{ "metadata": { "name": "", "signature": "sha256:e3c042bf60cf5ea8673efb2741d5df5f7935daa012691b520a2d1357e838bd6c" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 14: Introduction to Heat Exchangers" ] }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "ILLUSTRATIVE EXAMPLE 14.1, Page number: 259" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "#Variable declaration:\n", "scfm = 20000.0 #Volumetric flow rate of air at standard conditions (scfm)\n", "H1 = 1170.0 #Enthalpy at 200\u00b0F (Btu/lbmol)\n", "H2 = 14970.0 #Enthalpy at 2000\u00b0F (Btu/lbmol)\n", "Cp = 7.53 #Average heat capacity (Btu/lbmol.\u00b0F)\n", "T1 = 200.0 #Initial temperature (\u00b0F)\n", "T2 = 2000.0 #Final temperature (\u00b0F)\n", "\n", "#Calculation:\n", "n = scfm/359.0 #Flow rate of air in a molar flow rate (lbmol/min)\n", "DH = H2 - H1 #Change in enthalpy (Btu/lbmol)\n", "DT = T2 - T1 #Change in temperature (\u00b0F)\n", "Q1 = n*DH #Heat transfer rate using enthalpy data (Btu/min)\n", "Q2 = n*Cp*DT #Heat transfer rate using the average heat capacity data (Btu/min)\n", "\n", "#Result:\n", "print \"The heat transfer rate using enthalpy data is :\",round(Q1/10**5,2),\" x 10^5 Btu/min.\"\n", "print \"The heat transfer rate using the average heat capacity data is :\",round(Q2/10**5,2),\" x 10^5 Btu/min.\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The heat transfer rate using enthalpy data is : 7.69 x 10^5 Btu/min.\n", "The heat transfer rate using the average heat capacity data is : 7.55 x 10^5 Btu/min.\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "ILLUSTRATIVE EXAMPLE 14.2, Page number: 259" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "#Variable declaration:\n", "n = 1200.0 #Flow rate of air in a molar flow rate (lbmol/min)\n", "Cp = 0.26 #Average heat capacity (Btu/lbmol.\u00b0F)\n", "T1 = 200.0 #Initial temperature (\u00b0F)\n", "T2 = 1200.0 #Final temperature (\u00b0F)\n", "\n", "#Calculation:\n", "DT = T2 - T1 #Change in temperature (\u00b0F)\n", "Q = n*Cp*DT #Required heat rate (Btu/min)\n", "\n", "#Result:\n", "print \"The required heat rate is :\",round(Q/10**5,2),\" x 10^5 Btu/min .\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The required heat rate is : 3.12 x 10^5 Btu/min .\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "ILLUSTRATIVE EXAMPLE 14.3, Page number: 260" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "#Variable declaration:\n", "Tc1 = 25.0 #Initial temperature of cold fluid (\u00b0C)\n", "Th1 = 72.0 #Initial temperature of hot fluid (\u00b0C)\n", "Th2 = 84.0 #Final temperature of hot fluid (\u00b0C)\n", "\n", "#Calculation:\n", "#From equation 14.2:\n", "Tc2 = (Th2-Th1)+Tc1 #Final temperature of cold fluid (\u00b0C)\n", "\n", "#Result:\n", "print \"The final temperature of the cold liquid is :\",Tc2,\" \u00b0C .\"\n", "print \"There is a printing mistake in unit of final temperature in book.\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The final temperature of the cold liquid is : 37.0 \u00b0C .\n", "There is a printing mistake in unit of final temperature in book.\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "ILLUSTRATIVE EXAMPLE 14.4, Page number: 265" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "#Variable declaration:\n", "Ts = 100.0 #Steam temperature at 1 atm (\u00b0C)\n", "Tl = 25.0 #Fluid temperature (\u00b0C)\n", "\n", "#Calculation:\n", "DTlm = Ts - Tl #Log mean temperature difference (\u00b0C)\n", "\n", "#Result:\n", "print \"The LMTD is :\",DTlm,\" \u00b0C .