{ "metadata": { "name": "" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 01 - Introduction To Heat Transfer" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example No : 1.1 - Page : 8" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from __future__ import division\n", "# given data\n", "t1=38 # in degree C\n", "t2=21 # in degree C\n", "k=0.19 # unit less\n", "x=4 #in cm\n", "x=x*10**-2 # in meter\n", "# Formula q=k*A*(t1-t2)/x\n", "q_by_A=k*(t1-t2)/x \n", "print \"The rate of heat transfer is :\",round(q_by_A,3),\"W/m**2\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The rate of heat transfer is : 80.75 W/m**2\n" ] } ], "prompt_number": 15 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example No : 1.2 - Page : 8" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# given data\n", "t_i=120 # in degree C\n", "t_o=40 # in degree C\n", "K=0.04 # unit less\n", "x=0.06 #in m\n", "Q=50 # in W\n", "print \"Assuming steady state heat transfer in the wall\"\n", "# Rate of heat transfer across the wall = Rate of electrical energy dissipation in the furnance\n", "# Formula Q= K*A*(t_i-t_o)/x \n", "A=Q*x/(K*(t_i-t_o)) \n", "print \"Area of wall = %0.4f square meter\" %A" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Assuming steady state heat transfer in the wall\n", "Area of wall = 0.9375 square meter\n" ] } ], "prompt_number": 16 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example No : 1.3 - Page : 10" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from numpy import pi\n", "# given data\n", "t_f=30 # in degree C\n", "t_s=400 # in degree C\n", "d=0.04 #in m\n", "h=20 # in W/m**2K\n", "l=1 #in meter\n", "A=pi*d*l#\n", "q=h*A*(t_s-t_f) # in W\n", "print \"Rate of heat loss = %0.3f watt\" %q" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Rate of heat loss = 929.911 watt\n" ] } ], "prompt_number": 17 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example No : 1.4 - Page : 10" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from numpy import pi\n", "# given data\n", "t_s=100 # in degree C\n", "t_w=80 # in degree C\n", "d=2*10**-3 #in m\n", "h=3000 # in W/m**2 degree C\n", "L=100 #in mm\n", "L=L*10**-3 # in meter\n", "A=pi*d*L#\n", "# Heat loss by convection = Electric power supplied\n", "# Formula h*A*(t_s-t_w) = Q\n", "Q= h*A*(t_s-t_w)#\n", "print \"Electric power supplied = %0.1f watt\" %Q" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Electric power supplied = 37.7 watt\n" ] } ], "prompt_number": 18 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example No : 1.5 - Page : 13" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# given data\n", "A=0.6*0.9 # in square meter\n", "x=.025 # in meter\n", "t_s=310 # in degree C\n", "t_f=15 # in degree C\n", "h=22 # in W/m**2 degree C\n", "K=45 # in W/m degree C\n", "Q_rad=250 # in W\n", "# Heat transfer through the plate = Convection heat loss + radiation heat loss\n", "# Formula Q_cond = Q_conv + Q_rad\n", "# -K*A*dt/dx = h*A*(t_s-t_f)+ Fg12*sigmaA(Ts**4-Ta64)\n", "t_i=x*(h*A*(t_s-t_f)+Q_rad)/(K*A)+t_s \n", "print \"The inside plate temperature = %0.2f degree C\" %t_i" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The inside plate temperature = 313.86 degree C\n" ] } ], "prompt_number": 19 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example No : 1.6 - Page : 13" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from numpy import pi\n", "# given data\n", "T1=50 # in degree C\n", "T1=T1+273 # in K\n", "T2=20 # in degree C\n", "T2=T2+273 # in K\n", "d=5*10**-2 #in m\n", "h=6.5 # in W/m**2K\n", "l=1 #in meter\n", "epsilon=0.8#\n", "sigma=5.67*10**-8#\n", "A=pi*d*l # in Square meter\n", "q_conv = h*A*(T1-T2) # in W/m\n", "print \"The heat loss by convection = %0.1f W/m\" %q_conv\n", "# formula q= sigma*A*F_g12*(T1**4-T2**4) = sigma*A*epsilon*(T1**4-T2**4) (since A1<