ' % (t)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The rise in the temperature is t = 457.14 degree centigrade \n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.2 Page No : 162" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "# Input data\n", "t = 1. # The increase in the temperature of a piece of aluminium in degree centigrade\n", "a = 6. * 10**23 # The number of atoms present in 27 g of aluminium in atoms\n", "Sp = 0.22 # The specific heat of aluminium in cal/g-K\n", "m = 27. # The amount of aluminium in g\n", "J = 4.2 * 10**7 # The mechanical equivalent of heat in ergs/calorie\n", "\n", "# Calculations\n", "H = m * Sp * t # Heat required to raise the temperature of 27 gms of aluminium by 1 degree centigrade in cals\n", "E = m * Sp * J # Energy gained by atoms of aluminium in ergs\n", "E1 = E / a # Increase in energy per atom of aluminium in ergs\n", "\n", "# Output\n", "print 'The increase in energy per atom of aluminium is %3.4g ergs ' % (E1)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The increase in energy per atom of aluminium is 4.158e-16 ergs \n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.3 Page No : 168" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "# Input data\n", "h = 50. # The height from which water falls in metres\n", "m = 100. # Let us assume the mass of the water in gms\n", "g = 980. # Gravitational constant in gms/s**2\n", "J = 4.2 * 10**7 # The mechanical equivalent of heat in ergs/calorie\n", "\n", "# Calculations\n", "h1 = h * 100 # The height from which water falls in cm\n", "W = m * g * h1 # The work done in ergs\n", "t = W / (J * m) # The rise in temperature of water in degree centigrade\n", "\n", "# Output\n", "print 'The rise in temperature of water is t = %3.3f degree centigrade ' % (t)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The rise in temperature of water is t = 0.117 degree centigrade \n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.4 Page No : 174" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "# Input data\n", "v = 1. # The volume of oxygen at N.T.P in cm**3\n", "d = 13.6 # The density of mercury in g/cm**3\n", "r = 4.62 * 10**4 # The R.M.S velocity of oxygen molecules at 0 degree centigrade in cm/s\n", "m = 52.8 * 10**-24 # Mass of one molecule of oxygen in g\n", "g = 980. # Gravitational constant in gms/s**2\n", "\n", "# Calculations\n", "P = 76. * g * d # The pressure in dynes/cm**2\n", "n = ((3 * P) / (m * r**2)) # Number of molecules in 1 cc of oxygen at N.T.P\n", "\n", "# Output\n", "print 'The number of molecules in 1 c.c of oxygen at N.T.P is n = %3.4g ' % (n)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The number of molecules in 1 c.c of oxygen at N.T.P is n = 2.696e+19 \n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.5 Page No : 177" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "# Input data\n", "t = -100 # The given temperature in degree centigrade\n", "\n", "# Calculations\n", "T1 = t + 273 # The given temperature in K\n", "m1 = 1. # number of hydrogen molecules\n", "m2 = 16. # number of oxygen molecules\n", "m = m2 / m1 # Number of oxygen molecules to the hydrogen molecules\n", "T2 = (T1 * m) - 273 # The temperature in degree centigrade\n", "\n", "# Output\n", "print 'The temperature at which the oxygen molecules have the same root mean square velocity as that of hydrogen molecules is T2 = %3.0f degree centigrade ' % (T2)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The temperature at which the oxygen molecules have the same root mean square velocity as that of hydrogen molecules is T2 = 2495 degree centigrade \n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.6 Page No : 180" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "# Input data\n", "t = 27. # The given temperature in degree centigrade\n", "d = 13.6 # The density of mercury in g/cm**3\n", "g = 980. # Gravitational constant in gms/s**2\n", "m1 = 16. # number of oxygen molecules\n", "D = 0.000089 # The density of hydrogen at N.T.P in g/cc\n", "T = 273. # The temperature at N.T.P in K\n", "\n", "# Calculations\n", "P = 76. * g * d # The pressure in dynes/cm**2\n", "p = m1 * D # The density of oxygen at N.T.P in g/cc\n", "C = ((3 * P) / (p))**(1. / 2) # The RMS velocity of oxygen molecule in cm/s\n", "T1 = t + T # The given temperature in K\n", "# The RMS velocity of the molecules at 27 degree centigrade in cm/s\n", "C1 = C * (T1 / T)**(1. / 2)\n", "\n", "# Output\n", "print 'The RMS velocity of the oxygen molecules at 27 degree centigrade is C1 = %3.4g cm/s ' % (C1)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The RMS velocity of the oxygen molecules at 27 degree centigrade is C1 = 4.843e+04 cm/s \n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.7 Page No : 186" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "# Input data\n", "d = 13.6 # The density of mercury in g/cm**3\n", "g = 980. # Gravitational constant in gms/s**2\n", "m = 3.2 # Mass of oxygen in gms\n", "t = 27. # The given temperature in degree centigrade\n", "p = 76. # The pressure in cm of Hg\n", "R = 8.31 * 10**7 # The Universal gas constant in ergs/g mol-K\n", "\n", "# Calculations\n", "P = p * g * d # The given pressure in dynes/cm**2\n", "T = t + 273 # The given temperature in K\n", "V = (T * R) / P # Volume per g mol of oxygen in cc per g mol\n", "m1 = 32. # Molecular weight of Oxygen\n", "V1 = V * (m / m1) # Volume of 3.2 g of oxygen in cc\n", "\n", "# Output\n", "print 'The Volume occupied by 3.2 gms of Oxygen is V = %3.0f cc ' % (V1)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The Volume occupied by 3.2 gms of Oxygen is V = 2461 cc \n" ] } ], "prompt_number": 7 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.9 Page No : 193" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "# Input data\n", "v = 1. # The volume of an Ideal gas at N.T.P in m**3\n", "d = 13.6 # The density of mercury in g/cm**3\n", "g = 980. # Gravitational constant in gms/s**2\n", "p = 76. # The pressure in cm of Hg\n", "R = 8.31 * 10**7 # The Universal gas constant in ergs/g mol-K\n", "N = 6.023 * 10**23 # The Avogadro number\n", "T = 273. # The temperature at N.T.P in K\n", "\n", "# Calculations\n", "P = p * g * d # The given pressure in dynes/cm**2\n", "x = (P * N * 10**6) / (R * T) # Number of molecules in one cubic metre volume\n", "\n", "# Output\n", "print 'The number of molecules in one cubic metre of an ideal gas at N.T.P is x = %3.4g ' % (x)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The number of molecules in one cubic metre of an ideal gas at N.T.P is x = 2.689e+25 \n" ] } ], "prompt_number": 8 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.10 Page No : 196" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "# Input data\n", "v = 1. # The volume of an ideal gas in litre\n", "d = 13.6 # The density of mercury in g/cm**3\n", "g = 980. # Gravitational constant in gms/s**2\n", "p = 76. # The pressure in cm of Hg\n", "R = 8.31 * 10**7 # The Universal gas constant in ergs/g mol-K\n", "N = 6.023 * 10**23 # The Avogadro number\n", "T = 273. # The temperature at N.T.P in K\n", "t = 136.5 # The given temperature in degree centigrade\n", "p1 = 3. # The given atmospheric pressure in atm pressure\n", "\n", "# Calculations\n", "T1 = T + t # The given temperature in K\n", "P = p * g * d # The given pressure in dynes/cm**2\n", "x = (p1 * P * N * 10**3) / (R * T1) # Number of molecules in one litre volume\n", "\n", "# Output\n", "print 'The number of molecules in one litre of an ideal gas volume is x = %3.4g ' % (x)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The number of molecules in one litre of an ideal gas volume is x = 5.378e+22 \n" ] } ], "prompt_number": 9 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.11 Page No : 203" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "# Input data\n", "v = 1. # The volume of a gas in cc\n", "d = 13.6 # The density of mercury in g/cm**3\n", "p2 = 10.