{ "metadata": { "name": "", "signature": "sha256:063e55263471b05545d8cee123782ea0408a4dbcfbef0baacac009fc80ca4fe1" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 11: Radiation" ] }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "ILLUSTRATIVE EXAMPLE 11.3, Page number: 181" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "from sympy import symbols, integrate,oo,exp,pi\n", "\n", "#Variable declaration:\n", "l = symbols('l') #Wavelength (mu.m)\n", "I = 40*exp(-l**2) #Intensity of radiation (Btu/h.ft^2.mu.m)\n", "\n", "#Calculation:\n", "E = integrate(I, (l,0,oo)).evalf() #Total emissive power (Btu/h.ft^2)\n", "\n", "#Result:\n", "print \"The total emissive power is :\",round(E,1),\" Btu/h.ft^2 .\" " ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The total emissive power is : 35.4 Btu/h.ft^2 .\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "ILLUSTRATIVE EXAMPLE 11.4, Page number: 182" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "#Variable declaration:\n", "l = 0.25 #Wavelength (mu.m)\n", "#From equation 11.4:\n", "lT = 2884 #Product of wavelength and absolute temperature (mu.m.\u00b0R)\n", "\n", "#Calculation:\n", "T = lT/l #Sun's temperature (\u00b0R)\n", "\n", "#Result:\n", "print \"The Sun's temperature is :\",round(T,-2),\" \u00b0R .\"\n", "print \"The Sun's temperature in fahrenheit scale is :\",round(T-460,-3),\" \u00b0F .\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The Sun's temperature is : 11500.0 \u00b0R .\n", "The Sun's temperature in fahrenheit scale is : 11000.0 \u00b0F .\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "ILLUSTRATIVE EXAMPLE 11.5, Page number: 188" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "#Variable declaration:\n", "T1 = 1500.0+460.0 #Absolute temperature 1 (\u00b0R)\n", "T2 = 1000.0+460.0 #Absolute temperature 2 (\u00b0R)\n", "\n", "#Calculation:\n", "X = T1**4/T2**4 #Ratio of quantity of heat transferred\n", "x = 100*(T1**4-T2**4)/T2**4 #Percentage increase in heat transfer (%)\n", "\n", "#Result:\n", "print \"The ratio of the quantity/rate of heat transferred is :\",round(X,2),\" .\"\n", "print \"The percentage increase in heat transfer is :\",round(x),\"%\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The ratio of the quantity/rate of heat transferred is : 3.25 .\n", "The percentage increase in heat transfer is : 225.0 %\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "ILLUSTRATIVE EXAMPLE 11.6, Page number: 189" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "#Variable declaration:\n", "T1 = 1200.0+460.0 #Absolute temperature of wall 1 (\u00b0R)\n", "T2 = 800.0+460.0 #Absolute temperature of wall 2 (\u00b0R)\n", "\n", "#Calculation:\n", "#From equation 11.23:\n", "X = 0.173*((T1/100.0)**4-(T2/100.0)**4) #Heat removed from colder wall (Btu/h.ft^2)\n", "\n", "#Result:\n", "print \"The heat removed from the colder wall to maintain a steady-state is :\",round(X),\" Btu/h.ft^2 .\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The heat removed from the colder wall to maintain a steady-state is : 8776.0 Btu/h.ft^2 .\n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "ILLUSTRATIVE EXAMPLE 11.7, Page number: 190" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "#Variable declaration:\n", "s = 0.173 #Stefan-Boltzmann constant (Btu/h.ft^2.\u00b0R)\n", "EH = 0.5 #Energy transferred from hotter body (Btu/h.ft^2)\n", "EC = 0.75 #Energy transferred to colder body (Btu/h.ft^2)\n", "TH = 1660.0 #Absolute temperature of hotter body (\u00b0R)\n", "TC = 1260.0 #Absolute temperature of colder body (\u00b0R)\n", "\n", "#Calculation:\n", "E = s*((TH/100.0)**4-(TC/100.0)**4)/((1.0/EH)+(1.0/EC)-1.0) #Net energy exchange per unit area (Btu/h.ft^2)\n", "\n", "#Result:\n", "print \"The net energy exchange per unit area is :\",round(E,-1),\" Btu/h.ft^2 .