\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The LMTD is : 75.0 \u00b0C .\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "ILLUSTRATIVE EXAMPLE 14.5, Page number: 265" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "from math import log\n", "\n", "#Variable declaration:\n", "Ts = 100.0 #Steam temperature at 1 atm (\u00b0C)\n", "T1 = 25.0 #Initial fluid temperature (\u00b0C)\n", "T2 = 80.0 #Final fluid temperature (\u00b0C)\n", "\n", "#Calculation:\n", "DT1 = Ts - T1 #Temperature difference driving force at the fluid entrance (\u00b0C)\n", "DT2 = Ts - T2 #Temperature driving force at the fluid exit (\u00b0C)\n", "DTlm = (DT1 - DT2)/log(DT1/DT2) #Log mean temperature difference (\u00b0C)\n", "\n", "#Result:\n", "print \"The LMTD is :\",round(DTlm,1),\" \u00b0C .\"\n", "print \"There is a calculation mistake regarding final result in book.\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The LMTD is : 41.6 \u00b0C .\n", "There is a calculation mistake regarding final result in book.\n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "ILLUSTRATIVE EXAMPLE 14.6, Page number: 266" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "from math import log\n", "\n", "#Variable declaration:\n", "T1 = 500.0 #Temperature of hot fluid entering the heat exchanger (\u00b0F)\n", "T2 = 400.0 #Temperature of hot fluid exiting the heat exchanger (\u00b0F)\n", "t1 = 120.0 #Temperature of cold fluid entering the heat exchanger (\u00b0F)\n", "t2 = 310.0 #Temperature of cold fluid exiting the heat exchanger (\u00b0F)\n", "\n", "#Calculation:\n", "DT1 = T1 - t2 #Temperature difference driving force at the heat exchanger entrance (\u00b0F)\n", "DT2 = T2 - t1 #Temperature difference driving force at the heat exchanger exit (\u00b0F)\n", "DTlm = (DT1 - DT2)/(log(DT1/DT2)) #LMTD (driving force) for the heat exchanger (\u00b0F)\n", "\n", "#Result:\n", "print \"The LMTD (driving force) for the heat exchanger is :\",round(DTlm),\" \u00b0F .\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The LMTD (driving force) for the heat exchanger is : 232.0 \u00b0F .\n" ] } ], "prompt_number": 7 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "ILLUSTRATIVE EXAMPLE 14.7, Page number: 267" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "from math import log\n", "\n", "#Variable declaration:\n", "m = 8000.0 #Rate of oil flow inside the tube (lb/h)\n", "Cp = 0.55 #Heat capacity of oil (Btu/lb.\u00b0F)\n", "T1 = 210.0 #Initial temperature of oil (\u00b0F)\n", "T2 = 170.0 #Final temperature of oil (\u00b0F)\n", "t = 60.0 #Tube surface temperature (\u00b0F)\n", "\n", "#Calculation:\n", "DT = T2 - T1 #Change in temperature (\u00b0F)\n", "Q = m*Cp*DT #Heat transferred from the heavy oil (Btu/h)\n", "DT1 = T1 - t #Temperature difference driving force at the pipe entrance (\u00b0F)\n", "DT2 = T2 - t #Temperature difference driving force at the pipe exit (\u00b0F)\n", "DTlm = (DT1 - DT2)/(log(DT1/DT2)) #LMTD (driving force) for the heat exchanger (\u00b0F)\n", "\n", "#Result:\n", "print \"The heat transfer rate is :\",round(Q),\" Btu/h .\"\n", "print \"The LMTD for the heat exchanger is :\",round(DTlm),\" \u00b0F .\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The heat transfer rate is : -176000.0 Btu/h .