{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 11 Mass Transfer" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Exa 11.1" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "value of diffusion coefficient for co2 in air is 0.132 square centimeter/s\n", "From Table A-8,D=0.164 sq cm/s\n", " So,they are in fair agreement\n" ] } ], "source": [ "#Example Number 11.1\n", "# diffusion coefficient for co2\n", "\n", "# Variable declaration\n", "\n", "T =298.0\t\t\t# [K] temperature of air\n", "Vco2 = 34.0 \t\t\t# molecular volume of co2\n", "Vair = 29.9 \t\t\t# molecular volume of air\n", "Mco2 = 44.0 \t\t\t# molecular weight of co2\n", "Mair = 28.9 \t\t\t# molecular weight of air\n", "P = 1.0132*10**(5) \t\t# [Pa] atmospheric pressure\n", "\t# using equation (11-2)\n", "#Calculation\n", "D = 435.7*T**(3.0/2.0)*(((1/Mco2)+(1/Mair))**(1.0/2.0))/(P*(Vco2**(1.0/3.0)+Vair**(1.0/3.0))**(2)) \n", "\n", "#Result\n", "print \"value of diffusion coefficient for co2 in air is\",round(D,3),\"square centimeter/s\" \n", "print \"From Table A-8,D=0.164 sq cm/s\\n So,they are in fair agreement\"\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Exa 11.3" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Temperature of dry air is 53.66 degree celsius\n", " recalculate the density at the arithmetic-average temperature between wall and free-stream conditions\n", "With this adjustments these results are RHO = 1.143 kg/m**(3) and Tinf = 55.8 degree celcius\n" ] } ], "source": [ "#Example Number 11.3\n", "# Wet-bulb temperature\n", "\n", "#Variable declaration\n", "\n", "Pg = 2107.0\t\t\t# [Pa] from steam table at 18.3 degree celcius\n", "Pw = Pg*18.0 \t\t\t# [Pa]\n", "Rw = 8315.0 \t\t\t# [J/mol K] gas constant\n", "Tw = 273+18.3\t \t\t# [K]\n", "\n", "RHOw = Pw/(Rw*Tw) \t\t# [kg/cubic meter]\n", "\n", "\n", "Cw = RHOw \t\t\t# [kg/cubic meter]\n", "RHOinf = 0.0 \t\t\t# since the free stream is dry air\n", "Cinf = 0.0 \n", "P = 1.01325*10**(5) \t\t# [Pa]\n", "R = 287 \t\t\t# [J /kg  K]\n", "T = Tw \t\t\t\t# [K]\n", "RHO = P/(R*T) \t\t\t# [kg/cubic meter]\n", "\n", "Cp = 1004.0 \t\t\t# [J/kg degree celsius]\n", "Le = 0.845 \n", "Hfg = 2.456*10**(6) \t\t# [J/kg]\n", "#Calculations\n", "# now using equation(11-31)\n", "\n", "Tinf = (((Cw-Cinf)*Hfg)/(RHO*Cp*(Le**(2.0/3.0))))+Tw \t# [K]\n", "Tin = Tinf-273 \t\t\t\t\t# [degree celsius]\n", "\n", "print \"Temperature of dry air is\",round(Tin,2),\"degree celsius\" \n", "print \" recalculate the density at the arithmetic-average temperature between wall and free-stream conditions\" \n", "print \"With this adjustments these results are RHO = 1.143 kg/m**(3) and Tinf = 55.8 degree celcius\"\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Exa 11.4" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Relative humidity is therefore 27.8 percentage\n" ] } ], "source": [ "#Example Number 11.4\n", "# relative humidity of air stream\n", "\n", "#Variable declaration\n", "\n", "\t\t# these data were taken from previous example\n", "Rho = 1.212 \t\t\t\t\t# [kg/cubic meter]\n", "Cp = 1004 \t\t\t\t\t# [J/kg]\n", "Le = 0.845 \n", "Tw = 18.3 \t\t\t\t\t# [degree celsius]\n", "Tinf = 32.2 \t\t\t\t\t# [degree celsius]\n", "Rhow = 0.015666 \t\t\t\t# [kg/cubic meter]\n", "Cw = Rhow \t\t\t\t\t# [kg/cubic meter]\n", "\n", "#calculation\n", "\n", "Hfg = 2.456*10**(6) \t\t\t\t# [J/kg]\n", "\t\t# we use eqn 11-31\n", "Cinf = Cw-(Rho*Cp*Le**(2.0/3.0)*(Tinf-Tw)/Hfg) \t# [kg/cubic meter]\n", "Rhoinf = Cinf \t\t\t\t\t# [kg/cubic meter]\n", "Rhog = 0.0342 \t\t\t\t\t# [kg/cubic meter]\n", "RH = (Rhoinf/Rhog)*100 \n", "\n", "#Result\n", "\n", "print \"Relative humidity is therefore\",round(RH,1),\"percentage\" \n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Exa 11.5" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Evaporation rate on the land under these conditions is 0.0028 kg/h square meter\n" ] } ], "source": [ "#Example Number 11.5\n", "# water evaporation rate\n", "\n", "# Variable declaration\n", "\n", "Ta = 38+273 \t\t\t# [K] temperature of atmospheric air\n", "RH = 0.30 \t\t\t# relative humidity\n", "u = 10.0\t\t\t# [mi/h] mean wind speed\n", "R = 0.287 \t\t\t# universal gas constant\n", "Dw = 0.256*10**(-4) \t\t# [square meter/s] from table A-8(page no.-610)\n", "rho_w = 1000 \t\t\t# [kg/cubic meter]\n", "\t# for this calculation we can make use of equation(11-36). from thermodynamic \tsteam tables\n", "p_g = 6.545 \t\t\t# [kPa] at 38 degree celsius\n", "p_s = p_g \t\t\t# [kPa]\n", "p_w = RH*p_s \t\t\t# [kPa]\n", "p_s = 1.933 \t\t\t# [in Hg]\n", "p_w = 0.580 \t\t\t# [in Hg]\n", "\t# also \n", "u_bar = u*24 \t\t\t# [mi/day]\n", "\t# equation(11-36) yields, with the application of the 0.7 factor\n", "\n", "E_lp = 0.7*(0.37+0.0041*u_bar)*(p_s-p_w)**(0.88) \t\t# [in/day]\n", "E_lp = E_lp*2.54/100 \t\t\t\t\t\t# [m/day]\n", "\n", "\t# noting that standard pan has the diameter of 1.2m, we can use the figure to \t\tcalculate the mass evaporation rate per unit area as\n", "m_dot_w_by_A = E_lp*rho_w/24 \t\t\t\t# [kg/h square meter]\n", "\n", "\n", "\t# as a matter of interest, we might calculate the molecular-diffusion rate of \t\twater vapour from equation(11-35), taking z1 as the 1.5m dimension above the \t\tstandard pan.\n", "z1 = 1.5 \t\t\t\t\t\t\t# [m]\n", "\n", "\t# since rho = p/(R*T)\n", "\t# equation(11-35) can be written as \n", "m_dot_w_by_A1 = 0.622*Dw*p_g*3600/(R*Ta*z1) \t\t\t# [kg/h square meter]\n", "\n", "#Result\n", "\n", "print \"Evaporation rate on the land under these conditions is\",round(m_dot_w_by_A1,4),\"kg/h square meter\"\n", "\n", "\n" ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.6" } }, "nbformat": 4, "nbformat_minor": 0 }