{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 31 : Power Amplifiers" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example No. 31_1 Page No. 1019" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The value of Icq = 7.95e-03 Amps\n", "i.e Approx 7.91 mAmps\n", "The value of Vceq = 10.14 Volts\n", "The Power Dissipation = 8.06e-02 Watts\n", "i.e 80.6 mWatts\n", "The value of Ic(sat) = 1.61e-02 Amps\n", "i.e 16.1 mAmps\n", "The value of Vce(off) = 20.00 Volts\n", "Q(10.138406,0.007953)\n", "\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZQAAAEZCAYAAACw69OmAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XmYFNXVx/HvYQC3qLijiOICBlxRQVwZxSiigvFNJCRx\nf5WIuMUFNVHHbO4bYBSNqDEK7oqvuKDJuCKKIrIqxGgAFVcUwYXlvH/cO9g0PTM9M11TPT2/z/PM\nM13dt6pPd1f16Tr3VpW5OyIiIg3VIu0ARESkNCihiIhIQSihiIhIQSihiIhIQSihiIhIQSihiIhI\nQSihpMDMlpvZ1tU8Vm5mczKmp5rZfgnEsIaZPWZmC8zs3kIvX/JjZjeZ2e/TjiOTmXWI66i+HwAz\ne8/MDoi3LzSzWzMe+6mZzTGzr8xsl6S21xpiS+r7oX7rpbs3yT/gPWAx8BXwBfASMBCwrHbdgbGx\nzWfABOC4apZ5HPBCI8S+HNi6msfKgTmNEMPR8b1oUcBlrgNcD7wPLARmA9cBG6S9vhT4vata9xZm\n/A0twHJX+eyBCuCuBF5DJ+B+4BNgATAZOIvwI7NDXEcLtm7kGVNFfN7uebY/LrY/KuG4/gMcUM1j\n/wYOT/C5U9+m6vKd1JR/gThwmLuvA2wBXA4MAW6ramBmewLPAv8CtnH3DYBTgN6NH27R2RJ4x92X\n13VGM2uZ477WhPe6M3Cwu68N7Al8SkjqpaRq3Vs74+/0tIPKxczKcty3DeHHxPvADu7eBvg5sBvw\no8aNcEVMBhwDTIn/83FsHdsXVIx5C2B6AZZV8G0q12efuMbKco3xqwHoBiwDusTpF4FhdVjmcVSz\nhwLsBbxG+DX3KrBnxmPHE1aqrwi/WE7Omvdc4ANgLnACddhDIfwaPiDergDuA+6MzzUV2C2j7WbA\ng8DHwLvAadU8x6XAd8D3hF89xwMG/D4+3/z4HOvE9h1izCcQvoQqcyzzf4GPgDVreH87A5WEvcWp\nZPyyA+4A/krYm1wIvAC0BW6I7WcAu2S9L+cAb8X2twGbAE8AXwLjgDYZ7fsC0+Ky/gX8OGtZZxN+\npS8ARgOr1WXdy1qHXgKujc81O647xwP/je/tMVmv+4/AmsA3hPV3Yfx8B2R9TpPiPOvG11u1Tv2R\nuDeR9fyfAn/IEeM/gMdqeH1Vn3fVMqtdv4ENgf/jhwrA8xmPDYnxfQXMrO49i233i/GWx/+tatlW\nt4zvy67xPdokaxuaS9juPo7v0xFAH+CdGOf5Ge0rgAfi5/4V8DqwU67PO7a9C2gNfB3fp6+BWRnr\nUq9424Dz4zrwKXAvsF6Bt6n3smJ7IMb3ZVz2+sDtwDzgc+Dh6r7ryPheoub1sm218eTzRVuMf1Sz\nUccPZ2B8I5YCPeuwzFXe5Hj/+nGD+RWhJPCL+OGsHx/vA2yVsWEsArrG6d5xpegSY7qHuiWU7JX5\nm7hMA/4CjI+PtYgbwu+BlsBWhI3/oGqe5xLg7xnTJwCz4oq+FiEx/T1r5b8DWIMcX7aEjfH2Gt7b\nVoQN6/wY3/5x5eyUsQJ/AnQFViP8MnsP+HV8rX8E/pn1vrwMbERIpPOBN4CdM+a/OLbtRNjoewFl\nhC+aWUDLjGW9Qkhg6xG+PAfWsu71qmEdWkL49VwV91xgWHwPfhJf95qx/e3EL32gJ6uWvFb6nOJ9\nDwM3xc9iI8LexslZz39qXCdWzxHjh8CxNby+qs+7KqHkWr93idOXxVjK4t/e8f7tCAm0bZzegmrW\n+fj4bcCt8fYc4MhattWLgHHx9kvAb7O2oSWEbaGM8MX8KXA3Yd3uQihZbpmxXX0PHBnbn034QVaW\nYxu8hIwSJFnbclbbMwjr6Gbxs78ZuKdQ21Q13w/fA33j9OrA48Aowo+QlsC+1X3XsXJCqXG9rO6v\nKZe8qvMBIQGsR9igPizAMg8F3nb3u919ubuPJvziOhzA3ce6+3/i7eeBp4F947xHASPdfbq7Lyas\nkA3xgrs/6eGT/gfhCxTC3tmG7v4nd18a4/kbIfnlYvGvyq+Aa9z9PXdfBFwA/CKrY7bC3b9x9+9y\nLG99an6vewBrufvlMb5/EX7ZDsho85C7T4rLfxhY5O7/iK/1PkKyyTTM3T9x9w8IezTj3X1yxvxV\n7fsD/+fuz7r7MuBqwka8V8ayhrr7R+7+BfAYsEsNr8WAR8zsi4y/EzMe/4+735kR92aEjXOJu48j\nbPTbZi0v83/2c62438w2AQ4BzoqfxSeEGnvm5/yBu98Y19VvcyxzA+qwXVSzfld1BH8PbAp0cPdl\n7v5SvH8ZIbFvb2at3P2/7v5uruWb2ZrAzwh9OhB+zNRWxjomo/39OdovAf4cP+97Cevn9e6+yN2n\nE3407JzRfqK7PxTbX0v4Mu6RK9xa4so0EPi9u3/g7ksIlYGfFXCbyuVldx8Tb69H+PH5G3f/Mm53\nL9RhWTWtlzmVYkLZnLD38Dkh425agGVuRvi1len9eD9mdoiZvWJmn5nZF4RfdBvEdpsSfnFVWbEc\nM9vCzBbGv6/yjGV+xu3FwOpxBd0S2CzzS46QFDbOc7mbxteUGWdLQhmpyhyq9xnx/ajGZjnmX/Ee\nEvolPs547Nus6W9Ytb4/P+vxzOlvM9qv9PnFL/o5QLuM9h/lei4zeyLjM6pKfg70c/f1Mv5uy5g/\nOy7iF39NryVfWxJ+7X6Y8TnfTNhTqVLT5wS1f1YrqWX9voqw5/m0mf3bzIYAuPts4EzCr+b5ZjbK\nzKrbFn9KSADPxun7gUPMbMNq4tmb8Av/oXjXA8COZpaZID6LnzPEz4BVP5fMz2Bu1Y0431zq8B5V\nowPwcMbnNJ1QNSnUNpXL3Izb7YHP3f3LOi6j3koqoZhZN8IH8KK7fwOMJ/zyaah5hA0505bAPDNb\njfCL6kpgY3dfj9APUJXVPyTs7ldZcTv+aqvq1F2ngTHOIfwyzvySW8fdD6umvWdNf0DYADLjXMrK\nG2H2PJmeAQ6OvzZz+QBoHzsyq2xJeG8LpbpfUit9fjGG9jU894rX6e6HZHxGowoWae7ny/X+Zg+a\nmEPoM9gg43Ne1913zLG86jwD/E8+gdW2frv71+5+jrtvQ+in+m3VEFt3H+Xu+xLeeweuqOZpjgXW\nBuaa2Yfx+VoBv6yhvQFTYvvXMu6vr/ZVN+IPtM0J62xD/BfonbVNrunumXsdDdmmcslc3hxgfTNb\nN0e7RYQSPABm1raGZdW2Pq3Q1BOKAZjZOmZ2GKFWeJe7T4uPnwccZ2bnmNkGse3OZlbTF4OZ2Wpm\ntnrVH2ED6mRmA8yspZn1B35MKNm0jn+fAsvN7BDgoIzl3Rdj6BxXjIaWvKrzKrDQzM6Lx5iUmdkO\nZrZ7da8za3oUcFY8BuFHhP6Z0Z7/KLC7CCvwg2a2nZm1MLMN4rj9Qwh9FIuB88yslZmVA4cR6sS5\n4imk+4FDzewAM2tFqJF/S6hv55JPLIWKN7OkNR/YwMwyf1zMBzpUJeL4ZfQ0cK2ZrR3f523qeCzC\nJcBeZnZlLKFhZtua2V1Zzw21rN9mdlic1wh9Q8uAZWbWKb7fqxES4LfxsZVfvFk74ABCWXnnjL8r\nyFH2itvjUcBJWe1PA37ZgJFNu1k4pqQlYc/qW8I62xA3A38xsy1i7BuZWd86zF/bNlWjuK48AfzV\nzNrE7a5qPZlMKEfuHN/TiqzZa1svc2rqCeWxWCr6L6G8cw1hRAoA7j6esLIeAPzbzD4DRhA6qnJx\nQl39G8KX32JCJl9A+PI7m7BhnUMYNvq5uy8ETickjs8JfQKPZsTwJKHG/U/CCJNnqT3jV/e453jM\n4/MsizHuQuhQ/AS4hTCOPZ9ljSSswM/H+RcTNtLaYiI+//fAgYS+pXGEUSYTCHXgV2IN+XBC/f8T\nYDhwtLu/U0081b7WmsLINb+7v03o3B8Wn/tQwgizpTUsp7bneiyjFLbQzB6sZ9yZcc4kJPZ3zezz\n+Kuxqp/gMzObGG8fQ/iSn05Y5+4nDCjIK/bYl7EnYY90mpktIJSNXiMMXlgRc23rN6EvaBxhBNDL\nwI3u/hyh/+Qywvv9IWE02AU5wjmaMHrtGXf/OP7NB4YSylhdstofQdgm/57R/mNCJ3JL4OBq3oPa\nPoNHCX1tnxP6E4+M21SuttnrWXVuAMYQyoFfESommcN9G7RN5REbhPd3SVzGfMJnSdzu/kDYC3qb\n0AdZ3faTa73MyX4oMxaemfUmfJmWAX9z91V2ec1sKOFLZjHhgMNJ8f6RhA3/48zdeTPrTvgyakUo\nyQxy99eylysikg8zuwTY1t2PTjuWpi6xPZS46zmcMMqgCzDAzDpntelD+CA7AicThh9WuZ3cByBe\nCVzk7l2Bi+O0iEh9JVlubVaSLHl1B2Z7GIa6hFAr75fVpi/hADrcfQLQpmp3Kg5v+yLHcj8kjKkG\naENhO3VFpPnJp8QpeVjlcP8CasfKQ+LmAnvk0aYdKw/hzHY+8KKZXU1IiHs2PFQRaa7c/dK0YygV\nSe6h5Jvxs3c3a5vvNuB0d9+CcDK7kXUNTERECi/JPZR5ZIztjrfn1tJmc2ovYXV39wPj7QcIR4Ov\nwsy0CysiUg/uXq9+pST3UCYCHeNxDa0JQ/LGZLUZQxxrbmY9gAVxyGBNZptZz3j7AMJQ3Jw8j3PP\n6K/2v0suuST1GErpT++n3s9i/muIxPZQ3H2pmQ0GniIMG77N3WeY2cD4+Ah3H2tmfcxsNmFs+Ypj\nSOLBhz0JB9TMIZzo73bCaLAb4wFT38RpERFJWZIlL9z9CcKRmpn3jciaHlzNvAOquX8iq3bui4hI\nypr6kfLSCMrLy9MOoaTo/SwsvZ/FI9Ej5dNkZl6qr01EJClmhhdhp7yIiDQjSigiIlIQSigiIlIQ\nSigiIlIQSigiIlIQSigiIlIQSigiIlIQSigiIlIQSigiIlIQSigiIlIQSigiIlIQSigiIlIQSigi\nIlIQSigiIlIQiSYUM+ttZjPNbJaZDammzdD4+GQz65px/0gzm29mU3LMc5qZzTCzqWZ2RZKvQURE\n8pNYQjGzMmA40BvoAgwws85ZbfoA27p7R8KlfG/KePj2OG/2cvcH+gI7ufsOwNXJvAIREamLJPdQ\nugOz3f09d18CjAb6ZbXpC9wJ4O4TgDZm1jZOvwB8kWO5pwCXxWXi7p9UF4CuryUi0niSTCjtgDkZ\n03PjfXVtk60jsJ+ZvWJmlWa2e3UNDzsMZs+uQ8QiIlJvLRNcdr77B9mXmqxtvpbAeu7ew8y6AfcB\nW+dq+P33Fey0E+y+O1x4YTm9e5fnGZKISPNQWVlJZWVlQZaV2DXlzawHUOHuveP0BcByd78io83N\nQKW7j47TM4Ge7j4/TncAHnP3HTPmeQK43N2fi9OzgT3c/bOs53d3Z948OOccGD8errsOjjgCrF5X\nSxYRKX3Fek35iUBHM+tgZq2B/sCYrDZjgGNgRQJaUJVMavAIcECcpxPQOjuZZGrXDkaNgttvh9//\nHnr3hnfeqecrEhGRaiWWUNx9KTAYeAqYDtzr7jPMbKCZDYxtxgLvxr2MEcCgqvnNbBTwMtDJzOaY\n2fHxoZHA1nE48ShiQqrN/vvDm2/CwQfDXnvBBRfAokUFerEiIpJcySttVSWvXD78EM49F55/Hq65\nBn72M5XBRESgYSWvZplQqjz/PAweDBtvDMOGQefONTYXESl5xdqHUvT22w/eeAMOPzzcPu88WLgw\n7ahERJqmZp1QAFq2hDPOgClTYP78sJcyerQOihQRqatmXfLK5aWX4NRTYf31Qxls++0TCE5EpEip\n5FVAe+8NEyfCkUdCeTmcfTZ89VXaUYmIFD8llBxatgyd9dOmwYIFoQz2j3+oDCYiUhOVvPLwyiuh\nDLbWWjB8OOy0U0EWKyJSdFTySliPHvDqq/DLX8KBB4ZO/AUL0o5KRKS4KKHkqawMfvMbmD4dvvkm\nlMHuvBOWL087MhGR4qCSVz299loog7VqBTfeCLvskthTiYg0GpW8UtCtW+hbOe64cH6wwYPhi1yX\nAxMRaSaUUBqgRQs46SSYMQOWLQtlsJEjVQYTkeZJJa8Cev31UAaDUAbbbbdGfXoRkQZTyatI7LYb\nvPwyDBwIhx4aOvE/q/ZKLSIipUUJpcBatIDjjw9lsFatoEsXuOWWUBITESllKnkl7M03Q4f9d9+F\nMlj37mlHJCJSvaIteZlZbzObaWazzGxINW2Gxscnm1nXjPtHmtn8eGXGXPOdbWbLzWz9pOIvhF12\ngRdegNNOC9ezP+kk+PTTtKMSESm8xBKKmZUBw4HeQBdggJl1zmrTB9jW3TsCJwM3ZTx8e5w317Lb\nAz8B3k8g9IIzg2OOCWWwtdYKZbCbblIZTERKS5J7KN2B2e7+nrsvAUYD/bLa9AXuBHD3CUAbM2sb\np18Aqjuy41rgvESiTtC668L118Ozz8KoUaH8NX582lGJiBRGkgmlHTAnY3puvK+ubVZiZv2Aue7+\nViGCTMOOO8Jzz8FvfxuuZ3/CCfDxx2lHJSLSMC0TXHa+PeLZnT/VzmdmawIXEspd1c2/QkVFxYrb\n5eXllJeX5xlS8szgV78Klx++9NJwIa+LL4ZTTgmnzxcRaQyVlZVUVlYWZFmJjfIysx5Ahbv3jtMX\nAMvd/YqMNjcDle4+Ok7PBHq6+/w43QF4zN13jNM7As8Ai+MiNgfmAd3dfaXf+MUyyitf06aFjvvP\nPw+nyN9nn7QjEpHmqFhHeU0EOppZBzNrDfQHxmS1GQMcAysS0IKqZJKLu09x903cfSt334pQIts1\nO5k0RdtvH/pWLrgABgwInfgffZR2VCIi+Ussobj7UmAw8BQwHbjX3WeY2UAzGxjbjAXeNbPZwAhg\nUNX8ZjYKeBnoZGZzzOz4XE+TVPxpMIP+/cNosE03DX0t118PS5emHZmISO10YGMRmzkzlME++igc\nFLnffmlHJCKlriElLyWUIucODz4YRoTtuy9cdRVstlnaUYlIqSrWPhQpALMwtHjGDNhyy3A9+2uu\ngSVL0o5MRGRl2kNpYt55B04/HebMCaPB9t8/7YhEpJSo5JVDqSYUCGWwRx+FM8+EPfYIeyybb552\nVCJSClTyambMwokmp0+H7bYLJ6C84gr4/vu0IxOR5kwJpQlbc034wx/Cte1feCH0r4wbl3ZUItJc\nqeRVQh57DM44A3bdFa69FrbYIu2IRKSpUclLgHBesGnTwgGRu+4Kf/lLuLCXiEhjUEIpMWusAZdc\nAq+9BhMmhOTy5JNpRyUizYFKXiVu7NgwzHjHHeG666BDh7QjEpFippKXVKtPH5g6FXbbDXbfHf74\nR/j227SjEpFSpITSDKy+Ovz+9/D66zBpEuywAzz+eNpRiUipUcmrGXrqqVAG69QJbrgBtt467YhE\npFio5CV1cvDB8NZbsPfe4br2l1wC33yTdlQi0tQpoTRTq60G558fSmAzZkCXLuF0LtqpE5H6UslL\nAHjmmXDtla22gqFDYdtt045IRNJQ1CUvM+ttZjPNbJaZDammzdD4+GQz65px/0gzm29mU7LaX2Vm\nM2L7h8xs3aRfR6k78ECYPDmcvbhHj9CJv3hx2lGJSFOSaEIxszJgONAb6AIMMLPOWW36ANu6e0fg\nZOCmjIdvj/NmexrY3t13Bt4BLkgg/GandWs499yQWP79b+jcGR56SGUwEclP0nso3YHZ7v6euy8B\nRgP9str0Be4EcPcJQBszaxunXwC+yF6ou49z9+VxcgKgk7cXULt2MGoU3HEHXHQR9O4Nb7+ddlQi\nUuySTijtgDkZ03PjfXVtU5MTgLH1ik5qtP/+8OabYVTY3nuHTvyvv047KhEpVi0TXn6+xZLsDqC8\n5jOz3wHfu/s9uR6vqKhYcbu8vJzy8vI8w5EqrVqF69kPGADnnRdGg119Nfz85+G6LCLStFVWVlJZ\nWVmQZSU6ysvMegAV7t47Tl8ALHf3KzLa3AxUuvvoOD0T6Onu8+N0B+Axd98xa9nHAScBvdx9lZOJ\naJRXMl54AU49FTbeGIYNC/0sIlI6inmU10Sgo5l1MLPWQH9gTFabMcAxsCIBLahKJtUxs97AuUC/\nXMlEkrPvvvDGG9C3L+y3X+jEX7gw7ahEpBgkmlDcfSkwGHgKmA7c6+4zzGygmQ2MbcYC75rZbGAE\nMKhqfjMbBbwMdDKzOWZ2fHxoGPAjYJyZTTKzvyb5OmRlLVuGU7dMnQqffBL2UkaN0mgwkeZOBzZK\ng738ciiDrbsuDB8eTj4pIk1TMZe8pBnYay+YODF01B9wQOjE//LLtKMSkcamhCIFUVYW9lKmTQvJ\npHNn+Mc/VAYTaU7yKnmZ2ZpAe3dvMoe3qeSVrldeCQlmzTVDGWznndOOSETykWjJy8z6ApMIHeuY\nWVczyx6pJbKSHj3g1Vfh17+Gn/wkdOIvWJB2VCKSpHxKXhXAHsRToLj7JECXZJJalZXBwIEwfTp8\n910og91xByxfXuusItIE5ZNQlrh79m9LfSVI3jbcEEaMgDFj4K9/hX32CddhEZHSkk9CmWZmvwJa\nmllHMxtGODZEpE66dQt9KyecEE44eeqp8MUqp/4UkaYqn4QyGNge+A4YBXwFnJlkUFK6WrSA//3f\ncJVI91AGu+02lcFESkGNo7zMrCUwzt33b7yQCkOjvJqGN94IeyrLl8ONN8Luu6cdkUjzltgor3jq\nlOVm1qZekYnUYtdd4aWX4De/gcMPD/8/+yztqESkPvIpeS0CpsTL8Q6Lf0OTDkyajxYt4PjjQxms\ndetwivwRI2DZsrQjE5G6qPXAxniaePjhGiUGuLvfmWBcDaaSV9M1eTIMHgzffhsOitxjj7QjEmk+\nGlLyqsuR8lu4+8z6PEkalFCaNvdw6pYhQ6BPH7jsMthoo7SjEil9jXWk/JNxWkfKS+LM4OijQxls\n7bVh++3DMSwqg4kUr3xKXm8ABwD/cveu8b6p7l7UJynXHkppmTIllMEWLgyjwfbcM+2IREpT0qev\nr/eR8mbW28xmmtksMxtSTZuh8fHJZtY14/6RZjbfzKZktV/fzMaZ2Ttm9rRGoDUPO+4IlZVwzjnw\ns5+FTvyPP047KhHJlNiR8mZWBgwHegNdgAFm1jmrTR9gW3fvCJwM3JTx8O1x3mznE46N6QQ8G6el\nGTCDX/4ylME22CCUwYYNg6VL045MRCC/hHIa9TtSvjsw293fc/clwGigX1abvsCdAO4+AWhjZm3j\n9AvEE1JWN0/8f0QesUgJWWcduPpqeO45ePhh2G03eOGFtKMSkVoTirsvcvcLgV7AAe7+O3f/No9l\ntwPmZEzPjffVtU22Tdx9frw9H9gkj1ikBHXpAs8+CxdeGPZcjj4aPvww7ahEmq98Rnl1i/0YbxEO\ncJxsZvmcICPfHvHszp+8e9Jjr7t63psxM+jfP5TBNtss9LVcdx0sWZJ2ZCLNT8s82owEBsUSFGa2\nT7xvp1rmmwe0z5huT9gDqanN5vG+msw3s7bu/pGZbQpU2zVbUVGx4nZ5eTnl5eW1LFqaqh/9CK64\nInTWn346jBwZDors2TPtyESKW2VlJZWVlQVZVj7DhidVDRfOuO8Nd9+1lvlaAm8TSmUfAK8CA9x9\nRkabPsBgd+9jZj2A6929R8bjHYDH3H3HjPuuBD5z9yvM7Hygjbuv0jGvYcPNlzs89BD89rew996h\nv2WzzdKOSqRpSHrY8HNmNsLMyuPfTfG+Xc2s2qQSTyw5mHDp4OnAve4+w8wGmtnA2GYs8K6ZzQZG\nAIMyXtQowmiyTmY2x8yOjw9dDvzEzN4hHB9zeZ1ftZQ0M/if/wlXitxqK9hpp5BUVAYTSVY+eyiV\nrNxPYZnTxXpqe+2hSJVZs0IZ7P33QxnsgAPSjkikeCV+Lq+mSAlFMrnDo4/CWWdB9+5wzTWw+eZp\nRyVSfBJNKGa2HnAM0IEfOvHd3U+vzxM2FiUUyWXxYrj88nBesHPPDQmmdeu0oxIpHkknlPHAeGAK\n4ZQrOn29NHn//jeccUYohw0bBgcdlHZEIsUh6YRS64iuYqSEIvl47LGQWLp2DcevbLFF2hGJpCvp\nUV73mNnJZrZpPDHj+ma2fn2eTKTYHH44TJsGO+8cLkf85z/Dd9+lHZVI05TPHspg4M/AAn44y7C7\n+9YJx9Yg2kORuvrPf0KfyrRpMHQoHHJI2hGJNL6kS17/Abq5+6f1eYK0KKFIfY0dG8pg228P118P\nHTqkHZFI40m65DUL+KY+Cxdpivr0CRf06tYNdt8d/vCHcH17EalZPnsojxBOX/8vwinsQcOGpZl4\n//1wCpc334QbboDDDks7IpFkJV3yOi7H3Ro2LM3K00/DaadBp06hDLbNNmlHJJKMRj1S3sy2AH7h\n7lfW5wkbixKKFNp334WhxVdfDYMGwfnnw5prph2VSGEl3YeCmW1sZqea2YtAJbqolTRDq60Wksik\nSfD226HT/pFHwmldRKSGPRQzWwc4EhgAbAs8Qtgzqe2KikVBeyiStGefDWWwLbcMw4w7dkw7IpGG\nS2oPZT4hoVzi7tu4+9nA9/V5EpFS1KtX6Kzv1Qv23BN+9ztYtCjtqETSU1NCuYBQ2vqrmZ1vZuqG\nFMnSujWccw5MnhwOjOzSBR58UGUwaZ7yGeW1DfCL+NcRuAR42N3fST68+lPJS9JQWQmDB4crRA4b\nBtttl3ZEInWTaKe8u//b3f8cL8PbDVgXeCLPwHqb2Uwzm2VmQ6ppMzQ+PtnMutY2r5l1N7NXzWyS\nmb1mZt3yiUWkMZSXh077Qw4Jlx8+/3z4+uu0oxJpHHmN8qri7lPc/UJ3r7X8ZWZlwHCgN9AFGGBm\nnbPa9AG2dfeOwMnATXnMeyVwUbzO/cVxWqRotGoVzgk2ZQrMmwedO8N996kMJqWvTgmljroDs939\nPXdfAowG+mW16QvcCeDuE4A2Zta2lnk/JOwlAbQB5iX4GkTqbdNN4a674J57wlmMDzwwXOdepFQl\nmVDaAXMypufG+/Jps1kN854PXGNm/wWuIgweECla++4Lr78ORxwBPXuGTvyFC9OOSqTwkkwo+e7g\n17Xz5zZ1Cd7EAAAUw0lEQVTgdHffAjgLGFnH+UUaXcuW4ZiVqVPhs89CGeyee1QGk9LSsrYGZrYP\nYWRXB1a+pnxt10OZB7TPmG5P2NOoqc3msU2rGubt7u4HxtsPAH+rLoCKiooVt8vLyykvL68lZJFk\nbbIJ3H47vPwynHoq3HILDB8OO+yQdmTSXFVWVlJZWVmQZeUzbPht4EzgDWBZ1f21XR/FzFoCbwO9\ngA+AV4EB7j4jo00fYLC79zGzHsD17t6jpnnN7A3gLHd/zsx6AZe7+yojvTRsWIrdsmUwYgRUVMCv\nfhX+r7tubXOJJCvpc3ktcPcn3H2+u39a9VfbTO6+FBgMPAVMB+6NCWGgmQ2MbcYC75rZbGAEMKim\neeOiTwauNLM3gT/FaZEmp6wsnGRy2rTQp9K5c+jE1+8gaary2UO5HCgDHuKH66Hg7m8kG1rDaA9F\nmpoJE0IZbPXV4cYbw3XuRRpb0tdDqSRHB7u771+fJ2wsSijSFC1bBn/7G1x8MfTvH64W2aZN2lFJ\nc9Ko10NpKpRQpCn77DO48EIYMwb+8hc49lhokeSYTJEokYRiZke7+11mdjYr76EYYZTXtfV5wsai\nhCKlYOLEUAYrKwujwXbdNe2IpNQl1SlfdS26tbP+fhT/i0jCdt8dxo+HE04I5wcbNAg+/zztqERy\nU8lLpIn4/HO46KJwevw//SkkGZXBpNDUh5KDEoqUqkmTQhls2bIwGmz33dOOSEpJ4teUF5Hi0bUr\nvPginHIKHH44DBwYOvFF0qaEItIEtWgBxx0HM2bAaquFgyJvvjnstYikpdaEYmaXmdl6GdPrmdmf\nkg1LRPLRpg0MHQrjxsHdd8Mee4QDJEXSkM8eyiHu/kXVRLx9aHIhiUhd7bwzPP88nHEG/PSncOKJ\n8MknaUclzU0+CaWFma1eNWFmawCtkwtJROrDDI4+OpTB1lkHtt8+dNqrDCaNJZ9TrwwhXFlxJOGg\nxuOBMe5+RfLh1Z9GeUlzN3VqGA321Vchsey1V9oRSVOQ+LBhMzsEOJBwxPw4d3+qPk/WmJRQRMKZ\ni0ePhnPPDZcgvuKKcE0WkeroOJQclFBEfrBwYTjR5B13hIMjBw0KV5EUyZbUuby+pvrL+Lq7r1Of\nJ2wsSigiq5o+PVyK+NNPw7nB9t037Yik2GgPJQclFJHc3OH+++Hss6G8HK68EjbdNO2opFgU7ZHy\nZtbbzGaa2azYuZ+rzdD4+GQz65rPvGZ2mpnNMLOpZlbUgwNEio0ZHHVUGA3Wrh3suCNcdx0sWZJ2\nZNLUJbaHYmZlhOvCHwjMA16j5mvK7wHcEK8pX+28ZrY/cCHQx92XmNlG7r7KiHvtoYjk5+23Qxns\ngw9CGay8PO2IJE3FuofSHZjt7u+5+xJgNNAvq01f4E4Ad58AtDGztrXMewpwWbyfXMlERPK33Xbw\n1FOh0/7YY2HAAJg3L+2opClKMqG0A+ZkTM+N9+XTZrMa5u0I7Gdmr5hZpZnpXKsiDWQGRx4ZOu23\n2SYceX/VVfD992lHJk1JkgMH86031XXXqiWwXiyNdQPuA7bO1bCiomLF7fLycsq1Ly9So7XWCtda\nOfbYcBqXkSNDGaxXr7Qjk6RUVlZSWVlZkGUl2YfSA6hw995x+gJgeeYR9mZ2M1Dp7qPj9EygJ7BV\ndfOa2RPA5e7+XHxsNrCHu690Am/1oYg0jHu4pv2ZZ0K3bnDNNdC+fdpRSdKKtQ9lItDRzDqYWWug\nPzAmq80Y4BhYkYAWuPv8WuZ9BDggztMJaJ2dTESk4cygX79QBuvcOVyH5fLL4bvv0o5MilViCcXd\nlwKDgaeA6cC9cZTWQDMbGNuMBd6NexkjgEE1zRsXPRLY2symAKOICUlEkrHGGnDppeG0+C+9BDvt\nBE8/nXZUUox0YKOI1Mn//V/oX9llF7j2Wthyy7QjkkIq1pKXiJSgww6DadPCSLBddw2d+N9+m3ZU\nUgyUUESkzlZfHS6+GCZOhNdfD0fbjx2bdlSSNpW8RKTBnnwyHG3fpQtcfz1stVXaEUl9qeQlIqnq\n3Ttc0GuPPcIQ40svhW++STsqaWxKKCJSEKutBhdeCG+8AVOmhEsQP/ZY2lFJY1LJS0QS8fTTcPrp\nsO22cMMN4ZQuUvxU8hKRonPQQfDWW+EiXnvsETrxFy9OOypJkhKKiCSmdWsYMgTefDOcJr9LF3jk\nkXBaFyk9KnmJSKN59tkwGmzLLUMZrFOntCOSbCp5iUiT0KtX2Fvp1Qv22it04i9alHZUUihKKCLS\nqFq3hnPOCf0r770XymAPPKAyWClQyUtEUlVZCYMHw6abwrBh8OMfpx1R86aSl4g0WeXlMGkSHHpo\nGBE2ZAh8/XXaUUl9KKGISOpatQoX8poyBT78MFx/5d57VQZralTyEpGi8+KLcOqpsOGGoQzWpUva\nETUfKnmJSEnZZ59wFuMjjoCePeHss+Grr9KOSmqTaEIxs95mNtPMZpnZkGraDI2PTzazrvnOa2Zn\nm9lyM1s/ydcgIulo2TIcszJ1Knz+eSiD3X23ymDFLLGSl5mVAW8DBwLzgNeAARmX8sXM+gCD3b2P\nme0B3ODuPWqb18zaA7cC2wG7ufvnOZ5fJS+REjJ+fCiDrb02DB8ersEihVesJa/uwGx3f8/dlwCj\ngX5ZbfoCdwK4+wSgjZm1zWPea4HzEoxdRIrMnnvCa69B//7hwMgzz4Qvv0w7KsmUZEJpB8zJmJ4b\n78unzWbVzWtm/YC57v5WoQMWkeJWVgaDBoVLEC9aFMpgf/+7ymDFomWCy873I85718rM1gAuBH6S\nz/wVFRUrbpeXl1NeXp7vU4lIEdtoI7j1Vnj11VAGu+UWuPHGcJ17qZvKykoqKysLsqwk+1B6ABXu\n3jtOXwAsd/crMtrcDFS6++g4PRPoCWyVa17gceBZoOok2JsT+li6u/vHWc+vPhSRZmDZMrjtNrjo\nIjjqKPjjH6FNm7SjarqKtQ9lItDRzDqYWWugPzAmq80Y4BhYkYAWuPv86uZ196nuvom7b+XuWxFK\nYbtmJxMRaT7KyuDkk2H6dFiyJJTBbr8dli9PO7LmJ7GE4u5LgcHAU8B04F53n2FmA81sYGwzFnjX\nzGYDI4BBNc2b62mSil9EmpYNNoCbbw6XHb75Zth773A5Ymk8OlJeRErO8uVhL+V3v4Mjj4Q//QnW\n1xFreSnWkpeISCpatIATTwxlsBYtQhns1ltVBkua9lBEpORNmhRGgy1dGkaDdeuWdkTFS3soIiI1\n6Nr1hxNO9u0bOvE//TTtqEqPEoqINAstWsCxx8KMGbDGGuEMxjffHIYdS2Go5CUizdJbb4U9lsWL\nQxmsR4+0IyoOKnmJiNTRTjvB88/DWWeFkWAnngiffJJ2VE2bEoqINFtm8Otfw8yZsO66oQx2440q\ng9WXSl4iItHUqTB4cDiL8fDh4eDI5qYhJS8lFBGRDO4wejSce244Tf6VV8Imm6QdVeNRH4qISIGY\nwYABYTTYxhvDDjvADTeEY1ikZtpDERGpwfTp4VLEn3wSymD77Zd2RMlSySsHJRQRKRR3eOABOPvs\nkFCuugo23TTtqJKhkpeISILM4Oc/D3sr7duH69lfe204Xb78QHsoIiJ19PbbcPrpMHduGGZcSheD\nVckrByUUEUmSOzz8cDgwcq+94OqroV27tKNqOJW8REQamVk4wn7GDNhmm3A9+yuvhO+/Tzuy9CSe\nUMyst5nNNLNZZjakmjZD4+OTzaxrbfOa2VVmNiO2f8jM1k36dYiI5LLmmuECXuPHQ2VlSCzPPJN2\nVOlINKGYWRkwHOgNdAEGmFnnrDZ9gG3dvSNwMnBTHvM+DWzv7jsD7wAXJPk6RERq07EjPP44XH45\nnHRS6MSfMyftqBpX0nso3YHZ7v6euy8BRgP9str0Be4EcPcJQBsza1vTvO4+zt2rrr02Adg84dch\nIlIrM+jXL4wG69IFdtkFLrsMvvsu7cgaR9IJpR2QmaPnxvvyabNZHvMCnACMbXCkIiIFssYacOml\n8OqroRS2447w1FNpR5W8lgkvP99hVvUbomb2O+B7d78n1+MVFRUrbpeXl1NeSmP7RKTobbMNjBkT\nSmGDBoX+leuugy23TDuyH1RWVlJZWVmQZSU6bNjMegAV7t47Tl8ALHf3KzLa3AxUuvvoOD0T6Als\nVdO8ZnYccBLQy92/zfHcGjYsIkXj22/DEfY33ABnngnnnAOrr552VKsq5mHDE4GOZtbBzFoD/YEx\nWW3GAMfAigS0wN3n1zSvmfUGzgX65UomIiLFZvXV4aKLYOJEeP31cNLJxx9PO6rCSvzARjM7BLge\nKANuc/fLzGwggLuPiG2qRnMtAo539zeqmzfePwtoDXwen2a8uw/Kel7toYhI0XryyXDSyc6d4frr\nYeut044o0JHyOSihiEix++47uOaa8HfaaTBkSOjQT1Mxl7xERKQaq60GF14IkyaFq0Vuv33oxG+q\nv4W1hyIiUiTGjQt7KttsEzrvt9228WPQHoqISAn4yU/grbegZ0/o0SN04i9enHZU+VNCEREpIq1b\nw3nnwZtvwqxZ4Yj7hx9uGmUwlbxERIrYP/8JgwfDFlvA0KHQqVOyz6eSl4hIiTrgAJg8OZTD9tor\ndOIvWpR2VLkpoYiIFLlWrcL17N96C95/Pxy78sADxVcGU8lLRKSJee65UAZr2zaUwTp3rn2efKnk\nJSLSjPTsCW+8AYcdBvvtFzrxFy5MOyolFBGRJqlVKzjjDJgyBebPD3spo0enWwZTyUtEpAS8+GIo\ng62/PgwbFo66rw+VvEREmrl99glnMj7ySCgvD534X33VuDEooYiIlIiWLcNeyrRp8MUXoQx2992N\nVwZTyUtEpESNHw+nngprrw3Dh4dLEddGJS8REVnFnnvCa6/BL34BvXqFK0V++WVyz5doQjGz3mY2\n08xmmdmQatoMjY9PNrOutc1rZuub2Tgze8fMnjazNkm+BhGRpqysDE45BaZPD0fY//jHcOedsHx5\n4Z8rsYRiZmVA1ZUYuwADzKxzVps+wLbu3hE4Gbgpj3nPB8a5eyfg2TgtCaqsrEw7hJKi97Ow9H7m\nZ8MN4dZb4dFHQ/lr333DCSgLKck9lO7AbHd/z92XAKOBfllt+gJ3Arj7BKCNmbWtZd4V88T/RyT4\nGgRtsIWm97Ow9H7WTffu8MorcOyxcPDBoRP/iy8Ks+wkE0o7YE7G9Nx4Xz5tNqth3k3cfX68PR/Y\npFABi4g0B2VlcPLJoQy2bFkYDTZyZMPLYEkmlHyHWOUzmsByLS8O49JQLhGRethgA7jpJnj8cbjl\nFth774Ytr2VhwsppHtA+Y7o9YU+jpjabxzatctw/L96eb2Zt3f0jM9sU+Li6AMzqNfJNcrj00kvT\nDqGk6P0sLL2fxSHJhDIR6GhmHYAPgP7AgKw2Y4DBwGgz6wEscPf5ZvZZDfOOAY4Froj/H8n15PUd\nRy0iIvWTWEJx96VmNhh4CigDbnP3GWY2MD4+wt3HmlkfM5sNLAKOr2neuOjLgfvM7ETgPeCopF6D\niIjkr2SPlBcRkcZVckfK53MwpeTPzN4zs7fMbJKZvZp2PE2NmY00s/lmNiXjPh2cWw/VvJcVZjY3\nrp+TzKx3mjE2JWbW3sz+ZWbTzGyqmZ0e76/3+llSCSWfgymlzhwod/eu7t497WCaoNsJ62MmHZxb\nP7neSweujetnV3d/MoW4mqolwFnuvj3QAzg1fl/We/0sqYRCfgdTSt1pgEM9ufsLQPZhYzo4tx6q\neS9B62e9uPtH7v5mvP01MINwvF+9189SSyj5HEwpdePAM2Y20cxOSjuYEqGDcwvrtHguwNtUPqyf\nOKK2KzCBBqyfpZZQNMKg8PZ2967AIYRd4n3TDqiU6ODcBrsJ2ArYBfgQuCbdcJoeM/sR8CBwhruv\ndGX6uq6fpZZQ8jmYUurA3T+M/z8BHiaUFaVh5sdz1lHbwblSM3f/2CPgb2j9rBMza0VIJne5e9Ux\nffVeP0stoaw4mNLMWhMOiByTckxNlpmtaWZrx9trAQcBU2qeS/JQdXAu1HBwrtQufuFV+SlaP/Nm\n4VQitwHT3f36jIfqvX6W3HEoZnYIcD0/HBB5WcohNVlmthVhrwTCQbB36/2sGzMbBfQENiTUoy8G\nHgXuA7YgHpzr7gvSirGpyPFeXgKUE8pdDvwHGJhR/5camNk+wPPAW/xQ1roAeJV6rp8ll1BERCQd\npVbyEhGRlCihiIhIQSihiIhIQSihiIhIQSihiIhIQSihiIhIQSihiERm9k8zOyjrvjPN7K8NXO7h\nSV5KIR7IOyXe3jkeiyXS6JRQRH4wCvhF1n39gXsaslB3f8zdr2jIMuqgK9CnkZ5LZCVKKCI/eBA4\n1MxawoozsG7m7i/G6SHxYmNvmtll8b5tzOyJeDbm581su+yFmtlxZjYs3r7DzG4ws5fM7N9m9j85\n2l9mZoMypivM7Ox4+yozmxLjOCprvlbAH4D+8WJTPy/M2yKSn8SuKS/S1Lj75/GqlH0I5zP6BXAv\nrDilT1+gu7t/m3Ga9FsIp/uYbWZ7AH8FemUvOmu6rbvvHS9mNIaQyDLdSzh9UFWp7efAQTH57Azs\nBGwEvGZmz2XEv8TMLgJ2c/fT6/cuiNSfEorIyqrKXmMI5a4T4v29gJHu/i2Auy+Ip/3eE7g/nGcP\ngNa1LN+JJ9tz9xlmtsq1Jtz9TTPbOJ74cGPgC3efF8+9dE88s+7HMZl0Z+UTIhq64JSkRAlFZGVj\ngOvMrCuwprtPyngs+4u6BbAgXi+mLr6vYZlV7gd+BrQlXHkUQjLKbq+T8UnRUB+KSIZ4KdR/Ea5f\nntkZPw443szWADCz9dz9K+A/ZvazeJ+Z2U45FlufPYZ7gQGEpHJ/vO8FQv9ICzPbCNiPcGbYTF8B\na9fj+UQaTAlFZFWjgB3jfwDc/SnC3stEM5sEnB0f+hVwopm9CUwl9LNky77qXXW3f7jTfTrwI2Bu\n1enY3f1hwqnGJwPPAue6+8dZy/kX0EWd8pIGnb5eREQKQnsoIiJSEEooIiJSEEooIiJSEEooIiJS\nEEooIiJSEEooIiJSEEooIiJSEEooIiJSEP8PtgLeOusfGLAAAAAASUVORK5CYII=\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "%matplotlib inline\n", "from matplotlib.pyplot import plot,show,title,xlabel,ylabel\n", "# Calculate the following dc quantities Icq, Vceq, Pd, Ic(sat) and Vce(off). Also draw the dc load line\n", "\n", "# Given Data\n", "\n", "R1 = 18.*10**3# # Resistor 1=18k Ohms\n", "R2 = 2.7*10**3# # Resistor 2=2.7k Ohms\n", "Vcc = 20.# # Supply Voltage(Collector)=20 Volts\n", "Vbe = 0.7# # Voltage Base-Emitter=0.7 Volts\n", "Re = 240.# # Emitter Resistor=240 Ohms\n", "Rc = 1.*10**3# # Collector Resistor=1k Ohms\n", "\n", "Vb = Vcc*(R2/(R1+R2))#\n", "\n", "Ve = Vb-Vbe#\n", "\n", "#Ie = Ic#\n", "\n", "Icq = Ve/Re#\n", "print 'The value of Icq = %0.2e Amps'%Icq\n", "print 'i.e Approx 7.91 mAmps'\n", "\n", "Vceq = Vcc-Icq*(Rc+Re)#\n", "print 'The value of Vceq = %0.2f Volts'%Vceq\n", "\n", "Pd = Vceq*Icq#\n", "print 'The Power Dissipation = %0.2e Watts'%Pd\n", "print 'i.e 80.6 mWatts'\n", "\n", "Icsat = Vcc/(Rc+Re)#\n", "print 'The value of Ic(sat) = %0.2e Amps'%Icsat\n", "print 'i.e 16.1 mAmps'\n", "\n", "Vceoff = Vcc#\n", "print 'The value of Vce(off) = %0.2f Volts'%Vceoff\n", "\n", "# For DC load line\n", "\n", "Vce1=[Vceoff ,Vceq, 0]\n", "Ic1=[0, Icq, Icsat]\n", "\n", "#To plot DC load line\n", "\n", "print \"Q(%f,%f)\\n\"%(Vceq,Icq)\n", "plot(Vce1, Ic1)\n", "plot(Vceq,Icq)\n", "plot(0,Icq)\n", "plot(Vceq,0)\n", "plot(0,Icsat)\n", "plot(Vceoff,0)\n", "xlabel(\"Vce in volt\")\n", "ylabel(\"Ic in Ampere\")\n", "title(\"DC Load-line for Common-Emitter Class A Amplifier Circuit\")\n", "show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example No. 31_2 Page No. 1024" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The Voltage Gain Av =189.84\n", "Approx 190\n", "The Output Voltage = 4.75 Volts\n", "The Load Power = 1.88e-03 Watts\n", "i.e Approx 1.88 mWatts\n", "The Dc Input Power = 1.78e-01 Watts\n", "i.e Approx 177.4 mWatts\n", "The Efficiency in % =1.06\n", "Approx 1%\n", "The Y-axis Value of AC Load-line is ic(sat) = 2.49e-02 Amps\n", "i.e 24.89 mAmps\n", "The X-axis value of AC Load-line is vce(off) = 14.94 Volts\n", "Q(10.190000,0.007910)\n", "\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZMAAAEZCAYAAABSN8jfAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xu8lFXZ//HPJQcRojhkW1EICgXLcoNGYKAbKEQkzZek\nKYJ4wkfTCn3M0/MQaU9oFpiKhqFAICpU8POUYMg2/BXSVjaKukt+YYAomkiWhweU6/fHWhuGYWbv\n2YfZ98ze3/frNa99z8x9uGbP3LPmWutea5m7IyIi0hD7JR2AiIgUPxUmIiLSYCpMRESkwVSYiIhI\ng6kwERGRBlNhIiIiDabCpImZWZmZbarh+SlmNi8u9zCzf5mZ5SGOPmZWaWbvmNmljb1/yY2ZrTOz\n45KOI5WZTTCzlUnHUQjMrKeZ7TKz/eL9R81sXMrzPzKzN81si5l1z9f5miW2fH4/1Plz2SwKEzMr\nN7NtZtY2w3NnmVlF/KdviR+Gr2TZzxwzuyH/Eddod8cfd9/o7h09P52Bvg8sd/ePu/vtjbFDMzvc\nzBbFk2u7ma01s0nVJ2JzkPLl8q+02zfrsz93P9Ld/xD3vfuHRMrxys3s/MaIPW2/J5jZH+KPiTfi\ncb7e2MepY0xZz+Ms688xs51mdlC+Y6vm7qPcffePPeByoK+7d3P3TY19vtZ0TuXz+6G2z2UmRX+S\nm1lPYADwBnBy2nOXA9OBHwGfAroDM9LXS+GkfJknpEl+1QCfBl6sz4Zm1irDY58Fngb+Dhzp7p2A\nbwJHAx0bEGeh+kQ8katvi/J0nAZ9HjMV5GY2BlgIzAEOcfdPAZOBxAqTms7jLOt3AE4jfIbPzmds\nNegBvOXubzV0R419TlnU0LjqxN2L+kY4CR4ErgMeSnn8E8C/gNPqsK/ZwA1ZnrsQeBl4C/g/wMEp\nz/0c2Aj8E6gABqc8dwDhpN0GvABcCWyqIYYpwLy43BPYBewX75cD1wNPAe8AS4GuKdsOBP4IvA1U\nAsdnOcYTwIfA+3E/veP/61eEk/mV+P+0uP4E4P8C04B/ANdn2Of81P9/luOeHP8HbwMrCL/oqp97\nBfhP4Ln4vt0NlAC/i//Xx4FOaf+XCfH//hbwH8CX4vZvA7el7NuA