{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 9 Condensation and Boiling Heat Transfer" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Exa 9.1" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Value of reynolds no. is 49.7 so the laminar assumption was correct\n", "The heat transfer is 2368.0 w\n", "Total mass flow condensate is 3.78 kg/h\n" ] } ], "source": [ "#Example Number 9.1\n", "# condensation on vertical plate\n", "\n", "#Variable declaration\n", "\n", "\t# we have to check the reynolds no. to that film is laminar or turbulent\n", "Tf = (100+98)/2 \t\t\t# [degree celsius]\n", "Tw = 98 \t\t\t\t# [degree celsius]\n", "RHOf=960 \t\t\t\t# [kg/cubic meter] \n", "MUf=2.82*10**(-4) \t\t\t# [kg/m s]\n", "Kf=0.68 \t\t\t\t# [W/m degree celsius]\n", "g=9.81 \t\t\t\t\t# [m/s**(2)]\n", "L=0.3 \t\t\t\t\t# [m]\n", "\t# RHOf(RHOf-RHOv)~RHOf**(2)\n", "\t# let us assume laminar film condensate \n", "Tsat=100 \t\t\t\t# [degree celsius]\n", "Tg=100 \t\t\t\t\t# [degree celsius]\n", "Hfg=2255*10**(3) \t\t\t# [J/kg]\n", "\n", "#Calculation\n", "\n", "hbar=0.943*((RHOf**(2)*g*Hfg*Kf**(3)/(L*MUf*(Tg-Tw)))**(0.25)) \t# [W/sq m deg celsius]\n", "h=hbar \t\t\t\t\t# [W/square meter degree celsius]\n", "\t# checking reynolds no. with equation(9-17)\n", "Ref=4*h*L*(Tsat-Tw)/(Hfg*MUf) \n", "\n", "print \"Value of reynolds no. is\",round(Ref,1),\"so the laminar assumption was correct\" \n", "\t# the heat transfer is now calculated from \n", "A=0.3*0.3 \t\t\t\t# [square meter]\n", "q=hbar*A*(Tsat-Tw) \t\t\t# [W]\n", "mdot=q/Hfg \t\t\t\t# [kg/h]\n", "\n", "#Result\n", "\n", "print \"The heat transfer is\",round(q),\"w\" \n", "mdot=mdot*3600 \t\t\t\t# [kg/h]\n", "print \"Total mass flow condensate is\",round(mdot,2),\"kg/h\" " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Exa 9.2" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Total surface area is 3.99 square meter/m\n", "Heat transfer is 100.1 kW/m\n", "Total mass flow of condensate is 159.8 kg/h\n" ] } ], "source": [ "#Example Number 9.2\n", "# condensation on tube tank\n", "\n", "# Variable declaration\n", "\n", "\t# the condensate properties are obtained from previous example\n", "\t# replacing L by n*d\n", "Tw=98 \t\t\t\t# [degree celsius]\n", "RHOf=960 \t\t\t# [kg/cubic meter] \n", "MUf=2.82*10**(-4) \t\t# [kg/m s]\n", "Kf=0.68 \t\t\t# [W/m degree celsius]\n", "g=9.81 \t\t\t\t# [m/s^(2)]\n", "Tsat=100 \t\t\t# [degree celsius]\n", "Tg=100 \t\t\t\t# [degree celsius]\n", "Hfg=2255*10**(3) \t\t# [J/kg]\n", "d=0.0127 \t\t\t# [m]\n", "n=10 \n", "\n", "#Calculation\n", "\n", "hbar=0.725*((RHOf**(2)*g*Hfg*Kf**(3)/(n*d*MUf*(Tg-Tw)))**(0.25)) # [W/sq m deg C]\n", "\t# total surface area is \n", "n=100 \n", "Al=n*22*d/7 \t\t\t# [square meter]\n", "print \"Total surface area is\",round(Al,2),\"square meter/m\" \n", "\t# so the heat transfer is \n", "Ql=hbar*Al*(Tg-Tw)\t\t # [W]\n", "\n", "#Result \n", "\n", "print \"Heat transfer is\",round(Ql/1000,2),\"kW/m\" \n", "\t# total mass flow of condensate is then \n", "mdotl=Ql/Hfg \t\t\t# [kg/h]\n", "mdotl=mdotl*3600\t\t# [kg/h]\n", "print \"Total mass flow of condensate is\",round(mdotl,1),\"kg/h\" " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Exa 9.4" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Heat transfer in a 1.0 m length of tube is 2810.0 W/m\n" ] } ], "source": [ "#Example Number 9.4\n", "# Flow boiling\n", "# Variable declaration\n", "\n", "p =0.5066\t\t\t# [MPa] pressure of water \n", "d = 0.0254 \t\t\t# [m] diameter of tube \n", "Tw = 10.0 \t\t\t# [degree celsius]\n", "\t\t\t\t# for calculation we use equation (9-45), noting that \n", "dT = 10.0 \t\t\t# [degree celsius]\n", "\t\t\t\t# the heat transfer coefficient is calculated as \n", "\n", "import math\n", "h = 2.54*Tw**(3)*math.exp(p/1.551) \t# [W/square meter degree celsius]\n", "\n", "\t\t# the surface area for a 1-m length of tube is \n", "L = 1 \t\t\t\t# [m]\n", "import math\n", "A = math.pi*d*L \t\t# [square meter]\n", "\n", "\t\t# so the heat transfer is \n", "q = h*A*dT \t\t\t# [W/m]\n", "print \"Heat transfer in a 1.0 m length of tube is\",round(q),\"W/m\" " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Exa 9.5" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Heat flux obtained is 22.8 kW/square meter\n", "If the pan operates as a pressure cooker at 0.17 MPa the increase in heat flux is 23.0 percent\n" ] } ], "source": [ "#Example Number 9.5\n", "# water boiling in a pan \n", "\n", "# Variable declaration\n", "\n", "p = 0.101\t\t\t\t# [MPa] pressure of water \n", "dT_x = 8 \t\t\t\t# [degree celsius]\n", "p1 = 0.17 \t\t\t\t# [MPa] given operating pressure\n", "\t# we will use the simplified relation of table 9-13(page no.-506) for the \t\testimates.we do not know the value of q_by_A and so must choose one of the two \trelation for a horizontal surface from the table\n", "\t# we anticipate nucleate boiling, so choose\n", "h = 5.56*dT_x**(3) \t\t\t# [W/square meter degree celsius]\n", "\t\t\t\t\t# and the heat flux is \n", "q_by_A = h*dT_x \t\t\t# [W/square meter]\n", "\t# for operation as a pressure cooker we obtain the value of h from \t\tequation(9-44)\n", "\n", "#Calculation\n", "\n", "hp = h*(p1/p)**(0.4) \t\t\t# [W/square meter degree celsius]\n", "\t# the corresponding heat flux is \n", "q_by_A1 = hp*dT_x \t\t\t# [W/square meter]\n", "\n", "#Result\n", "\n", "print \"Heat flux obtained is\",round(q_by_A/1000,1),\"kW/square meter\" \n", "per_inc = 100*(q_by_A1-q_by_A)/q_by_A \n", "\n", "print \"If the pan operates as a pressure cooker at 0.17 MPa the increase in heat flux is\",round(per_inc),\"percent\" \n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Exa 9.6" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Thus the heat transfers 14.0 times the heat of a pure copper rod with a substantial temperature gradient\n" ] } ], "source": [ "#Example Number 9.6\n", "# heat-flux comparisons \n", "\n", "# Variable declaration\n", "\n", "Tw = 200.0 \t\t\t\t# [degree celsius] water temperature \n", "L = 0.08 \t\t\t\t# [m] length of solid copper bar\n", "dT = 100.0 \t\t\t\t# [degree C] temp differential in copper bar\n", "\t#using the data of table 9-4(page no.-508)\n", "\t# the heat flux per unit area is expressed as q_by_A = -k*del_T/dx\n", "\t# from table A-2(page no.-) the thermal conductivity of copper is \n", "k = 374.0 \t\t\t\t# [W/m degree celsius]\n", "\n", "#Calculation\n", "\n", "q_by_A = -k*(-dT)/L \t\t\t# [W/square meter]\n", "\n", "\t# from table 9-4(page no.-508) the typical axial heat flux for a water heat \t\tflux for a water heat pipe is \n", "q_by_A_axial = 0.67 \t\t\t# [kW/csquare meter]\n", "q_by_A = q_by_A/(1000*10**(4.0)) \t# [kW/csquare meter]\n", "time=q_by_A_axial/q_by_A\n", "\n", "#Result\n", "\n", "print \"Thus the heat transfers \",round(time),\"times the heat of a pure copper rod with a substantial temperature gradient\" " ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.6" } }, "nbformat": 4, "nbformat_minor": 0 }