**-7 # The pressure in cm of Hg\n", "g = 980. # Gravitational constant in gms/s**2\n", "p1 = 76. # The pressure in cm of Hg\n", "R = 8.31 * 10**7 # The Universal gas constant in ergs/g mol-K\n", "N = 6.023 * 10**23 # The Avogadro number\n", "T = 273. # The temperature at N.T.P in K\n", "n1 = 2.7 * 10**19 # The number of molecules per cc of gas at N.T.P\n", "t2 = 0. # The given temperature in degree centigrade\n", "t3 = 39. # The given temperature in degree centigrade\n", "\n", "# Calculations\n", "P1 = p1 * g * d # The given pressure in dynes/cm**2\n", "P2 = p2 * g * d # The given pressure in dynes/cm**2\n", "# The number of molecules per cc of the gas at 0 degree centigrade\n", "n2 = n1 * (P2 / P1)\n", "T2 = t2 + 273 # The given temperature in K\n", "T3 = t3 + 273 # The given temperature in K\n", "# The number of molecules per cc of the gas at 398 degree centigrade\n", "n3 = n2 * (T2 / T3)\n", "\n", "# Output\n", "print 'The number of molecules per cc of the gas , \\n (1)at 0 degree centigrade and 10^-6 mm pressure of mercury is n2 = %3.4g \\n (2)at 39 degree centigrade and 10^-6 mm pressure of mercury is n3 = %3.4g' % (n2, n3)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The number of molecules per cc of the gas , \n", " (1)at 0 degree centigrade and 10^-6 mm pressure of mercury is n2 = 3.553e+10 \n", " (2)at 39 degree centigrade and 10^-6 mm pressure of mercury is n3 = 3.109e+10\n" ] } ], "prompt_number": 10 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.12 Page No : 208" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "# Input data\n", "T = 300. # The given temperature in K\n", "R = 8.3 * 10**7 # The Universal gas constant in ergs/g mol-K\n", "\n", "# Calculations\n", "# The total random kinetic energy per gram -molecule of oxygen in joules\n", "E = ((3. / 2) * (R * T)) / 10**7\n", "\n", "# Output\n", "print 'The total random kinetic energy of one gm-molecule of oxygen at 300 K is K.E = %3.0f joules' % (E)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The total random kinetic energy of one gm-molecule of oxygen at 300 K is K.E = 3735 joules\n" ] } ], "prompt_number": 11 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.13 Page No : 213" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "# Input data\n", "T = 300. # The given temperature in K\n", "k = 1.38 * 10**-16 # Boltzmann constant in erg/molecule-deg\n", "\n", "# Calculations\n", "E = (3. / 2) * k * T # The average Kinetic energy of a molecule in ergs\n", "\n", "# Output\n", "print 'The Average Kinetic energy of a molecule of a gas at 300 K is K.E = %3.4g ergs ' % (E)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The Average Kinetic energy of a molecule of a gas at 300 K is K.E = 6.21e-14 ergs \n" ] } ], "prompt_number": 12 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.14 Page No : 220" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "# Input data\n", "R = 8.32 # Universal gas constant in joules/mole-K\n", "t = 727. # The given temperature in degree centigrade\n", "N = 6.06 * 10**23 # The Avogadro number\n", "\n", "# Calculations\n", "T = 273. + t # The given temperature in K\n", "k = R / N # Boltzmann constant in joules/mol-K\n", "E = (3. / 2) * k * T # Mean translational kinetic energy per molecule in joules\n", "\n", "# Output\n", "print 'The mean translational kinetic energy per molecule is K.E = %3.4g joule ' % (E)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The mean translational kinetic energy per molecule is K.E = 2.059e-20 joule \n" ] } ], "prompt_number": 13 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.15 Page No : 224" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "# Input data\n", "T = 300. # The given temperature in K\n", "M = 28. # Molecular weight of nitrogen in g\n", "R = 8.3 * 10**7 # The Universal gas constant in ergs/g mol-K\n", "\n", "# Calculations\n", "E = (3. / 2) * R * T # The total random kinetic energy of nitrogen in ergs\n", "# The total random kinetic energy of one gram of nitrogen at 300 K in joule\n", "E1 = E / (M * 10**7)\n", "\n", "# Output\n", "print 'The total random kinetic energy of one gram of nitrogen at 300 K is K.E = %3.1f joule ' % (E1)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The total random kinetic energy of one gram of nitrogen at 300 K is K.E = 133.4 joule \n" ] } ], "prompt_number": 