/4rH2ArMBT6etq/xhJP2TeDa\nGl7DXu9JhufnAHcAj8bXsRI4KH5G3gZeAkrTXvdwYCTwv8COuF0l4UdQ9fv0L+DWuE3f+P94C6gC\nvpl2/Dvj8f8NDEuLz+L/7IoaXuMEYGWOn+8B8bF/Aq8DP4uPt4ufiX/E170a+FRdz+Ma1h8f3+ux\nwPMZzqFFwDzC5/s54DDgmvj+/x34Wsr65cBUwhf3P4ElQOcazsHz43v2HvBRfG/uybDuJwif4y3A\nZuCGlOcm0MBzKktsP4r7fQ/4DPD5lM/K68DVKZ+TG1L2VUbK9xLZP5drssaT6xdtod6A9fEDdVh8\nwQfGx0cCO8ly0mfZV8bCBBhG+JIpBdoCtwJPpjw/FuhMyPQuB14D2sbnbgSeBDoBhwLrgI01xDCF\nmguTlwlf/u0IX8hT43OHxA/lyHj/q/H+J7McZwVwXsr9XwGLgQ6ErOUv1c/HD/5O4NvxNbbLsL/X\ngHNqeF2HE77chgOtCIXqy0Dr+PwGQkF4INCNcNI/CxwF7A8sByan/V/uiO/H1+IHfjHwyZTtj4vr\nnxeP1TO+vt8Av0rb18x4nC8CH5BS0GU5gVtleX5O/Kz0S4n7FcKvZyN8oTyRsv4G4hc+8IPquGp4\nnzoAm4Bz4ntRGo93RMrxtwOD4v390/bXN8b/6RreqwnsXZjU9Pn+EzA2LrcHBsTliwiFQ7v4uvsB\nHetwHmcteOL6ywkFT0dCYds/7Rx6P34uWhF+PLxCKExaARcAf0tZv5zwZf+5+Bp+TfZzcPf7ARzP\n3l/A6esuJhTsBxA+108DExvxnEo/Xnl8nUfEfXaM+5hEOE8+Bnwp5bvu+pR9laW9lho/l5luRV3N\nZWaDCV+iD7r7y4SUd2x8uivwD3ff1QiHGgvc7e6V7r6D8KEcFOtMcfd73f1td9/l7tMIXyJ94rbf\nBP7H3be7+2bCr7z6pp8OzHb39e7+AaGqojQ+dzbwqLs/FmP6PeEX46ga9mewO8U+A7jG3d91978D\nPwPGpay7xd1nxNf4QYZ9dSV8cLM5A3jY3Ze7+0fATwkn2bEp69zm7m+6+xbCL/o/uftad68uKPql\n7fMGd9/h7o8TfjUtcPd/pGxf/b8ZS/jF/Iq7v0t4/76VVgX0Q3f/X3d/DlhLKMRq8g8zezvlVv1+\nO/Bbd1+TEve77j7fw5m5MMPrqGZk/mykPjYa2ODuc+N7UQn8lvA5q7bE3f8EEGNI1TX+rem92kst\nn+8dwGFm9kl3f8/dV6c83hU4zIM17v6vTPvPch6flS2eeN6VAYviPpcSMpVUf3D3x+Nn7dcxlhvj\n/QeAnmb28eqXSPiyfNHd3wP+Gzg9h2qirM+bWQlwIjDJ3d939zeBW4BvpazW0HMqnQNz3P2l+L03\nOh5jejxP/u3uf84l/vSXk8u6RV2YEH6dLUv5kC6Kj0FI6z7ZSI2/BxNSYwDiF9JbhBMAM/tPM3sx\nNpC9TUhvPxlX70b4JVltY/WCmY1NacB9JMdYXk9Zfp/wawNCNvHN1C844CuEKpZsquvjPwm0SX2N\nMc5DUu5nvQIteovwWrM5mJTXHr9YN6UdY2vK8vtp9z9gz2vNZf3U/81e71+MozWhGq1a6v/1PUIG\ngJn9O74/75jZoSnrdHX3zim3v6Q890Za3Kn3U+PKVWq7yaeBL6e9z2elvJbq/2s21fX7B+d68Fo+\n3+cTss6XzGy1mZ0UH59H+JK/38xeNbObzKx1lkPUdB5nMg5Y5+5/TVn/rLR2h/T/+T/iZ676Puz9\nPqSfo21SXmN9fDru47WU9+kXhAwl0zEzqe2cyiR1n92Bv9Vx+3rL9uYWPDM7ADgd2M/Mqkvv/YFO\nZvZFQvr9v8CphGqNXGVq8NxCSCmrj92B8KvhVTMbQqiyGebuL8Tnt7GnJH+N0FD3UrzfY/eB3O8F\n7s3h+LnYSEjNJ9Zj238QUu6e7B3n5jrE9XtCg+icLM9vAb5QfSf+6usOvFrDPhurAXGv94/w2j4k\nFD49Mm1Qzd33+uKPDcX5kul/nP7YRkIV64h6HuMvhC+cMYTss0a1fb7dfT0xizCz04Bfm1kXd3+f\n0L53vZl9mtCG8xdC20Lq/ms8j2OmmG480D1l/daE8/EkQtVaffRIW95JOC861HN/mwjfP11rqB1p\n6DlV2z43EmoEMnmXUKVXLZcfnTUq5szkG4QvhCMIVRJHxeWVwHh3/yehUW+GmZ1iZu3NrI2ZnWhm\nN2XZpwGtzaxdyq0tcB9wrpkdZWb7Az8GVrn7RkK95IeEao+2ZjYZ+HjKPhcC15hZp/jL9rJaXld9\nU+v5wNfNbISZtYqxl5nZIVnW372vmPovBP7HzD4WT/5JcZ+5+gFwrJn9JKb4mFlvM5sXqxMWAieZ\n2TAzawNcQfjV/sc6HKOuqv9X9wGTLFzW+zHC+3d/LVWg9X0fGlIAvk6ofkndx1bgsyn3HwYON7Oz\n4+e5jZl9ycz65nL8+Ov8cuC/LfQn+biZ7Wdmg81sZoZNavx8xziqf23/k/DFs8vMhprZF2K28C/C\nl/NHGfZf43mcvrKZDSI0LH8pZf0jgQWZ1s+RAWeb2RFm1p5QCC5KyWTqzN1fA5YB08ysY/wff9bq\n1nejtnMq22up9jBwsJl918z2j3EMiM9VAqPMrLOFS6u/V0McmT6X+yjmwmQ8cI+7b3b3N+JtK3A7\nIeXdL9bvXk64kucNQkl9CaEeOxMHriZUc1Tffu/uywn1qL8h/MrtxZ66z8fi7a+Exq/3SanOAX5I\nqGLZENf7FTWX9J72fPq66c85QGyPOQW4NuW1XkHN73Hqvi4j/Fr5G+FEvpfQSJcppn135P43YBAh\nA3jBzLYT6qr/DPw7VkmcDdxGaDA+Cfi6u3+YY3y1/V9q2v4eQrXLHwiv7z32LtRzyQjSbbe9+5lU\nn4yZ4qzpPUxVfXnxW2ZWEZd/Doyx0P/iFnf/NzCC8Pl7lZD5TiU0sGY73t4Hd/8N4RfreXEfrxO+\nQJdk2Edtn+8TgHVm9i/CZfjfiu00JfH1/JPQBlJOeA/S1XoeZ1h/ibu/kLb+zwk/Vjpn+R/Udh7N\nI2QArxH+l9+pYdtc9zs+7utFwtWci9iTATT4nKrt+PGz8jXCJd+vEd7Dsvj0PELb4CuE9/f+GuLJ\n9LnchzWg8K2VmY0kNDq1Ama5+z4ZgZndSmioeg+Y4O5rzKw74Uv3U4QXeJe73xrXn0K4GuPNuItr\nqhudRUTqysxWEKqI76l1Zckqb20mMb29nXCJ6qvAn83sQXd/KWWdUUBvdz/MzL5MuIxuICElnuTu\nlbFa4hkzW+buVYTCZVrMOkREGkPTdvBrhvJZzTUAWB8vx9xJSKNOSVvnZMI14Lj704RGtxJ3fz1e\n8lidqr3E3lf96I0XkcaUvyqaFiKfhckh7H2Z2mb2LhCyrZN6+WX11TP9CB1+ql1mYYyau82sU2MF\nLCItj7sPVRVXw+WzMMm1pE/PMnZvF6u4fg18N2YoEKrCehE6pL1GDpc3iohIfuWzn8mrhH4E1bqz\nd7+FTOscGh8jXj76G2C+u1dfZYK77+6MZGazgIcyHdzMlLaKiNSRu9erGSGfmUkFYZiFnrGvxhns\n26HoQeK14WY2ENju7lvj9cx3Ay+6+y2pG5hZas/dU4HnswVw8snOG28kP35YttsPfvCDxGNQnIpT\ncSrO6ltD5K0w8dB/4FLCkAovAg+4+0tmdpGZXRTXeRT4m5mtJwy0d0nc/CuEPglDzWxNvI2Mz91k\nZs+Z2VrCQGuTssXQty+UlsKyZXl5iSIiEuV1OBV3/x1hCPHUx2am3d9nlj93f4osBZ2759zL9aab\n4IQT4JxzYMwYmDoV2rXLdWsREclVMfeAz8mwYbB2LWzaBAMGwLp1SUe0R1lZWdIh5ERxNi7F2bgU\nZ2HIaw/4JJmZp742d5gzB77/fZg8GS69FJp4HjIRkYJmZng9G+BbTGFSbf16GDsWunaF2bOhpCTD\nxiIiLVBDCpNmX82VrndveOopOPro0Dj/SK6ziIiISFYtLjNJtXIljBsHo0fDzTfDAQc0UXAiIgVI\nmUk9DRkClZWwbVvIVCork45IRKQ4tejCBKBTJ1iwAK67DkaMgGnTYFdjzBovItKCtOhqrnQbNsDZ\nZ0P79jB3LnSr6+zLIiJFTNVcjaRXL3jySTjuOOjfHxZnm49RRET2oswki1WrwiXEw4fD9OnQoUMj\nBiciUoCUmeTBwIGhQX7HjpClVGSd+VhERFSY1KBjx9Br/vrrYdQouPFG+OijpKMSESk8qubK0caN\nMD4OMTlvHnTvXvP6IiLFRtVcTaBHD1i+HEaODH1SFi5MOiIRkcKhzKQeKirgrLPg2GPhtttCdZiI\nSLFTZtLEjjkG1qyBtm3D+F6rViUdkYhIspSZNNDixXDxxXDJJXDttdA6r9ONiYjkj4agz6CpChOA\nLVvCbI7vvQfz54fOjyIixUbVXAnr1g2WLoXTTguzOc6fn3REIiJNS5lJI6usDI3z/frBjBlhIEkR\nkWKgzKSAlJaGq706dw7LK1cmHZGISP4pM8mjhx+GCy+ECy4I8863aZNoOCIiNVJmUqBGjw7VXs88\nA4MHh/nnRUSaIxUmeVZSEuaZHzcOBg2C2bOhmSaDItKCqZqrCa1bFxrn+/SBmTOhS5ekIxIR2UPV\nXEXiyCNh9eowSGRpKaxYkXREIiKNQ5lJQpYuhfPOC9ME33BDGJpFRCRJykyK0AknhMb5qqrQllJV\nlXREIiL1p8IkQQceCEuWwMSJMGRIaEcp4GRKRCQrVXMViKqq0DjfvTvMmhUKGhGRpqRqrmagb98w\nlH3fvqFxftmypCMSEcmdMpMC9MQTYRTiMWNg6lRo1y7piESkJVBm0swMGwZr18KmTWEU4nXrko5I\nRKRmKkwKVJcusGgRTJoEQ4eG6YGLNNESkRZA1VxFYP16GDsWunYNw7GUlCQdkYg0R6rmauZ694an\nnoKjjw6N8488knREIiJ7y2thYmYjzazKzF42s6uyrHNrfH6tmfWLj3U3sxVm9oKZrTOz76Ss38XM\nHjezv5rZMjNrEdNPtWkTesovXAjf/jZceim8/37SUYmIBHkrTMysFXA7MBL4HHCmmR2Rts4ooLe7\nHwZMBO6MT+0EJrn754GBwLfNrG987mrgcXc/HFge77cYQ4aEnvPbtoVMpbIy6YhERPKbmQwA1rv7\nK+6+E7gfOCVtnZOBuQDu/jTQycxK3P11d6+Mj/8beAk4JH2b+PcbeXwNBalTJ1iwAK67DkaMgGnT\nYNeupKMSkZYsn4XJIcCmlPub2VMg1LTOoakrmFlPoB/wdHyoxN23xuWtQIttjh47Fp5+Gn7zmzDW\n15YtSUckIi1V6zzuO9dLqdKvHNi9nZl9DPg18N2Yoey9orubWdbjTJkyZfdyWVkZZWVlOYZUPHr1\ngiefDJ0b+/eHO++EU09NOioRKQbl5eWUl5c3yr7ydmmwmQ0Eprj7yHj/GmCXu9+Uss4vgHJ3vz/e\nrwKOd/etZtYGeBj4nbvfkrJNFVDm7q+b2cHACnfvS5rmdGlwrlatCtnK8OEwfTp06JB0RCJSTAr1\n0uAK4DAz62lmbYEzgAfT1nkQGA+7C5/tsSAx4G7gxdSCJGWbc+LyOcCSfL2AYjNwYGiQ37EjZCkV\nFUlHJCItRV47LZrZicAtQCvgbnefamYXAbj7zLhO9RVf7wLnuvuzZjYY+APwHHuqva5x98fMrAuw\nEOgBvAKc7u7bMxy7xWUmqR54AC67DC6/HK68Elq1SjoiESl0DclM1AO+Gdu4EcaPD8vz5oXh7UVE\nsinUai5JWI8esHw5jBwZ+qQsXJh0RCLSXCkzaSEqKsLkW8ceGwaN7Ngx6YhEpNAoM5FaHXMMrFkD\nbduG8b1WrUo6IhFpTpSZtECLF8PFF8Mll8C110LrfPY2EpGioQb4DFSY1GzLljCb43vvwfz5ofOj\niLRsquaSOuvWDZYuhdNOC7M5zp+fdEQiUsyUmQiVlaFxvl8/mDEjDCQpIi2PMhNpkNLScLVX585h\neeXKpCMSkWKjzET28vDDcOGFcMEFMHlymJRLRFoGZSbSaEaPDtVezzwDgweH+edFRGqjwkT2UVIS\n5pkfNw4GDYLZs0FJnojURNVcUqN160LjfJ8+MHMmdOmSdEQiki+q5pK8OfJIWL06DBJZWgorViQd\nkYgUImUmkrOlS+G88+Dss+GGG8LQLCLSfCgzkSZxwgmhcb6qKrSlVFUlHZGIFAoVJlInBx4IS5bA\nxIkwZEhoR1ECKCKq5pJ6q6oKjfPdu8OsWaGgEZHipWouSUTfvmEo+759Q+P8smVJRyQiSVFmIo3i\niSfCKMRjxsDUqdCuXdIRiUhdKTORxA0bBmvXwqZNYRTideuSjkhEmpIKE2k0XbrAokUwaRIMHRqm\nB1ZyKNIyqJpL8mL9ehg7Frp2DcOxlJQkHZGI1EbVXFJweveGp56Co48OjfOPPJJ0RCKST8pMJO9W\nrgyDRo4eDTffDAcckHREIpKJMhMpaEOGhJ7z27aFTKWyMumIRKSxqTCRJtGpEyxYANddByNGwLRp\nsGtX0lGJSGNRNZc0uQ0bwmCR7dvD3LnQrVvSEYkIqJpLikyvXvDkk3DccdC/PyxenHREItJQykwk\nUatWhUuIhw+H6dOhQ4ekIxJpuZSZSNEaODA0yO/YEbKUioqkIxKR+lBhIonr2BHmzIHrr4dRo+DG\nG+Gjj5KOSkTqQtVcUlA2boTx48PyvHlheHsRaRp5r+Yys/Zm1qc+BxCpix49YPlyGDky9ElZuDDp\niEQkF7VmJmZ2MnAzsL+79zSzfsAP3f3kpgiwvpSZFL+KijD51rHHhkEjO3ZMOiKR5i3fmckU4MvA\n2wDuvgb4TH0OJlIXxxwDa9ZA27ZhfK9Vq5KOSESyyaUw2enu29Mey6nvspmNNLMqM3vZzK7Kss6t\n8fm1MeupfvweM9tqZs+nrT/FzDab2Zp4G5lLLFKcOnSAu+6Cn/4UvvGN0Ej/4YdJRyUi6XIpTF4w\ns7FAazM7zMxuA/5Y20Zm1gq4HRgJfA4408yOSFtnFNDb3Q8DJgJ3pjw9O26bzoFp7t4v3h7L4TVI\nkTv1VHj22TBo5PHHh170IlI4cilMLgU+D/wvcB/wDvC9HLYbAKx391fcfSdwP3BK2jonA3MB3P1p\noJOZHRTvryRWrWVQrzo9KW7dusHSpXDaaWE2x/nzk45IRKrVWJiYWWvgEXe/1t2Pibfr3P2DHPZ9\nCLAp5f7m+Fhd18nkslgtdreZdcphfWkm9tsPLr8cHn8cfvzj0Ht+e3olrIg0uRoLE3f/ENhVzy/s\nXC+lSs8yatvuTqAXUAq8BvysjnFJM1BaGq726tw5LK9cmXREIi1b6xzWeRd43swej8sA7u7fqWW7\nV4HULmfdCZlHTescGh/Lyt3fqF42s1nAQ9nWnTJlyu7lsrIyysrKaglZikn79nD77aFPyumnwwUX\nwOTJ0KZN0pGJFIfy8nLKy8sbZV+59DOZEBerVzRCYTK3lu1aA38BhgNbgNXAme7+Uso6o4BL3X2U\nmQ0EbnH3gSnP9wQecvcvpDx2sLu/FpcnAV9y97MyHF/9TFqQrVvh3HPhrbfg3nvDtMEiUjcN6WeS\n03AqZtYe6OHuVXUM7ETgFqAVcLe7TzWziwDcfWZcp/qKr3eBc9392fj4fcDxQFfgDWCyu882s18R\nqrgc2ABc5O5bMxxbhUkL4w4zZsAPfwg/+QlMmACmSzVEcpbXwkQ94KXYrFsXes736QMzZ0KXLklH\nJFIc1ANeJMWRR8Lq1WGQyNJSWLEi6YhEmr+89oAXSUq7dmGe+V/+MkwRfNVVYc4UEcmPvPWAFykE\nJ5wQJt+qqoJBg8JfEWl8uRQml1G/HvAiBeHAA2HJEpg4EYYMCe0oak4TaVw5T45lZp8gXBL8Tn5D\nahxqgJdMqqpC43z37jBrVihoRCTIawO8mX0pjtz7HKHz4lozO6Y+BxNJWt++YSj7vn1D4/yyZUlH\nJNI85HJp8PPAJXHgRcxsMHCHu3+xCeKrN2UmUpsnnoBzzoExY2Dq1NBoL9KS5fvS4A+rCxIAd38K\n0IwSUvSGDYO1a2HTpjAK8bp1SUckUrxyKUyeNLOZZlYWb3fGx/qbWf98ByiST126wKJFMGkSDB0a\npgdWQitSd7lUc5Wz90i+lnrf3YfmJbIGUjWX1NX69WFI+65dYfZsKClJOiKRppX3sbmKkQoTqY+d\nO8PUwLNmhdtJJyUdkUjTyffYXJ2B8UBP9gxZn8sQ9IlSYSINsXIljBsHo0fDzTfDAQckHZFI/uW7\nAf5R4NOES4MrgGfiTaTZGjIk9Jzftg2OPjosi0h2uWQmz7p70TW0KzORxnLvvaGB/uqr4XvfC1MH\nizRH+a7m+k/CECoPEYZUAcDdt9XngE1FhYk0pg0bwoCR7dvD3LnQrVvSEYk0vnxXc31AmM9kFXuq\nuCrqczCRYtWrFzz5JBx3HPTvD4sXJx2RSGHJJTPZQJga9x9NE1LjUGYi+bJqVbiEePhwmD4dOnRI\nOiKRxpHvzORl4P367FykORo4MDTI79gRspQK5ekiOWUmSwhD0K9gT5uJLg0WAR54AC67DC6/HK68\nElq1SjoikfrLdwP8hAwPu7vPrc8Bm4oKE2kqGzfC+PFhed68MLy9SDHKazWXu89JvQFPABpoQiTq\n0QOWL4eRI0OflIULk45IpOnlNJyKmX0K+CZwJtANWOzuV+Q5tgZRZiJJqKgIk28de2wYNLJjx6Qj\nEsldXjITM/u4mU0ws6XAn4DPAL3c/TOFXpCIJOWYY2DNGmjbNky+tWpV0hGJNI2smYmZvQ88DvzY\n3VfFxza4e68mjK/elJlI0hYvhosvhksugWuvhdata99GJEn5ajO5htA2coeZXW1mn61XdCIt1Kmn\nwrPPhkEjjz8+9KIXaa6yFibufou7f5nQVtIKWAIcbGZXmdnhTRWgSDHr1g2WLoXTTguzOc6fn3RE\nIvlRp/lMzOwLhEb4M9y9oDMVVXNJoamsDI3z/frBjBnQqVPSEYnsLd894Hdz9+fd/dpCL0hEClFp\nabjaq3PnsLxyZdIRiTQezbQokoCHH4YLL4QLLoDJk6FNm6QjEmnCzEREGsfo0aHa65lnYPDgMP+8\nSDFTYSKSkJISeOSRMD3woEEwezYomZZilcvYXIOBH7DvHPCfyW9oDaNqLikm69aFxvk+fWDmTOjS\nJemIpCXKdzXX3cA0YDDwpXgbUJ+DiUhmRx4Jq1eHQSJLS2HFiqQjEqmbXDKTp2N/k6KizESK1dKl\ncN55YZrgG24IQ7OINIV8D0F/I6HT4m/Zew74Z+tzwKaiwkSK2Ztvhiu9Nm+Ge++Fvn2TjkhagnwX\nJuXAPiu5+9D6HLCpqDCRYucOd90F//Vf8KMfwcSJYPU6zUVyk9fCpCHMbCRwCyGzmeXuN2VY51bg\nROA9YIK7r4mP3wOcBLzh7l9IWb8L8ADwaeAV4HR3355hvypMpFmoqgqN8927w6xZcOCBSUckzVW+\nhqAfF/9eYWaXp9yuMLPLcwiqFXA7MBL4HHCmmR2Rts4ooLe7HwZMBO5MeXp23Dbd1cDj7n44sDze\nF2m2+vYNQ9n37Rsa55ctSzoikX3VdDVX+/i3Y9rtY/FvbQYA6939FXffCdwPnJK2zsnAXAB3fxro\nZGYHxfsrgbcz7Hf3NvHvN3KIRaSotW0LN90UpgU+/3yYNAk++CDpqET2yDrDgrvPjH+n1HPfhwCb\nUu5vBtKvCsu0ziHA6zXst8Tdt8blrWgKYWlBhg2DtWtD+8mAAbBgQbisWCRp+ewBn2uDRXr9XM4N\nHbFRRA0j0qJ06QKLFoXsZOjQMD2wmgclafmc++1VoHvK/e6EzKOmdQ6Nj9Vkq5kd5O6vm9nBwBvZ\nVpwyZcrURcQvAAARnklEQVTu5bKyMsrKymqPWqQImMG558KQITB2LPzud2E4lhLl6VIH5eXllJeX\nN8q+8nY1l5m1Bv4CDAe2AKuBM939pZR1RgGXuvsoMxsI3OLuA1Oe7wk8lHY110+At9z9JjO7Gujk\n7vs0wutqLmkpdu6E668PV3rNmgUnnZR0RFKs8jqciplNNbPOKfc7m9mPatvO3T8ELgWWAi8CD7j7\nS2Z2kZldFNd5FPibma0HZgKXpBznPuCPwOFmtsnMzo1P3Qh8zcz+CgyL90VarDZtQk/5hQvh29+G\nSy+F999POippaXLptFjp7qVpj61x9355jayBlJlIS7R9O1xySRjefsGCcCmxSK7yPdDjfmbWLuVg\nBwAaLUikAHXqFAqR666DESNg2jTYtSvpqKQlyCUzuYrQt+MewpVX5wIPZurNXkiUmUhLt2FDGCyy\nfXuYOxe6dUs6Iil0eR9OxcxOBL5KuAz3cXdfWp+DNSUVJiLw4YcwdSrMmAF33gmnnpp0RFLICnZs\nriSpMBHZY9WqcAnx8OEwfTp06JB0RFKI8jU217/N7F9Zbu/UP1wRaWoDB4ZG+Z07oX9/qKhIOiJp\nbpSZiLQwCxfCZZeFHvRXXgmtWiUdkRQKVXNloMJEJLtNm2DcuLA8b14Y3l4k35cGi0gz0707LF8O\nJ54IxxwTshWRhlBmItLCPfNMmHxr0KAwaGTHXCaYkGZJmYmI1NvRR8Ozz8L++4ce86tWJR2RFCNl\nJiKy25Il8B//EYZkufZaaJ3PccWl4KgBPgMVJiL1s2ULTJgA774L8+dDr15JRyRNRdVcItJounWD\nxx6DMWPgy18OBYpIbZSZiEhWa9eGxvmjjoI77ggDSUrzpcxERPLiqKNCb/kuXULj/MqVSUckhUqZ\niYjk5JFH4MIL4fzzYfLkMCmXNC/KTEQk7046CdasCf1SBg+G9euTjkgKiQoTEclZSUnIUMaNC50c\nZ88GVQAIqJpLROrphRfgzDOhTx+YOTO0q0hxUzWXiDS5z38