\n", "The LMTD for the heat exchanger is : 129.0 \u00b0F .\n" ] } ], "prompt_number": 8 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "ILLUSTRATIVE EXAMPLE 14.8, Page number: 267" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "from math import log\n", "\n", "#Variable declaration:\n", "T1 = 138.0 #Temperature of oil entering the cooler (\u00b0F)\n", "T2 = 103.0 #Temperature of oil leaving the cooler (\u00b0F)\n", "t1 = 88.0 #Temperature of coolant entering the cooler (\u00b0F)\n", "t2 = 98.0 #Temperature of coolant leaving the cooler (\u00b0F)\n", "\n", "#Calculation:\n", "#For counter flow unit:\n", "DT1 = T1 - t2 #Temperature difference driving force at the cooler entrance (\u00b0F)\n", "DT2 = T2 - t1 #Temperature difference driving force at the cooler exit (\u00b0F)\n", "DTlm1 = (DT1 - DT2)/(log(DT1/DT2)) #LMTD (driving force) for the heat exchanger (\u00b0F)\n", "#For parallel flow unit:\n", "DT3 = T1 - t1 #Temperature difference driving force at the cooler entrance (\u00b0F)\n", "DT4 = T2 - t2 #Temperature difference driving force at the cooler exit (\u00b0F)\n", "DTlm2 = (DT3 - DT4)/(log(DT3/DT4)) #LMTD (driving force) for the heat exchanger (\u00b0F)\n", "\n", "#Result:\n", "print \"The LMTD for counter-current flow unit is :\",round(DTlm1,1),\" \u00b0F .\"\n", "print \"The LMTD for parallel flow unit is :\",round(DTlm2,1),\" \u00b0F .\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The LMTD for counter-current flow unit is : 25.5 \u00b0F .\n", "The LMTD for parallel flow unit is : 19.5 \u00b0F .\n" ] } ], "prompt_number": 9 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "ILLUSTRATIVE EXAMPLE 14.10, Page number: 272" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "#Variable declaration:\n", "A = 1.0 #Surface area of glass (m^2)\n", "h1 = 11.0 #Heat transfer coefficient inside room (W/m^2.K)\n", "L2 = 0.125*0.0254 #Thickness of glass (m)\n", "k2 = 1.4 #Thermal conductivity of glass (W/m.K)\n", "h3 = 9.0 #Heat transfer coefficient from window to surrounding cold air (W/m^2.K)\n", "\n", "#Calculation:\n", "R1 = 1.0/(h1*A) #Internal convection resistance (K/W)\n", "R2 = L2/(k2*A) #Conduction resistance through glass panel (K/W)\n", "R3 = 1.0/(h3*A) #Outside convection resistance (K/W)\n", "Rt = R1+R2+R3 #Total thermal resistance (K/W)\n", "U = 1.0/(A*Rt) #Overall heat transfer coefficient (W/m^2.K)\n", "\n", "#Result:\n", "print \"The overall heat transfer coefficient is :\",round(U,1),\" W/m^2.K .\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The overall heat transfer coefficient is : 4.9 W/m^2.K .\n" ] } ], "prompt_number": 11 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "ILLUSTRATIVE EXAMPLE 14.11, Page number: 273" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "#Variable declaration:\n", "Dx = 0.049/12.0 #Thickness of copper plate (ft)\n", "h1 = 208.0 #Film coefficient of surface one (Btu/h.ft^2.\u00b0F)\n", "h2 = 10.8 #Film coefficient of surface two (Btu/h.ft^2.\u00b0F)\n", "k = 220.0 #Thermal conductivity for copper (W/m.K)\n", "\n", "#Calculation:\n", "U = 1.0/(1.0/h1+Dx/k+1.0/h2) #Overall heat transfer coefficient (Btu/h.ft^2.\u00b0F)\n", "\n", "#Result:\n", "print \"The overall heat transfer coefficient is :\",round(U,2),\" Btu/h.ft^2.\u00b0F .\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The overall heat transfer coefficient is : 10.26 Btu/h.ft^2.