14 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.16 Page No : 228" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "# Input data\n", "T = 200. # The given temperature in K\n", "m = 2. # Given mass of Helium in g\n", "M = 4. # Molecular weight of helium in g\n", "R = 8.3 * 10**7 # The Universal gas constant in ergs/g mol-K\n", "\n", "# Calculations\n", "# The energy for 2 g of helium in joules\n", "E = (m * (3. / 2) * (R * T) / (M)) / 10**7\n", "\n", "# Output\n", "print 'The total random kinetic energy of 2 g of helium at 200 K is K.E = %3.0f joules' % (E)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The total random kinetic energy of 2 g of helium at 200 K is K.E = 1245 joules\n" ] } ], "prompt_number": 15 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.17 Page No : 233" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "# Input data\n", "T = 300. # The given temperature in K\n", "R = 8.3 * 10**7 # The Universal gas constant in ergs/g mol-K\n", "M = 221. # The molecular weight of mercury\n", "\n", "# Calculations\n", "# The root mean square velocity of a molecule of mercury vapour at 300 K\n", "# in cm/s\n", "C = ((3 * R * T) / (M))**(1. / 2)\n", "\n", "# Output\n", "print 'The root mean square velocity of a molecule of mercury vapour at 300 K is C = %3.4g cm/s ' % (C)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The root mean square velocity of a molecule of mercury vapour at 300 K is C = 1.839e+04 cm/s \n" ] } ], "prompt_number": 16 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.18 Page No : 239" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "# Input data\n", "T = 300. # The given temperature in K\n", "M = 32. # Molecular weight of oxygen\n", "R = 8.3 * 10**7 # The Universal gas constant in ergs/g mol-K\n", "\n", "# Calculations\n", "# Total random kinetic energy of 1 g molecule of oxygen in ergs\n", "E = (3. / 2) * R * T\n", "# The required speed of one gram molecule of oxygen in cm/s\n", "v = ((E) * (2 / M))**(1. / 2)\n", "\n", "# Output\n", "print 'The required speed of one gram molecule of oxygen is v = %3.2g cm/s ' % (v)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The required speed of one gram molecule of oxygen is v = 4.8e+04 cm/s \n" ] } ], "prompt_number": 17 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.19 Page No : 242" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "# Input data\n", "v = 8. # The speed of the earths first satellite in km/s\n", "R = 8.3 * 10**7 # The Universal gas constant in ergs/g mol-K\n", "M = 2. # Molecular weight of hydrogen\n", "\n", "# Calculations\n", "V = v * 10**5 # The speed of the earths first satellite in cm/s\n", "T = (M * V**2) / (3 * R) # The temperature at which it becomes equal in K\n", "\n", "# Output\n", "print 'The temperature at which the r.m.s velocity of a hydrogen molecule will be equal to the speed of earths first satellite is T = %3.4g K' % (T)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The temperature at which the r.m.s velocity of a hydrogen molecule will be equal to the speed of earths first satellite is T = 5141 K\n" ] } ], "prompt_number": 18 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.20 Page No : 248" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "# Input data\n", "t1 = 0. # The given temperature in degree centigrade\n", "\n", "# Calculations\n", "T1 = t1 + 273 # The given temperature in K\n", "# The temperature at which the r.m.s velocity of a gas be half its value\n", "# at 0 degree centigrade in K\n", "T2 = (1. / 2)**2 * T1\n", "T21 = T2 - 273 # The required temperature in degree centigrade\n", "\n", "# Output\n", "print 'The required temperature is T2 = %3.2f K (or) %3.2f degree centigrade ' % (T2, T21)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The required temperature is T2 = 68.25 K (or) -204.75 degree centigrade \n" ] } ], "prompt_number": 19 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.21 Page No : 252" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Input data\n", "n = 1.66 * 10**-4 # The viscosity of the gas in