eVq8O43yVlsKKFUlHJElSZiIiDbZ0\nKZx3Xpgm+IYboG3bpCOS+lBmIiKJOuGEMPlWVVVoS6mqSjoiaWoqTESkURx4YBjba+JEGDIktKOo\ncqDlUDWXiDS6qqrQc757d5g1KxQ0UvhUzSUiBaVv3zCUfd++oXF+2bKkI5J8U2YiInn1xBNwzjlh\n4MipU6Fdu6QjkmyUmYhIwRo2LAwYuWkTDBgA69YlHZHkgwoTEcm7Ll1g0SKYNAmGDg3TA6vioHlR\nNZeINKn162HsWOjaNQzHUlKSdERSTdVcIlI0eveGp54Kc8+XloaxvqT4KTMRkcSsXBkGjRw9Gm6+\nGQ44IOmIWjZlJiJSlIYMCT3nt20LmUplZdIRSX2pMBGRRHXqBAsWwHXXwYgRMG0a7NqVdFRSV6rm\nEpGCsWFDGCyyfXuYOxe6dUs6opZF1Vwi0iz06gVPPgnHHQf9+8PixUlHJLlSZiIiBWnVqnAJ8fDh\nMH06dOiQdETNX8FmJmY20syqzOxlM7sqyzq3xufXmlm/2rY1sylmttnM1sTbyHy+BhFJxsCBoUF+\nx46QpVRUJB2R1CRvhYmZtQJuB0YCnwPONLMj0tYZBfR298OAicCdOWzrwDR37xdvj+XrNYhIsjp2\nhDlz4PrrYdQouPFG+OijpKOSTPKZmQwA1rv7K+6+E7gfOCVtnZOBuQDu/jTQycwOymHbeqVhIlKc\nzjgjZCaPPRaqvTZtSjoiSZfPwuQQIPUt3xwfy2WdbrVse1msFrvbzDo1XsgiUqh69IDly2HkyNAn\nZeHCpCOSVK3zuO9cW7/rmmXcCVwfl28Afgacn2nFKVOm7F4uKyujrKysjocSkULSqhVcfTV89ath\n8q1HHw2DRnbsmHRkxam8vJzy8vJG2VferuYys4HAFHcfGe9fA+xy95tS1vkFUO7u98f7VcDxQK/a\nto2P9wQecvcvZDi+ruYSacbefTeMQrx8Odx7b2iwl4Yp1Ku5KoDDzKynmbUFzgAeTFvnQWA87C58\ntrv71pq2NbODU7Y/FXg+j69BRApUhw5w113w05/CN74RGuk//DDpqFquvPYzMbMTgVuAVsDd7j7V\nzC4CcPeZcZ3qq7beBc5192ezbRsf/xVQSqhG2wBcFAug9GMrMxFpIbZsCbM5vvcezJ8fOj9K3TUk\nM1GnRRFpFnbtgltuCVMDT58ehmWRulFhkoEKE5GWqbIyNM736wczZoSBJCU3hdpmIiLS5EpLQ5+U\nzp3D8sqVSUfUMigzEZFm6+GH4cIL4YILYPJkaNMm6YgKmzITEZEMRo8O1V7PPAODB4f55yU/VJiI\nSLNWUhLmmR83DgYNgtmzQZUWjU/VXCLSYqxbFxrn+/SBmTOhS5ekIyosquYSEcnBkUfC6tXQvXto\nnF+xIumImg9lJiLSIi1dCuedF/qj3HADtG2bdETJU2YiIlJHJ5wQGuerqkJbSlVV0hEVNxUmItJi\nHXggLFkCEyfCkCGhHUUVGvWjai4REUJmctZZoT1l1qxQ0LQ0quYSEWmgvn1h1arwt7QUli1LOqLi\nosxERCTNE0+EUYjHjAkDR7Zrl3RETUOZiYhIIxo2DNauDXPNDxgQ+qdIzVSYiIhk0KULLFoUZnMc\nOjRMD6zKjuxUzSUiUov162HsWOjaNQzHUlKSdET5oWouEZE86t0bnnoKjj46NM4/8kjSERUeZSYi\nInWwcmUYNHL0aLj5ZjjggKQjajzKTEREmsiQIaHn/LZtIVOprEw6osKgwkREpI46dYIFC+C662DE\nCJg2LcxB35KpmktEpAE2bAiDRbZvD3PnQrduSUdUf6rmEhFJSK9e8OSTcNxx0L8/LF6cdETJUGYi\nItJIVq0KlxAPHw7Tp0OHDklHVDfKTERECsDAgaFBfseOkKVUVCQdUdNRYSIi0og6doQ5c+D662HU\nKLjxRvjoo6Sjyj9Vc4mI5MnGjTB+fFieNy8Mb1/IVM0lIlKAevSA5cth5MjQJ2XhwqQjyh9lJiIi\nTaCiIky+deyxYdDIjh2TjmhfykxERArcMcfAmjXQtm0Y32vVqqQjalzKTEREmtjixXDxxXDJJXDt\ntdC6ddIRBQ3JTFSYiIgkYMuWMJvje+/B/Pmh82PSVM0lIlJkunWDpUvhtNPCbI7z5ycdUcMoMxER\nSVhlZWic79cPZswIA0kmQZmJiEgRKy0NV3t17hyWV65MOqK6U2YiIlJAHn4YLrwQLrgAJk+GNm2a\n7tgFm5mY2UgzqzKzl83sqizr3BqfX2tm/Wrb1sy6mNnjZvZXM1tmZgklhCIijW/06FDt9cwzMHhw\nmH++GOStMDGzVsDtwEjgc8CZZnZE2jqjgN7ufhgwEbgzh22vBh5398OB5fF+USovL086hJwozsal\nOBtXc4yzpCTMMz9uHAwaBLNnQ6FXtOQzMxkArHf3V9x9J3A/cEraOicDcwHc/Wmgk5kdVMu2u7eJ\nf7+Rx9eQV83xJEiS4mxcirNx1TVOM7j0UlixIgxnf/rpYargQpXPwuQQYFPK/c3xsVzW6VbDtiXu\nvjUubwVKGitgEZFCc+SRsHp1GCSytDQULoUon4VJrklZLo09lml/sYW9wJM/EZGGadcuzDP/y1+G\nKYJ/+tOkI8rA3fNyAwYCj6Xcvwa4Km2dXwDfSrlfRcg0sm4b1zkoLh8MVGU5vuumm2666Va3W32/\n8/M5IkwFcJiZ9QS2AGcAZ6at8yBwKXC/mQ0Etrv7VjN7q4ZtHwTOAW6Kf5dkOnh9L28TEZG6y1th\n4u4fmtmlwFKgFXC3u79kZhfF52e6+6NmNsrM1gPvAufWtG3c9Y3AQjM7H3gFOD1fr0FERHLTbDst\niohI02l2w6nk0lEyaWbW3cxWmNkLZrbOzL6TdEw1MbNWZrbGzB5KOpZszKyTmf3azF4ysxdjtWlB\nMbNr4nv+vJktMLP9k44JwMzuMbOtZvZ8ymMF1zk4S5w3x/d8rZn91sw+kWSMMaZ94kx57goz22Vm\nXZKILS2WjHGa2WXxf7rOzG7KdX/NqjDJpaNkgdgJTHL3zxMuNvh2gcZZ7bvAi4QGukL1c+BRdz8C\n+CLwUi3rN6nY/nch0N/dv0Covv1WkjGlmE04Z1IVYufgTHEuAz7v7kcBfyVcrJO0THFiZt2BrwF/\nb/KIMtsnTjMbSujL90V3PxLI+bqxZlWYkFtHycS5++vuXhmX/0344uuWbFSZmdmhwChgFrldxt3k\n4q/RIe5+D4Q2N3f/Z8JhpXuH8COivZm1BtoDryYbUuDuK4G30x4uuM7BmeJ098fdfVe8+zRwaJMH\nlibL/xNgGvD9Jg4nqyxxXgxMjd+fuPubue6vuRUmuXSULCjxF2s/wolQiKYDVwK7alsxQb2AN81s\ntpk9a2a/NLP2SQeVyt23AT8DNhKuUNzu7r9PNqoaFWPn4POAR5MOIhMzOwXY7O7PJR1LLQ4DjjOz\nVWZWbmbH5LphcytMCrkaZh9m9jHg18B3Y4ZSUMxsNPCGu6+hQLOSqDXQH7jD3fsTrgwshGqZ3czs\ns8D3gJ6ELPRjZjY20aByVAydg83sOmCHuy9IOpZ08YfNtcAPUh9OKJzatAY6u/tAwo/Ihblu2NwK\nk1eB7in3uxOyk4JjZm2A3wDz3T1jX5kCcCxwspltAO4DhpnZrxKOKZPNhF99f473f00oXArJMcAf\n3f0td/8Q+C3h/1uotsZx8jCzg4E3Eo4nKzObQKiKLdTC+bOEHxFr47l0KPCMmX0q0agy20z4bBLP\np11m1jWXDZtbYbK7o6SZtSV0dnww4Zj2YWYG3A286O63JB1PNu5+rbt3d/dehMbiJ9x9fNJxpXP3\n14FNZnZ4fOirwAsJhpRJFTDQzA6I7/9XCRc1FKrqzsFQQ+fgpJnZSMIv6FPc/YOk48nE3Z939xJ3\n7xXPpc2ECzEKsYBeAgwDiOdTW3d/K5cNm1VhEn/xVXd2fBF4IKWzYyH5CnA2MDRecrsmnhSFrpCr\nOi4D7jWztYSruX6ccDx7cfe1wK8IP3iq683vSi6iPczsPuCPQB8z22Rm5xI6B3/NzP5K+HK5MckY\nIWOc5wG3AR8DHo/n0R2JBslecR6e8v9MVRDnUZY47wE+Ey8Xvg/I+cejOi2KiEiDNavMREREkqHC\nREREGkyFiYiINJgKExERaTAVJiIi0mAqTEREpMFUmIhEZvaEmY1Ie+x7De27YGZfz+d0CLGT7vNx\n+SgzOzFfxxLJRoWJyB73se+w8GcADRrvyd0fcvec54VooH6EoUVEmpQKE5E9fgOcFIeIrx7RuZu7\nPxXvX2Vmz5lZpZlNjY991sx+Z2YVZvYHM+uTvlMzm2Bmt8XlOWb2czP7v2b2/8zstAzrTzWzS1Lu\nTzGzK+LyzRYm13rOzE5P264NcD1wRuwN/s3G+beI1C5vc8CLFBt332Zmqwm/7B8kZCkPAMSqo5OB\nAe7+QcrMg3cBF7n7ejP7MnAHMDx912n3D3L3r8QJ0R4kFGKpHgBuifsC+CYwIhY8RxGGizkQ+LOZ\nPZkS/04z+2/gaHcv6Nk7pflRYSKyt+qqrgcJVVznxceHA/dUDybo7tvjFAKDgEVh7EYA2tayfycO\nmujuL5nZPvOEuHulmX0qjtb7KeBtd3/VzAYDC+KQ8G/EgmQAkDrtqlG4w5tLM6bCRGRvDwLTzawf\n0D7O5VIt/Ut6P8IkV/3qeIwdNeyz2iJgDHAQYcZQCAVR+voaXE8KgtpMRFLEScpWEObHTm14fxw4\n18wOADCzzu7+DrDBzMbEx8zMvphht/XJFB4AziQUKIviYysJ7SH7mdmBwHHA6rTt3gE61uN4Ig2i\nwkRkX/cBX4h/AXD3pYSspcLM1gBXxKfGAuebWSWwjtCuki59psJsy3sedH+RMLT65urpc919MWH4\n+rXAcuDKlDkxqvezAvicGuClqWkIehERaTBlJiIi0mAqTEREpMFUmIiISIOpMBERkQZTYSIiIg2m\nwkRERBpMhYmIiDSYChMREWmw/w8e4nQEXC4Q+gAAAABJRU5ErkJggg==\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "%matplotlib inline\n", "from matplotlib.pyplot import plot,show,title,xlabel,ylabel\n", "\n", "# Claculate the following AC quantities Av, Vout, Pl, Pcc and percent efficiency. Also calculate the endpoints of ac loadline\n", "\n", "# Given data\n", "\n", "Icq = 7.91*10**-3# # Collector Currect(Q-point)=7.91 mAmps\n", "Rl = 1.5*10**3# # Load Resistor=1.5 kOhms\n", "Rc = 1.