\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The net energy exchange per unit area is : 3760.0 Btu/h.ft^2 .\n" ] } ], "prompt_number": 7 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "ILLUSTRATIVE EXAMPLE 11.8, Page number: 191" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "#Variable declaration:\n", "#From example 11.6-11.7:\n", "E1 = 8776.0 #Energy exchange between black bodies (Btu/h.ft^2)\n", "E2 = 3760.0 #Energy exchange between non-black bodies (Btu/h.ft^2)\n", "\n", "#Calculation:\n", "D = (E1-E2)/E1*100 #Percent difference in energy (%)\n", "\n", "#Result:\n", "print \"The percent difference relative to the black body is:\",round(D,1),\" % .\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The percent difference relative to the black body is: 57.2 % .\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "ILLUSTRATIVE EXAMPLE 11.9, Page number: 192" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "#Variable declaration:\n", "s = 0.173*10**-8 #Stefan-Boltzmann constant (Btu/h.ft^2.\u00b0R)\n", "TH = 300.0+460.0 #Absolute temperature of external surface (\u00b0R)\n", "TC = 75.0+460.0 #Absolute temperature of duct (\u00b0R)\n", "#From Table 6.2:\n", "AH = 0.622 #External surface area of pipe (ft^2)\n", "#From Table 11.2:\n", "EH = 0.44 #Emissivity of oxidized steel\n", "AC = 4.0*1.0*1.0 #External surface area of duct (ft^2)\n", "EC = 0.23 #Emissivity of galvanized zinc\n", "\n", "#Calculation:\n", "FE = 1.0/(1.0/EH+((AH/AC)*(1.0/EC-1.0))) #Emissivity correction factor\n", "Q = FE*AH*s*(TH**4-TC**4) #Net radiation heat transfer (Btu/h.ft)\n", "\n", "#Result:\n", "print \"The net radiation heat transfer is :\",round(Q,2),\" Btu/h.ft^2 .\"\n", "print \"There is a calculation error in book.\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The net radiation heat transfer is : 96.96 Btu/h.ft^2 .\n", "There is a calculation error in book.\n" ] } ], "prompt_number": 9 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "ILLUSTRATIVE EXAMPLE 11.10, Page number: 193" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "#Variable declaration:\n", "TH = 140.0+460.0 #Absolute outside temperature of pipe (ft^2)\n", "TC = 60.0+460.0 #Absolute temperature of surrounding atmosphere (ft^2)\n", "A = 10.0 #Area of pipe (ft^2)\n", "E = 0.9 #Emissivity of pipe\n", "\n", "#Calculation:\n", "Q = E*A*0.173*((TH/100.0)**4-(TC/100.0)**4) #Heat loss due to radiation (Btu/h)\n", "\n", "#Result:\n", "print \"The heat loss due to radiation is :\",round(Q,-1),\" Btu/h .\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The heat loss due to radiation is : 880.0 Btu/h .\n" ] } ], "prompt_number": 10 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "ILLUSTRATIVE EXAMPLE 11.11, Page number: 193" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "#Variable declaration:\n", "#Froma example 11.10:\n", "Q = 880.0 #Heat loss due to radiation (Btu/h)\n", "A = 10.0 #Area of pipe (ft^2)\n", "TH = 140.0 #Absolute outside temperature of pipe (\u00b0F)\n", "TC = 60.0 #Absolute temperature of surrounding atmosphere (\u00b0F)\n", "\n", "#Calculation:\n", "hr = Q/(A*(TH-TC)) #Radiation heat transfer coefficient (Btu/h.ft^2.\u00b0F)\n", "\n", "#Result:\n", "print \"The radiation heat transfer coefficient is :\",round(hr,1),\" Btu/h.ft^2.\u00b0F .\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The radiation heat transfer coefficient is : 1.1 Btu/h.ft^2.\u00b0F .\n" ] } ], "prompt_number": 11 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "ILLUSTRATIVE EXAMPLE 11.12, Page number: 194" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "from math import pi\n", "\n", "#Variable declaration:\n", "D = 0.0833 #Diameter of tube (ft)\n", "L = 2.0 #Length of tube (ft)\n", "h = 2.8 #Heat transfer coefficient (Btu/h.ft^2.