{ "metadata": { "name": "", "signature": "sha256:057d6eaa086db820c820c1a5a80f0143b18739ecbe1b8c285287723cf460e4b6" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 7: Steady-State Heat Conduction" ] }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "ILLUSTRATIVE EXAMPLE 7.1, Page number: 93" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "#Variable declaration:\n", "Q = 3000.0 #The rate of heat flow through the glass window (W)\n", "L = 0.01 #Thickness of glass window (m)\n", "A = 3.0 #Area of heat transfer (m^2)\n", "TC = 10+273 #Temperature at the outside surface (K)\n", "k = 1.4 #Thermal onductivity of glass (W/m.K)\n", "\n", "#Calculation:\n", "TH = TC+Q*L/k/A #Temperature at the inner surface (K)\n", "\n", "#Result:\n", "print \"The temperature at the inner surface is :\",round(TH,1),\" K\"\n", "print \"The temperature at the inner surface is :\",round(TH-273,1),\" \u00b0C\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The temperature at the inner surface is : 290.1 K\n", "The temperature at the inner surface is : 17.1 \u00b0C\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "ILLUSTRATIVE EXAMPLE 7.2, Page number: 94" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "#Variable declaration:\n", "k = 0.026 #Thermal conductivity of insulating material (Btu/ft.h.\u00b0F)\n", "L = 1.0 #Thickness of insulating material (ft)\n", "TC = 70.0 #Temperature on the cold side surface (\u00b0F)\n", "TH = 210.0 #Temperature on the hot side surface (\u00b0F)\n", "c = 0.252 #Kilocalorie per hour in a Btu per hour\n", "m = 0.093 #meter square in a feet square\n", "\n", "#Calculation:\n", "DT = TH-TC #Change in temperature (\u00b0F)\n", "Q1 = k*DT/L #Rate of heat flux throughthe wall (Btu/f^t2.h.)\n", "Q2 = Q1*c/m #Rate of heat flux throughthe wall in SI units (kcal/m^2.h)\n", "\n", "#Result:\n", "print \"The rate of heat flux in Btu/ft^2.h is :\",round(Q1,3),\" Btu/ft^2.h .\"\n", "print \"The rate of heat flux in SI units is :\",round(Q2,3),\" kcal/m^2.h .\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The rate of heat flux in Btu/ft^2.h is : 3.64 Btu/ft^2.h .\n", "The rate of heat flux in SI units is : 9.863 kcal/m^2.h .\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "ILLUSTRATIVE EXAMPLE 7.3, Page number: 94" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "#Variable declaration:\n", "TH = 1592.0 #Temperature of inside surface (K)\n", "TC = 1364.0 #Temperature of outside surface (K)\n", "H = 3.0 #Height of furnace wall (m)\n", "W = 1.2 #Width of furnace wall (m)\n", "L = 0.17 #Thickness furnace wall (m)\n", "m = 0.0929 #Meter square per second in a feet square per second\n", "Btu = 3.412 #Btu per hour in a Watt\n", "Btu2 = 0.3171 #Btu per feet square hour in a watt per meter square\n", "\n", "#Calculation:\n", "Tav = (TH+TC)/2 #Average wall temperature (K)\n", "#From Table in Appendix:\n", "p = 2645.0 #Density of material (kg/m^3)\n", "k = 1.8 #Thermal conductivity (W/m.K)\n", "Cp = 960.0 #Heat capacity of material (J/kg.K)\n", "a = k/(p*Cp)/m #Thermal diffusivity (ft^2/s)\n", "t = (TC-TH)/L #Temperature gradient (\u00b0C/m)\n", "A = H*W #Heat transfer area (m^2)\n", "Q1 = k*A*(TH-TC)/L*Btu #Heat transfer rate (Btu/h)\n", "Q2 = k*(TH-TC)/L*Btu2 #Heat transfer flux (Btu/h.ft^2)\n", "R = L/(k*A) #Thermal resistance (\u00b0C/W)\n", "\n", "#Result:\n", "print \"The temperature gradient is :\",round(t),\" \u00b0C/m.