{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 11 : Boundary layer heat transfer" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 11.1 Page No : 478" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "i) Boundary layer thickness is 0.0033 m\n", "Local drag coefficient is 8.72e-04 \n", "total drag force is 0.615 N \n", "Shear stress is 0.285 N/m**2\n" ] } ], "source": [ "import math \n", "#Variable\n", "v = 1. \t\t\t#m/s\n", "#temprature\n", "T = 25. \t\t\t# degree celcius\n", "#length of plate,l = 1m\n", "l = 1. \t\t\t#m\n", "#width of plate,w = 0.5m\n", "w = 0.5 \t\t\t#m\n", "#angle of incidence,theta = 0 degree\n", "theta = 0. \t\t\t#degree\n", "\n", "#Calculation\n", "#for water at 25 degree celcius ,momentum diffusivity,\n", "MD = 8.63*(10**-7) \t\t\t# m**2/s\n", "#local Reynold no.\n", "x = 0.5 \t\t\t#m\n", "Re = x*v/MD \n", "#from Eq. 11.39,the boundary layer thickness is\n", "t = 5*x/(Re**0.5)\n", "\n", "\n", "#Results\n", "print \"i) Boundary layer thickness is %.4f m\"%(t)\n", "\n", "#local drag coefficient\n", "#CD = local drag force per unit area (F)/kinetic energy per unit volume(KE)\n", "#F = 0.332*rho*v**2*Re**0.5 and KE = 0.5*rho*v**2\n", "CD = 0.332*v**2*(Re**-0.5)/(0.5)*v**2\n", "\n", "print \"Local drag coefficient is %.2e \"%(CD)\n", "\n", "#From eq 11.44, the drag force acting on one side of the plate is\n", "#kinetic viscocity\n", "mu = 8.6*(10**-4)\n", "fd = 0.664*mu*v*(l*v/MD)**0.5*w\n", "#the total force acting on both sides of the plate\n", "\n", "tfd = 2*fd\n", "print \"total drag force is %.3f N \"%(tfd)\n", "\n", "#shear stress at any point in the boundary layer\n", "#at a point in the boundary layer,\n", "x = 0.5 \t\t\t#m\n", "y = t/2\n", "# n = blasius dimensionless variable\n", "n = y/(MD*x/v)**0.5\n", "#From table 11.1, at n = 2.5,f\"(n) = 0.218\n", "#shear stress = tau\n", "fn = 0.218 \t\t\t#f\"(n) = fn\n", "tau = (mu*v*(v/(MD*x))**0.5)*fn\n", "print \"Shear stress is %.3f N/m**2\"%(tau)\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 11.2 Page No : 488" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Thermal boundary layer thickness is 8.7 mm \n", "heat transfer coeff is 6.9 W/m**2 C\n" ] } ], "source": [ "#Variable\n", "Ts = 200. \t\t\t# C,temp. of air\n", "Ta = 30. \t\t\t#C, temp .of surface\n", "Va = 8. \t\t\t#m/s, velocity of air\n", "d = 0.75 \t\t\t#m, dismath.tant from leading edge\n", "\n", "#Calculation and Results\n", "Tm = (Ts+Ta)/2 \t\t\t#C, Mean temp. of boundary layer\n", "mu = 2.5*10**-5 \t\t\t#m**2/s, vismath.cosity\n", "P = 0.69 \t\t\t#prndatl no.\n", "k = 0.036 \t\t\t#W/m c, thermal conductivity\n", "Re = d*Va/mu \t\t\t#reynold no.\n", "t = 5*d/(Re**0.5*P**(1./3)) \t\t\t#m, thermal boundary layer thickness\n", "print \"Thermal boundary layer thickness is %.1f mm \"%(t*10**3)\n", "\n", "N = (0.332*Re**(0.5)*P**(1./3)) \t\t\t#Nusslet no.\n", "h = k*N/d \t\t\t#heat transfer coefficent\n", "print \"heat transfer coeff is %.1f W/m**2 C\"%(h)\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 11.3 Page No : 489" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Local rate of heat exchange is 235 W/m2\n", "Plate temperature is :108 Celsius \n" ] } ], "source": [ "# Variables\n", "#Free strean velocity (v1) and temp.