*10**3# # Collector Resistor=1 kOhms\n", "Vin = 25.*10**-3# # Input Voltage=25 mVolts(p-p)\n", "R1 = 18.*10**3# # Resistor 1=18 kOhms\n", "R2 = 2.7*10**3# # Resistor 2=2.7 kOhms\n", "Vcc = 20.# # Supply Voltage(Collector)=20 Volts\n", "Vceq = 10.19# # Voltage Colector-Emitter(Q-point)=10.19 Volts\n", "\n", "rc = (25.*10**-3)/Icq#\n", "rl = (Rc*Rl)/(Rc+Rl)\n", "\n", "Av = rl/rc#\n", "print 'The Voltage Gain Av =%0.2f'%Av\n", "print 'Approx 190'\n", "\n", "Vout = Av*Vin#\n", "print 'The Output Voltage = %0.2f Volts'%Vout\n", "\n", "Pl = (Vout*Vout)/(8*Rl)#\n", "print 'The Load Power = %0.2e Watts'%Pl\n", "print 'i.e Approx 1.88 mWatts'\n", "\n", "Ivd = Vcc/(R1+R2)#\n", "# Ic = Icq\n", "Icc = Ivd+Icq#\n", "\n", "Pcc = Vcc*Icc#\n", "print 'The Dc Input Power = %0.2e Watts'%Pcc\n", "print 'i.e Approx 177.4 mWatts'\n", "\n", "efficiency = ((Pl/Pcc)*100)#\n", "print 'The Efficiency in %% =%0.2f'%efficiency\n", "print 'Approx 1%'\n", "\n", "# Endpoints of AC load line\n", "\n", "icsat = Icq+(Vceq/rl)#\n", "print 'The Y-axis Value of AC Load-line is ic(sat) = %0.2e Amps'%icsat\n", "print 'i.e 24.89 mAmps'\n", "\n", "vceoff = Vceq+Icq*rl#\n", "print 'The X-axis value of AC Load-line is vce(off) = %0.2f Volts'%vceoff\n", "\n", "# For AC load line\n", "\n", "Vce1=[vceoff, Vceq, 0]\n", "Ic1=[0 ,Icq ,icsat]\n", "\n", "#To plot AC load line\n", "\n", "print \"Q(%f,%f)\\n\"%(Vceq,Icq)\n", "plot(Vce1, Ic1)\n", "plot(Vceq,Icq)\n", "plot(0,Icq)\n", "plot(Vceq,0)\n", "plot(0,icsat)\n", "plot(vceoff,0)\n", "xlabel(\"Vce in volt\")\n", "ylabel(\"Ic in Ampere\")\n", "title(\"AC Load-line for Common-Emitter Class A Amplifier Circuit\")\n", "show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example No. 31_3 Page No. 1025" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The Load Power = 6.25 Watts\n", "The DC Input Power = 9.54 Watts\n", "The Efficiency in % =65.51\n", "The Maximum Power Dissipation = 1.80 Watts\n" ] } ], "source": [ "#Calculate the following quantities: Pl, Pcc, Pdmax & percent efficiency\n", "\n", "# Given data\n", "\n", "Vin = 20.# # Input Voltage=20 Volts(p-p)\n", "Vopp = 20.# # Output Voltage(p-p)=20 Volts(p-p)\n", "Vcc = 24.# # Supply Voltage(Collector)=24 Volts\n", "Vop = 10.# # Output Voltage(peak)=10 Volts\n", "Rl = 8.# # Load Resistor=8 Ohms\n", "\n", "Vopp1 = Vopp*Vopp#\n", "Pl = (Vopp1/(8*Rl))#\n", "print 'The Load Power = %0.2f Watts'%Pl\n", "\n", "Icc = ((Vop/Rl)*0.318)#\n", "\n", "Pcc = Vcc*Icc\n", "print 'The DC Input Power = %0.2f Watts'%Pcc\n", "\n", "eff = ((Pl/Pcc)*100)#\n", "print 'The Efficiency in %% =%0.2f'%eff\n", "\n", "Pd = (Vcc*Vcc)/(40*Rl)#\n", "print 'The Maximum Power Dissipation = %0.2f Watts'%Pd" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example No. 31_4 Page No. 1037" ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The Load Power = 39.00 Watts\n", "The DC Input Power = 57.24 Watts\n", "The Efficiency in % = 68.13\n" ] } ], "source": [ "# Calculate the following quantities Pl, Pcc & percent efficiency\n", "\n", "# Given data\n", "\n", "Rl = 8# # Load Resistor=8 Ohms\n", "Vopp = 50# # Output Voltage(p-p)=50 Volts(p-p)\n", "Vcc = 30# # Supply Voltage(Collector)=30 Volts\n", "Vopk = Vopp/2# # Output Voltage(peak)\n", "\n", "Pl = (Vopp*Vopp)/(8*Rl)#\n", "print 'The Load Power = %0.2f Watts'%Pl\n", "\n", "Pcc = Vcc*0.636*(Vopk/Rl)#\n", "print 'The DC Input Power = %0.2f Watts'%Pcc\n", "\n", "efficiency = ((Pl/Pcc)*100)#\n", "print 'The Efficiency in %% = %0.2f'%efficiency" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example No. 31_5 Page No. 1038" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The Resonant Frequency = 2.00e+06 Hertz\n", "i.e 2 MHz\n", "The DC Bias Voltage at Base = 0.80 Volts\n" ] } ], "source": [ "from math import sqrt\n", "# Calculate the fr of LC tank circuit and dc bias voltage at base\n", "\n", "# Given data\n", "\n", "L = 100*10**-6# # Inductor=100 uHenry\n", "C = 63.325*10**-12# # Capacitor=63.325 pFarad\n", "Vin = 1.5# # Input Voltage(peak)=1.5 Volts\n", "Vbe = 0.7# # Voltage Base-Emitter=0.7 Volts\n", "\n", "A = sqrt(L*C)#\n", "fr = 1./(2*3.14*A)#\n", "print 'The Resonant Frequency = %0.2e Hertz'%fr\n", "print 'i.e 2 MHz'\n", "\n", "Vdc = (Vin-Vbe)#\n", "print 'The DC Bias Voltage at Base = %0.2f Volts'%Vdc" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example No. 31_6 Page No. 1039" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The Minimum Base Reisitance Rb to Provide Clamping Action = 500 Ohms\n" ] } ], "source": [ "# Calculate the minimum base reisitance Rb, necessary to provide clamping action\n", "\n", "# Given data\n", "\n", "C = 0.01*10**-6# # Capacitor=0.01 uFarad\n", "fr = 2.*10**6# # Resonant Frequency=2 MHertz\n", "\n", "fin = fr\n", "T = 1/fin\n", "\n", "Rb = 10*T/C\n", "print 'The Minimum Base Reisitance Rb to Provide Clamping Action = %0.f Ohms'%Rb" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example No. 31_7 Page No. 1040" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The Bandwidth = 45120 Hertz\n", "i.e Approx 45 kHz\n" ] } ], "source": [ "# Calculate the Bandwidth\n", "\n", "# Given data\n", "\n", "L = 100*10**-6# # Inductor=100 uHenry\n", "fr = 2*10**6# # Resonant Frequency=2 MHertz\n", "ri = 12.56# # Resistance of Coil=12.56 Ohms\n", "Rp = 100*10**3# # Rp=100 kOhms\n", "\n", "Xl = 2*3.14*fr*L#\n", "Qcoil = Xl/ri#\n", "Ztank = Qcoil*Xl#\n", "\n", "A = Ztank#\n", "B = Rp#\n", "C = (A*B)/(A+B)#\n", "Qckt = C/Xl#\n", "\n", "BW = fr/Qckt#\n", "print 'The Bandwidth = %0.f Hertz'%BW\n", "print 'i.e Approx 45 kHz'" ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.9" } }, "nbformat": 4, "nbformat_minor": 0 }