\"\n", "print \"The heat transfer rate is :\",round(Q1),\" Btu/h.\"\n", "print \"The heat transfer flux is :\",round(Q2,1),\" Btu/h.ft^2.\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The temperature gradient is : -1341.0 \u00b0C/m.\n", "The heat transfer rate is : 29653.0 Btu/h.\n", "The heat transfer flux is : 765.5 Btu/h.ft^2.\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "ILLUSTRATIVE EXAMPLE 7.4, Page number: 96" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "#Variable declaration:\n", "TH = 25.0 #Temperature at inner suface of wall (\u00b0C)\n", "TC = -15.0 #Temperature at outer suface of wall (\u00b0C)\n", "L = 0.3 #Thickness of wall (m)\n", "k = 1.0 #Thermal conductivity of concrete (W/m)\n", "A = 30.0 #Sueface area of wall (m^2)\n", "\n", "#Calculation:\n", "DT = TH-TC #Driving force for heat transfer (\u00b0C) (part 2)\n", "R = L/(k*A) #Thermal resistance (\u00b0C/W) (part 3)\n", "Q = DT/R/10**3 #Heat loss through the wall (kW)\n", "\n", "#Result:\n", "print \"1. Theoretical part.\"\n", "print \"2. The driving force for heat transfer is :\",DT,\" \u00b0C.\"\n", "print \"3. The heat loss through the wall is :\",Q,\" kW.\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "1. Theoretical part.\n", "2. The driving force for heat transfer is : 40.0 \u00b0C.\n", "3. The heat loss through the wall is : 4.0 kW.\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "ILLUSTRATIVE EXAMPLE 7.5, Page number: 97" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "#Variable declaration:\n", "TC = 27.0 #Inside temperature of walls (\u00b0C)\n", "TH = 68.7 #Outside temperature of walls (\u00b0C)\n", "LC = 6*0.0254 #Thickness of concrete (m)\n", "LB = 8*0.0254 #Thickness of cork-board (m)\n", "LW = 1*0.0254 #Thickness of wood (m)\n", "kC = 0.762 #Thermal conductivity of concrete (W/m.K)\n", "kB = 0.0433 #Thermal conductivity of cork-board (W/m.K)\n", "kW = 0.151 #Thermal conductivity of wood (W/m.K)\n", "\n", "#Calculation:\n", "RC = LC/kC #Thermal resistance of concrete (K/W)\n", "RB = LB/kB #Thermal resistance of cork-board (K/W)\n", "RW = LW/kW #Thermal resistance of wood (K/W)\n", "Q = (TC-TH)/(RC+RB+RW) #Heat transfer rate across the wall (W)\n", "T = -(Q*RW-TC) #Interface temperature between wood and cork-board (K)\n", "\n", "#Result:\n", "print \"The heat transfer rate across the wall is :\",round(Q,3),\" W.\"\n", "print \"The interface temperature between wood and cork-board is :\",round(T,1),\" \u00b0C.\"\n", "print \"The interface temperature between wood and cork-board is :\",round(T+273,1),\" K.\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The heat transfer rate across the wall is : -8.239 W.\n", "The interface temperature between wood and cork-board is : 28.4 \u00b0C.\n", "The interface temperature between wood and cork-board is : 301.4 K.\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "ILLUSTRATIVE EXAMPLE 7.6, Page number: 98" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "from math import pi, log\n", "from sympy import symbols\n", "\n", "#Variable declaration:\n", "Z = symbols ('z') #Length of pipe\n", "D1s = 4.0 #Glass wool inside diameter (in)\n", "D2s = 8.0 #Glass wool outside diameter (in)\n", "D1a = 3.0 #Asbestos inside diameter (in)\n", "D2a = 4.0 #Asbestos outside diameter (in)\n", "TH = 500.0 #Outer surface temperature of pipe (\u00b0F)\n", "TC = 100.0 #Outer surface temperature of glass wool (\u00b0F)\n", "La = 0.5/12.0 #Thickness of asbestos (ft)\n", "Lb = 2.0/12.0 #Thickness of glss wool (ft)\n", "ka = 0.120 #Thermal conductivity of asbestos (Btu/h.ft.\u00b0F)\n", "kb = 0.0317 #Thermal conductivity of asbestos (Btu/h.ft.\u00b0F)\n", "\n", "#Calculation:\n", "Aa = (pi*Z*(D2a-D1a)/12.0)/log(D2a/D1a) #Area of asbestos (ft^2)\n", "Ab = (pi*Z*(D2s-D1s)/12.0)/log(D2s/D1s) #Area of glass wool (ft^2)\n", "Q1 = (TH-TC)/(La/(ka*Aa)+Lb/(kb*Ab)) #Steady-state heat transfer per foot of pipe (Btu/h.)\n", "Q2 = Q1/Z #Factorization of Q/Z (Btu/h.ft)\n", "\n", "#Result:\n", "print \"The steady-state heat transfer per foot of pipe, Z, is :\",round(Q1/Z,1),\" x z Btu/h.\"\n", "print \"The steady-state heat transfer factorizating out Z is :\",round(Q2,1),\" Btu/h.ft.\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The steady-state heat transfer per foot of pipe, Z, is : 103.6 x z Btu/h.\n", "The steady-state heat transfer factorizating out Z is : 103.6 Btu/h.ft.\n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "ILLUSTRATIVE EXAMPLE 7.7, Page number: 99" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "#Variable declaration:\n", "#From example 7.6:\n", "TH = 500 #Outer surface temperature of pipe (\u00b0F)\n", "Lb = 2.0/12.0 #Thickness of glss wool (ft)\n", "kb = 0.0317 #Thermal conductivity of asbestos (Btu/h.ft.\u00b0F)\n", "Ab = 1.51 #Area of glass wool (ft^2)\n", "Q = 103.5 #Steady-state heat transfer per foot of pipe (Btu/h.)\n", "La = 0.5/12.0 #Thickness of asbestos (ft)\n", "ka = 0.120 #Thermal conductivity of asbestos (Btu/h.ft.\u00b0F)\n", "Aa = 0.91 #Area of asbestos (ft^2)\n", "TC = 100 #Outer surface temperature of glass wool (\u00b0F)\n", "\n", "#Calculation:\n", "Ti_b = -((Lb*Q)/(kb*Ab)-TH) #Interfacial temperature of glass wool layer (\u00b0F)\n", "Ti_a = (Q*La)/(ka*Aa)+TC #Interfacial temperature of asbestos layer (\u00b0F)\n", "\n", "#Result:\n", "print \"The interfacial temperature of glass wool layer is :\",round(Ti_b),\" \u00b0F.\"\n", "print \"The interfacial temperature of asbestos layer is :\",round(Ti_a,1),\" \u00b0F.\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The interfacial temperature of glass wool layer is : 140.0 \u00b0F.\n", "The interfacial temperature of asbestos layer is : 139.5 \u00b0F.\n" ] } ], "prompt_number": 7 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "ILLUSTRATIVE EXAMPLE 7.8, Page number: 100" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "from sympy import cos,symbols,diff,pi\n", "\n", "#Variable declaration:\n", "z,h,k = symbols('z, h, k') #Length, height, thermal conductivity\n", "T = 100*cos((pi*z)/(2*h)) #Temperature of solid slab\n", "\n", "#Calculation:\n", "DT = diff(T,z) #Temperature at z\n", "Q = -k*(DT) #Heat flux in slab (Btu/s.ft^2)\n", "Q1 = Q.subs(z,0) #Heat flux in slab at z = 0 (Btu/s.ft^2)\n", "Q2 = Q.subs(z,h) #Heat flux in slab at z = h (Btu/s.ft^2)\n", "\n", "#Result:\n", "print \"The heat flux in slab is :\",Q,\" Btu/s.ft^2 .\"\n", "print \"The heat flux in slab at z = 0 is :\",Q1,\" Btu/s.ft^2 .\"\n", "print \"The heat flux in slab at z = h is :5\",Q2,\" Btu/s.ft^2 .\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The heat flux in slab is : 50*pi*k*sin(pi*z/(2*h))/h Btu/s.ft^2 .\n", "The heat flux in slab at z = 0 is : 0 Btu/s.ft^2 .\n", "The heat flux in slab at z = h is :5 50*pi*k/h Btu/s.ft^2 .\n" ] } ], "prompt_number": 8 } ], "metadata": {} } ] }