{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 27 : Diodes and Diodes Applications" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example No. 27_1 Page No. 864" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The Forward Resistance at Point A = 59.09 Ohms\n", "Approx 59.1 Ohms\n", "The Forward Resistance at Point B = 31.11 Ohms\n" ] } ], "source": [ "# For the diode curve, calculate the dc resistance, RF, at points A and B.\n", "\n", "# Given data\n", "\n", "Vf1 = 0.65# # Forward votage 1=0.65 Volts\n", "If1 = 11*10**-3 # Forward current 1=11 mAmps\n", "Vf2 = 0.7# # Forward votage 2=0.7 Volts\n", "If2 = 22.5*10**-3 # Forward current 2=22.5 mAmps\n", "\n", "Rf1 = Vf1/If1#\n", "print 'The Forward Resistance at Point A = %0.2f Ohms'%Rf1\n", "print 'Approx 59.1 Ohms'\n", "\n", "Rf2 = Vf2/If2#\n", "print 'The Forward Resistance at Point B = %0.2f Ohms'%Rf2" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example No. 27_2 Page No. 865" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The Bulk Resistance = 0.40 Ohms\n" ] } ], "source": [ "# A silicon diode has a forward voltage drop of 1.1 V for a forward diode current, If, of 1 A. Calculate the bulk resistance, Rb.\n", "\n", "# Given data\n", "\n", "Vf1 = 1.1# # Forward votage 1=1.1 Volts\n", "If1 = 1. # Forward current 1=1 Amps\n", "Vf2 = 0.7# # Fwd. vltg. 2=0.7 Volts (min working vltg of diode is 0.7 V)\n", "If2 = 0 # Forward current=0 Amps\n", "\n", "delV = Vf1-Vf2# # diff. between max. min. Voltages\n", "delI = If1-If2# # diff. between max. min. Currents\n", "\n", "Rb = delV/delI#\n", "print 'The Bulk Resistance = %0.2f Ohms'%Rb" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example No. 27_3 Page No. 868" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The Load Voltage of First Approximation = 10.00 Volts(dc)\n", "The Load Current of First Approximation = 0.10 Amps\n", "i.e 100 mAmps\n", "The Load Voltage of Second Approximation = 9.30 Volts\n", "The Load Current of Second Approximation = 0.09 Amps\n", "i.e 93 mAmps\n", "The Load Current of Third Approximation = 0.09 Amps\n", "i.e 90.73 mAmps\n", "The Load Voltage of Third Approximation 9.07 Volts\n" ] } ], "source": [ "# Solve for the load voltage and current using the first, second, and third diode approximations.\n", "\n", "# Given data\n", "\n", "Rl = 100.# # Load resistance=100 Ohms\n", "Rb = 2.5# # Resistance=2.5 Ohms\n", "Vin = 10.# # Input voltage=10 Volts\n", "Vb = 0.7# # Voltage=0.7 Volts\n", "\n", "\n", "# Using first approximation\n", "\n", "Vl1 = Vin\n", "print 'The Load Voltage of First Approximation = %0.2f Volts(dc)'%Vl1\n", "\n", "Il1 = Vl1/Rl#\n", "print 'The Load Current of First Approximation = %0.2f Amps'%Il1\n", "print 'i.e 100 mAmps'\n", "\n", "# Using second approximation\n", "\n", "Vl2 = Vin-Vb\n", "print 'The Load Voltage of Second Approximation = %0.2f Volts'%Vl2\n", "\n", "Il2 = Vl2/Rl#\n", "print 'The Load Current of Second Approximation = %0.2f Amps'%Il2\n", "print 'i.e 93 mAmps'\n", "\n", "# Using third approximation\n", "\n", "Il3 = (Vin-Vb)/(Rl+Rb)#\n", "print 'The Load Current of Third Approximation = %0.2f Amps'%Il3\n", "print 'i.e 90.73 mAmps'\n", "\n", "Vl3 = Il3*Rl#\n", "print 'The Load Voltage of Third Approximation %0.2f Volts'%Vl3" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example No. 27_4 Page No. 875" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The Secondary Voltage = 40.00 Volts(ac)\n", "The DC Voltage = 17.76 Volts\n", "The Load Current = 0.18 Amps\n", "The DC Diode Current = 0.18 Amps\n", "The PIV for Diode-1 = 56.56 Volts\n", "The Output Frequency = 60.00 Hertz\n" ] } ], "source": [ "# If the turns ratio Np:Ns is 3:1, calculate the following: Vs, Vdc, Il, Idiode, PIV for D1, and fout.