\u00b0F .\n" ] } ], "prompt_number": 12 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "ILLUSTRATIVE EXAMPLE 14.12, Page number: 274" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "#Variable declaration:\n", "Do = 0.06 #Outside diameter of pipe (m)\n", "Di = 0.05 #Inside diameter of pipe (m)\n", "ho = 8.25 #Outside coefficient (W/m^2.K)\n", "hi = 2000.0 #Inside coefficient (W/m^2.K)\n", "R = 1.33*10**-4 #Resistance for steel (m^2.K/W)\n", "\n", "#Calculation:\n", "U = 1.0/(Do/(hi*Di)+R+1.0/ho) #Overall heat transfer coefficient (W/m^2.\u00b0K)\n", "\n", "#Result:\n", "print \"The overall heat transfer coefficient is :\",round(U,2),\" W/m^2.\u00b0K .\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The overall heat transfer coefficient is : 8.2 W/m^2.\u00b0K .\n" ] } ], "prompt_number": 13 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "ILLUSTRATIVE EXAMPLE 14.14, Page number: 274" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "from math import pi,log\n", "\n", "#Variable declaration:\n", "Di = 0.825/12.0 #Pipe inside diameter (ft)\n", "Do = 1.05/12.0 #Pipe outside diameter (ft)\n", "Dl = 4.05/12.0 #Insulation thickness (ft)\n", "l = 1.0 #Pipe length (ft)\n", "kp = 26.0 #Thermal conductivity of pipe (Btu/h.ft.\u00b0F)\n", "kl = 0.037 #Thermal conductivity of insulation (Btu/h.ft.\u00b0F)\n", "hi = 800.0 #Steam film coefficient (Btu/h.ft^2.\u00b0F)\n", "ho = 2.5 #Air film coefficient (Btu/h.ft^2.\u00b0F)\n", "\n", "#Calculation:\n", "ri = Di/2.0 #Pipe inside radius (ft)\n", "ro = Do/2.0 #Pipe outside radius (ft)\n", "rl = Dl/2.0 #Insulation radius (ft)\n", "Ai = pi*Di*l #Inside area of pipe (ft^2)\n", "Ao = pi*Do*l #Outside area of pipe (ft^2)\n", "Al = pi*Dl*l #Insulation area of pipe (ft^2)\n", "A_Plm = (Ao-Ai)/log(Ao/Ai) #Log mean area for steel pipe (ft^2)\n", "A_Ilm = (Al-Ao)/log(Al/Ao) #Log mean area for insulation (ft^2)\n", "Ri = 1.0/(hi*Ai) #Air resistance (m^2.K/W)\n", "Ro = 1.0/(ho*Al) #Steam resistance (m^2.K/W)\n", "Rp = (ro-ri)/(kp*A_Plm) #Pipe resistance (m^2.K/W)\n", "Rl = (rl-ro)/(kl*A_Ilm) #Insulation resistance (m^2.K/W)\n", "U = 1.0/(Ai*(Ri+Rp+Ro+Rl)) #Overall heat coefficient based on the inside area (Btu/h.ft^2.\u00b0F)\n", "\n", "#Result:\n", "print \"The overall heat transfer coefficient based on the inside area of the pipe is :\",round(U,3),\" Btu/h.ft^2.\u00b0F .\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The overall heat transfer coefficient based on the inside area of the pipe is : 0.748 Btu/h.ft^2.\u00b0F .\n" ] } ], "prompt_number": 15 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "ILLUSTRATIVE EXAMPLE 14.15, Page number: 275" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "from math import pi\n", "\n", "#Variable declaration:\n", "#From example 14.14:\n", "Di = 0.825/12.0 #Pipe inside diameter (ft)\n", "L = 1.0 #Pipe length (ft)\n", "Ui = 0.7492 #Overall heat coefficient (Btu/h.ft^2.\u00b0F)\n", "Ts = 247.0 #Steam temperature (\u00b0F)\n", "ta = 60.0 #Air temperature (\u00b0F)\n", "\n", "#Calculation:\n", "Ai = pi*Di*L #Inside area of pipe (ft^2)\n", "Q = Ui*Ai*(Ts-ta) #Heat transfer rate (Btu/h)\n", "\n", "#Result:\n", "print \"The heat transfer rate is :\",round(Q,1),\" Btu/h .\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The heat transfer rate is : 30.3 Btu/h .