dynes/cm**2\n", "C = 4.5 * 10**4 # The R.M.S velocity of the molecules in cm/s\n", "d = 1.25 * 10**-3 # The density of the gas in g/cc\n", "N = 6.023 * 10**23 # The Avogadro number\n", "V = 22400. # The volume of a gas at N.T.P in cc\n", "pi = 3.142 # The mathematical constant of pi\n", "\n", "# Calculations\n", "L = (3 * n) / (d * C) # The mean free path of the molecules of the gas in cm\n", "F = (C / L) # The frequency collision in per sec\n", "n = N / V # Number of molecules per cc\n", "# Molecular diameter of the gas molecules in cm\n", "D = 1. / ((1.414 * pi * n * L)**(1. / 2))\n", "\n", "# Output\n", "print '(1)The mean free path of the molecules of the gas is %3.0g cm \\n (2)The frequency of collision is N = %3.0g /sec \\n (3)Molecular diameter of the gas molecules is d = %3.0g cm ' % (L, F, D)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(1)The mean free path of the molecules of the gas is 9e-06 cm \n", " (2)The frequency of collision is N = 5e+09 /sec \n", " (3)Molecular diameter of the gas molecules is d = 3e-08 cm \n" ] } ], "prompt_number": 20 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.22 Page No : 255" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "# Input data\n", "n = 2.25 * 10**-4 # The viscosity of the gas in dynes/cm**2\n", "C = 4.5 * 10**4 # The RMS velocity of the molecules in cm/s\n", "d = 10.**-3 # The density of the gas in g/cc\n", "\n", "# Calculations\n", "L = (3 * n) / (d * C) # The mean free path of the molecules in cm\n", "\n", "# Output\n", "print 'The mean free path of the molecules is %3g cm ' % (L)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The mean free path of the molecules is 1.5e-05 cm \n" ] } ], "prompt_number": 21 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.23 Page No : 261" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Input data\n", "d = 2. * 10**-8 # The molecular diameter in cm\n", "n = 3. * 10**19 # The number of molecules per cc\n", "pi = 3.14 # Mathematical constant of pi\n", "\n", "# Calculations\n", "L = 1. / ((pi * (d)**2 * n)) # The mean free path of a gas molecule in cm\n", "\n", "# Output\n", "print 'The mean free path of a gas molecule is %3.0g cm ' % (L)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The mean free path of a gas molecule is 3e-05 cm \n" ] } ], "prompt_number": 22 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.24 Page No : 265" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Input data\n", "p = 760. # The given pressure in mm of Hg\n", "T = 273. # The temperature of the chamber in K\n", "V = 22400. # The volume of the gas at N.T.P in cc\n", "p1 = 10.**-6 # The pressure in the chamber in mm of mercury pressure\n", "N = 6.023 * 10**23 # The Avogadro number\n", "d = 2. * 10**-8 # Molecular diameter in cm\n", "pi = 3.14 # Mathematical constant of pi\n", "\n", "# Calculations\n", "# The number of molecules per cm**3 in the chamber in molecules/cm**3\n", "n = (N * p1) / (V * p)\n", "# The mean free path of the gas molecules in the chamber in cm\n", "L = 1. / (pi * (d)**2 * n)\n", "\n", "# Output\n", "print 'The mean free path of gas molecules in a chamber is %3.4g cm ' % (L)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The mean free path of gas molecules in a chamber is 2.25e+04 cm \n" ] } ], "prompt_number": 23 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.25 Page No : 270" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "# Input data\n", "Tc = 132. # The given temperature in K\n", "Pc = 37.2 # The given pressure in atms\n", "R = 82.07 # Universal gas constant in cm**3 atoms K**-1\n", "\n", "# Calculations\n", "# Vander Waals constant in atoms cm**6\n", "a = (27. / 64) * ((R)**2 * (Tc)**2) / Pc\n", "b = ((R * Tc) / (8 * Pc)) # Vander Waals constant in cm**3\n", "\n", "# Output\n", "print 'The Van der Waals constants are , \\n (1) a = %3.4g atoms cm^6 \\n (2) b = %3.2f cm^3 ' % (a, b)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The Van der Waals constants are , \n", " (1) a = 1.331e+06 atoms cm^6 \n", " (2) b = 36.40 cm^3 \n" ] } ], "prompt_number": 24 } ], "metadata": {} } ] }