\u00b0F)\n", "Ta1 = 1500.0+460.0 #Temperature of hot air in furnace (\u00b0R)\n", "Ta2 = 1350.0+460.0 #Temperature of hot air in the furnace brick walls (\u00b0R)\n", "Tt = 600.0+460.0 #Surface temperature of tube (\u00b0R)\n", "E = 0.6 #Surface emissivity of tube\n", "s = 0.1713*10**-8 #Stefan-Boltzmann constant\n", "\n", "\n", "#Calculation:\n", "#Case 1:\n", "A = pi*D*L #Area of tube (ft^2)\n", "Qc = round(h*A*(Ta1-Tt),-1) #Convection heat transfer from air to tube (Btu/h)\n", "Qr = round(E*s*A*(Ta2**4-Tt**4),-2) #Radiation feat transfer from wall to tube (Btu/h)\n", "Q = Qr+Qc #Total heat transfer (Btu/h)\n", "#Case 2:\n", "Qp = Qr/Q*100 #Radiation percent \n", "#Case 3:\n", "hr = Qr/(A*(Ta2-Tt)) #Radiation heat transfer coefficient (Btu/h.ft^2.\u00b0F)\n", "#Case 4:\n", "T = Ta2-Tt #Temperature difference (\u00b0F)\n", "\n", "#Result:\n", "print \"1. The convective heat transferred to the metal tube is :\",Qc,\" Btu/h .\"\n", "print \" The radiative heat transferred to the metal tube is :\",Qr,\" Btu/h .\"\n", "print \" The total heat transferred to the metal tube is :\",Q,\" Btu/h .\"\n", "print \"2. The percent of total heat transferred by radiation is :\",round(Qp,1),\" % .\"\n", "print \"3. The radiation heat transfer coefficient is :\",round(hr,1),\" Btu/h.ft^2.\u00b0F .\"\n", "if (T > 200):\n", " print \"4. The use of the approximation Equation (11.30), hr = 4EsTav^3, is not appropriate.\"\n", "elif (T < 200):\n", " print \"4. The use of the approximation Equation (11.30), hr = 4EsTav^3, is appropriate.\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "1. The convective heat transferred to the metal tube is : 1320.0 Btu/h .\n", " The radiative heat transferred to the metal tube is : 5100.0 Btu/h .\n", " The total heat transferred to the metal tube is : 6420.0 Btu/h .\n", "2. The percent of total heat transferred by radiation is : 79.4 % .\n", "3. The radiation heat transfer coefficient is : 13.0 Btu/h.ft^2.\u00b0F .\n", "4. The use of the approximation Equation (11.30), hr = 4EsTav^3, is not appropriate.\n" ] } ], "prompt_number": 14 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "ILLUSTRATIVE EXAMPLE 11.13, Page number: 194" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "#Variable declaration:\n", "Q = 5.0 #Radiation heat transfer (W)\n", "E = 1.0 #Emissivity of filament\n", "s = 5.669*10**-8 #Stefan-Boltzmann constant\n", "T1 = 900.0+273.0 #Light bulb temperature (K)\n", "T2 = 150.0+273.0 #Glass bulb temperature (K)\n", "\n", "#Calculation:\n", "A = Q/(E*s*(T1**4-T2**4)) #Surface area of the filament (m^2)\n", "\n", "#Result:\n", "print \"The surface area of the filament is :\",round(A*10**4,2), \"cm^2\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The surface area of the filament is : 0.47 cm^2\n" ] } ], "prompt_number": 13 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "ILLUSTRATIVE EXAMPLE 11.14, Page number: 195" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "\n", "from math import pi\n", "\n", "#Variable declaration:\n", "T1 = 127.0+273.0 #Surface temperature (K)\n", "T2 = 20.0+273.0 #Wall temperature (K)\n", "T3 = 22.0+273.0 #Air temperature (K)\n", "s = 5.669*10**-8 #Stefan-Boltzmann constant\n", "e = 0.76 #Surface emissivity of anodized aluminium\n", "D = 0.06 #Diameter of pipe (m)\n", "L = 100.0 #Length of pipe (m)\n", "h = 15.0 #Pipe convective heat transfer coefficient (W/m^2.K)\n", "\n", "#Calculation:\n", "Eb = s*T1**4 #Emissive energy of pipe (W/m^2)\n", "E = e*Eb #Emissive power from surface of pipe (W/m^2)\n", "A = pi*D*L #Surface area of pipe (m^2)\n", "Qc = h*A*(T1-T3) #Convection heat transfer to air (W)\n", "Qr = e*s*A*(T1**4-T2**4) #Radiation heat transfer rate (W)\n", "Q = Qc+Qr #Total heat transfer rate (Btu/h)\n", "Tav = (T1+T2)/2.0 #Average temperature (K)\n", "hr = 4*e*s*Tav**3 #Radiation heat transfer coefficient (W/m^2.K)\n", "\n", "#Result:\n", "print \"The emissive power from surface of pipe is :\",round(E),\" W/m^2 .