(t1) on side 1\n", "v1 = 6. \t\t\t#m/s\n", "t1 = 150. \t\t\t#degree celcius\n", "#same on side 2\n", "v2 = 3. \t\t\t#m/s\n", "t2 = 50. \t\t\t#degree celcius\n", "#dismath.tant\n", "x = 0.7 \t\t\t#m\n", "#The plate temp. is assumed to be equal to the mean of the bulk air temp on the two sides of the plates\n", "T = 100. \t\t\t#degree celcius\n", "\n", "# Calculations\n", "#Side 1\n", "#mean air temp.\n", "tm1 = (T+t1)/2\n", "#From thermophysical properties:kinetic vismath.cosity (kv),Prandtl no.(P), thermal conductivity (k)\n", "kv1 = 2.6*10**-5 \t\t\t#m**2/s\n", "P1 = 0.69\n", "k1 = 0.0336 \t\t\t#W/m degree celcius\n", "#Reynold no.\n", "Re1 = x*v1/kv1\n", "#Nusslet no(N1)\n", "a = 1/3.\n", "N1 = 0.332*(Re1)**0.5*P1**a\n", "h1 = k1*N1/x\n", "#Side 2 of the plate\n", "tm2 = (T+t2)/2\n", "#Similarly\n", "kv2 = 2.076*(10)**-5 \t\t\t#m**2/s\n", "P2 = 0.70\n", "k2 = 0.03 \t\t\t#W/m degree celcius\n", "Re2 = x*v2/kv2\n", "N2 = 0.332*(Re2)**0.5*P2**a\n", "h2 = k2*N2/x\n", "#overall heat transfer coeff. \n", "U = h1*h2/(h1+h2)\n", "#The local rate of heat exchange\n", "RH = U*(t1-t2)\n", "\n", "# Results\n", "print \"Local rate of heat exchange is %.0f W/m2\"%(RH)\n", "#the plate temp is given by\n", "TP = t2+(t1-t2)*U/h2\n", "print \"Plate temperature is :%.0f Celsius \"%(TP)\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 11.4 Page No : 490" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The temprature of plate after 1 hour is 82 C\n" ] } ], "source": [ "import math\n", "# Variables\n", "T1 = 120. \t\t\t#C, initial temp.\n", "T2 = 25. \t\t\t#C, Final temp.\n", "Tm = (T1+T2)/2 \t\t\t#C, mean temp.\n", "rho = 8880. \t\t\t#kg/m**3, density of plate\n", "#Properties of air at mean temp.\n", "mu = 2.07*10**-5 \t\t\t#m**2/s, vismath.cosity\n", "Pr = 0.7 \t\t\t#Prandtl no.\n", "k = 0.03 \t\t\t#W/m C, thermal conductivity\n", "l = 0.4 \t\t\t#m, length of plate\n", "w = 0.3 \t\t\t#m, width of plate\n", "d = 0.0254 \t\t\t#m, thickness of plate\n", "Vinf = 1. \t\t\t#m/s, air velocity\n", "Re = l*Vinf/mu \t\t\t#REynold no.\n", "\n", "#from eq. 11.90 (b)\n", "Nu = 0.664*(Re)**(1./2)*(Pr)**(1./3) \t\t\t#average Nusslet no.\n", "#Nu = l*h/k\n", "h = Nu*k/l \t\t\t#W/m**2 C, heat transfer coefficient\n", "#Rate of change of temp. is given by\n", "A = 2*l*w \t\t\t#m**2. area of plate\n", "t = 1*3600. \t\t\t#s, time\n", "cp = 0.385*10.**3 \t\t\t#j/kg K, specific heat\n", "m = l*w*d*rho \t\t\t#kg, mass of plate\n", "\n", "#-d/dt(m*cp8dt) = A*hv*(T1-T2)\n", "#appling the boundary condition \n", "T = (T1-T2)*math.exp(-A*h*t/(m*cp))+T2\n", "print \"The temprature of plate after 1 hour is %.0f C\"%(T)\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 11.5 Page No : 508" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Nusslet no is: 388 \n" ] } ], "source": [ "import math\n", "# Variables\n", "#Reynold no (Re),friction factor(f),Prandlt no. (P)\n", "Re = 7.44*(10**4)\n", "f = 0.00485\n", "P = 5.12\n", "x = P-1 \t\t\t#assume\n", "\n", "# Calculations\n", "#according to Von Karmen anamath.logy\n", "N = ((f/2)*Re*P)/(1+(5*math.sqrt(f/2))*(x+math.log(1+(5./6)*x)))\n", "\n", "# Results\n", "print \"Nusslet no is: %.0f \"%(N)\n", "\n" ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.6" } }, "nbformat": 4, "nbformat_minor": 0 }