{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 10 : Unsteady State And Multidimensional Heat Conduction" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 10.8 Page No : 444" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The bottom surface temperature of given slab is 10.3 C\n", "The top surface temperature of given slab is 19.4 C\n", "The mid plane temperature of given slab is 12.6 C\n" ] } ], "source": [ "# Variables\n", "l = 0.05 \t\t\t#m,thickness of margarine slab\n", "ro = 990. \t\t\t#Kg/m**3, density of margarine slab \n", "cp = 0.55 \t\t\t#Kcal/kg C, ddpecific heat of slab\n", "k = 0.143 \t\t\t#kcal/h mC, thermal conductivity of slab\n", "Ti = 4. \t\t\t#C, initial temp\n", "To = 25. \t\t\t#C, ambient temp.\n", "t = 4. \t\t\t#hours, time\n", "h = 8. \t\t\t#kcal/h m**2 C\n", "\n", "#calculation\n", "Fo = k*t/(ro*cp*l**2) \t\t\t#, fourier no.\n", "Bi = h*l/k \t\t\t#Biot no.\n", "#from fig. 10.6 a\n", "Tcbar = 0.7 \t\t\t#Tcbar = (Tc-To)/(Ti-To)\n", "Tc = To+Tcbar*(Ti-To) \t\t\t#C, centre temp.\n", "#from fig 10.6 b\n", "#(T-To)/(Tc-To) = 0.382\n", "T = 0.382*(Tc-To)+To \t\t\t#c,top surface temp.\n", "#again from fig. 10.6 b\n", "Tm = 0.842*(Tc-To)+To \t\t\t#, mid plane temp.\n", "\n", "# Results\n", "print \"The bottom surface temperature of given slab is %.1f C\"%(Tc);\n", "print \"The top surface temperature of given slab is %.1f C\"%(T);\n", "print \"The mid plane temperature of given slab is %.1f C\"%(Tm);\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 10.9 Page No : 449" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "i) time required for the cantre-line temp.to drop down to 200 C is 229 s\n", "ii)the temp. at half radius at that moment is 161 C \n", "iii)the amount of heat that has been transfered to the liquid is 19647 Kj\n" ] } ], "source": [ "import math \n", "# Variables\n", "Ti = 870. \t\t\t#C, initial temp.\n", "To = 30. \t\t\t#C, ambient temp.\n", "Tc = 200. \t\t\t#C, centre line temp.\n", "h = 2000. \t\t\t#W/m**2 C, surface heat transfer coefficient\n", "a = 0.05 \t\t\t#m, radius of cylinder \n", "k = 20. \t\t\t#W/m C, thermal conductivity\n", "ro = 7800. \t\t\t#kg/m**3, density\n", "cp = 0.46*10**3 \t\t\t#j/kg C, specific heat\n", "\n", "#calculation\n", "#i\n", "Bi = h*a/k \t\t\t#Biot no.\n", "alpha = k/(ro*cp) \t\t\t#m**2/C, thermal diffusivity\n", "Tcbar = (Tc-To)/(Ti-To) \t\t\t# dimensionless centre line temp.\n", "#from fig 10.7 a\n", "fo = 0.51 \t\t\t#fourier no. fo = alpha*t/a**2\n", "t = fo*a**2/alpha \t\t\t#s, time\n", "\n", "#ii\n", "#at the half radius, r/a = 0.5 & Bi = 5\n", "T = To+0.77*(Tc-To) \t\t\t#from fig. 10.7 b\n", "\n", "#iii\n", "x = Bi**2*fo\n", "#for x = 12.75 & Bi = 5.0. fig.10.9 b gives\n", "#q/qi = 0.83\n", "qi = math.pi*a**2*(1)*ro*cp*(Ti-To) \t\t\t#kj, initial amount of heat energy \n", " #present in 1 m length of shaft\n", "q = 0.83*qi \t\t\t#j, amount of heat transfered \n", "\n", "# Results\n", "print \"i) time required for the cantre-line temp.to drop down to 200 C is %.0f s\"%(t);\n", "print \"ii)the temp. at half radius at that moment is %.0f C \"%(T);\n", "print \"iii)the amount of heat that has been transfered to the liquid is %d Kj\"%(q*10**-3)\n" ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.6" } }, "nbformat": 4, "nbformat_minor": 0 }