\"\n", "print \"The convection heat transfer to air is :\",round(Qc/10**3,1),\" kW .\"\n", "print \"The radiation heat transfer rate is :\",round(Qr/10**3,1),\" kW \"\n", "print \"The radiation heat transfer coefficient is :\",round(hr,1),\" W/m^2.K .\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The emissive power from surface of pipe is : 1103.0 W/m^2 .\n", "The convection heat transfer to air is : 29.7 kW .\n", "The radiation heat transfer rate is : 14.8 kW \n", "The radiation heat transfer coefficient is : 7.2 W/m^2.K .\n" ] } ], "prompt_number": 15 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "ILLUSTRATIVE EXAMPLE 11.15, Page number: 196" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "#Variable declaration:\n", "#From example 11.14:\n", "Qc = 15.0 #Convection heat transfer coefficient (W/m^2.K)\n", "hr = 7.2 #Radiation heat transfer coefficient (W/m^2.K)\n", "\n", "#Calculation:\n", "X = hr/(Qc+hr)*100.0 #Percent heat transfer by radiation (%)\n", "\n", "#Result:\n", "print \"The percent heat transfer by radiation is :\",round(X,1),\" % .\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The percent heat transfer by radiation is : 32.4 % .\n" ] } ], "prompt_number": 16 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "ILLUSTRATIVE EXAMPLE 11.16, Page number: 200" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "#Variable declaration:\n", "FV = 1.0 #Correction factor\n", "#From example 11.9:\n", "FE = 0.358 #Emissivity correction factor\n", "TH = 300.0+460.0 #Absolute temperature of external surface (\u00b0R)\n", "TC = 75.0+460.0 #Absolute temperature of duct (\u00b0R)\n", "AH = 0.622 #Area of pipe (ft^2)\n", "s = 0.173*10**-8 #Stefan-Boltzmann constant\n", "\n", "#Calculation:\n", "Q = FV*FE*AH*s*(TH**4-TC**4) #Heat transfer rate (Btu/h.ft)\n", "\n", "#Result:\n", "print \"The heat transfer rate is :\",round(Q,2),\" Btu/h.ft\"\n", "print \"Since, 'Q' obtained in (11.9) is 96.96 Btu/h.ft, the solution does not match with book.\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The heat transfer rate is : 96.96 Btu/h.ft\n", "Since, 'Q' obtained in (11.9) is 96.96 Btu/h.ft, the solution does not match with book.\n" ] } ], "prompt_number": 17 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "ILLUSTRATIVE EXAMPLE 11.17, Page number: 200" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "#Variable declaration:\n", "#From figure 11.2:\n", "L = 1.0 #Space between plates (m)\n", "X = 0.5 #Length of plate (m)\n", "Y = 2.0 #Width of plate (m)\n", "s = 5.669*10**-8 #Stefan-Boltzmann constant\n", "TH = 2000.0+273.0 #Temperature of hotter plate (K)\n", "TC = 1000.0+273.0 #Temperature of colder plate (K)\n", "Btu = 0.2934*10**-3 #Btu/h in a KW\n", "\n", "#Calculation:\n", "A = X*Y #Area of plate (m^2)\n", "Z1 = Y/L #Ratio of width with space\n", "Z2 = X/L #Ratio of length with space\n", "#From figure 11.2:\n", "FV = 0.18 #Correction factor\n", "FE = 1.0 #Emissivity correction factor\n", "Q1 = FV*FE*s*A*(TH**4-TC**4) #Net radiant heat exchange between plates (kW)\n", "Q2 = Q1/Btu #Net radiant heat exchange between plates in Btu/h (Btu/h)\n", "\n", "#Result:\n", "print \"The net radiant heat exchange between plates is :\",round(Q1,-2),\" kW .\"\n", "print \"The net radiant heat exchange between plates in Btu/h is :\",round(Q2/10**8,2),\" x 10^8 Btu/h .\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The net radiant heat exchange between plates is : 245600.0 kW .\n", "The net radiant heat exchange between plates in Btu/h is : 8.37 x 10^8 Btu/h .\n" ] } ], "prompt_number": 18 } ], "metadata": {} } ] }