\n" ] } ], "prompt_number": 16 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "ILLUSTRATIVE EXAMPLE 14.16, Page number: 276" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "#Variable declaration:\n", "hw = 200.0 #Water heat coefficient (Btu/h.ft^2.\u00b0F)\n", "ho = 50.0 #Oil heat coefficient (Btu/h.ft^2.\u00b0F)\n", "hf = 1000.0 #Fouling heat coefficient (Btu/h.ft^2.\u00b0F)\n", "DTlm = 90.0 #Log mean temperature difference (\u00b0F)\n", "A = 15.0 #Area of wall (ft^2)\n", "\n", "#Calculation:\n", "X = 1.0/hw+1.0/ho+1.0/hf #Equation 14.34 for constant A\n", "U = 1.0/X #Overall heat coeffocient (Btu/h.ft^2.\u00b0F)\n", "Q = U*A*DTlm #Heat transfer rate (Btu/h)\n", "\n", "#Result:\n", "print \"The heat transfer rate is :\",round(Q,-1),\" Btu/h .\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The heat transfer rate is : 51920.0 Btu/h .\n" ] } ], "prompt_number": 17 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "ILLUSTRATIVE EXAMPLE 14.17, Page number: 277" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "from __future__ import division\n", "from sympy import symbols,log,nsolve\n", "\n", "\n", "#Variable declaration:\n", "T = 80.0 #Pipe surface temperature (\u00b0F)\n", "t1 = 10.0 #Brine inlet temperature (\u00b0F)\n", "DT2 = symbols('DT2') #Discharge temperature of the brine solution (\u00b0F)\n", "m = 20*60 #Flowrate of brine solution (lb/h)\n", "Cp = 0.99 #Heat capacity of brine solution (Btu/lb.\u00b0F)\n", "U1 = 150 #Overall heat transfer coefficient at brine solution entrance (Btu/h.ft^2.\u00b0F)\n", "U2 = 140 #Overall heat transfer coefficientat at brine solution exit (Btu/h.ft^2.\u00b0F)\n", "A = 2.5 #Pipe surface area for heat transfer (ft^2)\n", "\n", "#Calculation:\n", "DT1 = T-t1 #Temperature approach at the pipe entrance (\u00b0F)\n", "Q = m*Cp*(DT1-DT2) #Energy balance to the brine solution across the full length of the pipe (Btu/h)\n", "DT1m = (DT1-DT2)/log(DT1/DT2) #Equation for the LMTD\n", "QQ = A*(U2*DT1-U1*DT2)/log(U2*DT1/U1/DT2) #Equation for the heat transfer rate (Btu/h)\n", "E = QQ-Q #Energy balance equation\n", "R = nsolve([E],[DT2],[1.2]) #\n", "DT = R[0] #Log mean temperature difference\n", "t2 = T-DT #In discharge temperature of the brine solution (\u00b0F)\n", "t2c = 5/9*(t2-32) #In discharge temperature of the brine solution in \u00b0C (c/5 = (F-32)/9)\n", "_Q_ = Q.subs(DT2,DT) #Heat transfer rate (Btu/h)\n", "\n", "#Result:\n", "print \"The temperature approach at the brine inlet side is :\",round(DT1,1),\" \u00b0F.\"\n", "print \"Or, the temperature approach at the brine inlet side is :\",round(DT1/1.8,1),\" \u00b0C.\"\n", "print \"The exit temperature of the brine solution is :\",round(t2,1),\" \u00b0F.\"\n", "print \"Or, the exit temperature of the brine solution is :\",round((t2-32)/1.8,1),\" \u00b0C.\"\n", "print \"The rate of heat transfer is :\",round(_Q_,-1),\" Btu/h.\"\n", "print \"Or, the rate of heat transfer is :\",round(_Q_/3.412,-2),\" W.\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The temperature approach at the brine inlet side is : 70.0 \u00b0F.\n", "Or, the temperature approach at the brine inlet side is : 38.9 \u00b0C.\n", "The exit temperature of the brine solution is : 28.4 \u00b0F.\n", "Or, the exit temperature of the brine solution is : -2.0 \u00b0C.\n", "The rate of heat transfer is : 21830.0 Btu/h.\n", "Or, the rate of heat transfer is : 6400.0 W.\n" ] } ], "prompt_number": 18 } ], "metadata": {} } ] }