\n", "\n", "# Given data\n", "\n", "Vp = 120.# # Primary voltage=120 Vac\n", "A = 3/1.# # Turns ratio Np:Ns=3:1\n", "B = 1/3.# # Turns ratio Ns:Np=1:3\n", "Rl = 100.# # Load resistance=100 Ohms\n", "fi = 60.# # Input frequency=60\n", "\n", "Vs = B*Vp#\n", "print 'The Secondary Voltage = %0.2f Volts(ac)'%Vs\n", "\n", "Vspk = (Vs*1.414)#\n", "\n", "C = Vspk-0.7#\n", "\n", "Vdc = 0.318*C#\n", "print 'The DC Voltage = %0.2f Volts'%Vdc\n", "\n", "Il = Vdc/Rl#\n", "print 'The Load Current = %0.2f Amps'%Il\n", "\n", "Idiode = Il#\n", "print 'The DC Diode Current = %0.2f Amps'%Idiode\n", "\n", "PIV = Vspk#\n", "print 'The PIV for Diode-1 = %0.2f Volts'%PIV\n", "\n", "fo =fi#\n", "print 'The Output Frequency = %0.2f Hertz'%fo" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example No. 27_5 age No. 878" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The DC Voltage = 17.54 Volts\n", "The Load Current = 0.18 Amps\n", "i.e 175.4 mAmps\n", "The DC Diode Current = 0.09 Amps\n", "i.e 87.7 mAmps\n", "The PIV for Diode-1 = 55.86 Volts\n", "The Output Frequency = 120.00 Hertz\n" ] } ], "source": [ "# If the turns ratio Np:Ns is\u0006 3:1, calculate the following: Vdc, Il, Idiode, PIV for D1, and fout.\n", "\n", "# Given data\n", "\n", "Vp = 120. # Primary voltage=120 Vac\n", "A = 3/1. # Turns ratio Np:Ns = 3:1\n", "B = 1/3. # Turns ratio Ns:Np = 1:3\n", "Rl = 100. # Load resistance=100 Ohms\n", "\n", "Vs = B*Vp#\n", "Vspk = 1.414*(Vs/2)#\n", "Vopk = Vspk-0.7#\n", "\n", "Vdc = 0.636*Vopk#\n", "print 'The DC Voltage = %0.2f Volts'%Vdc\n", "\n", "Il = Vdc/Rl#\n", "print 'The Load Current = %0.2f Amps'%Il\n", "print 'i.e 175.4 mAmps'\n", "\n", "Idiode = Il/2#\n", "print 'The DC Diode Current = %0.2f Amps'%Idiode\n", "print 'i.e 87.7 mAmps'\n", "\n", "C = (Vspk*2)-0.7#\n", "\n", "PIV = C#\n", "print 'The PIV for Diode-1 = %0.2f Volts'%PIV\n", "\n", "f =120#\n", "print 'The Output Frequency = %0.2f Hertz'%f" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example No. 27_6 Page No. 880" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The DC Voltage = 35.08 Volts\n", "The Load Current = 0.35 Amps\n", "i.e 350.8 mAmps\n", "The DC Diode Current = 0.1754 Amps\n", "i.e 175.4 mAmps\n", "The PIV for each Diode = 55.86 Volts\n", "The Output Frequency = 120.00 Hertz\n" ] } ], "source": [ "# If the turns ratio Np:Ns is\u0006 3:1, calculate the following: Vdc, Il, Idiode, PIV for each diode, and fout.\n", "\n", "# Given data\n", "\n", "Vp = 120.# # Primary voltage=120 Vac\n", "A = 3./1# # Turns ratio Np:Ns = 3:1\n", "B = 1./3# # Turns ratio Ns:Np = 1:3\n", "Rl = 100.# # Load resistance=100 Ohms\n", "\n", "Vs = B*Vp#\n", "Vspk = 1.414*(Vs)#\n", "Vopk = Vspk-1.4#\n", "\n", "Vdc = 0.636*Vopk#\n", "print 'The DC Voltage = %0.2f Volts'%Vdc\n", "\n", "Il = Vdc/Rl#\n", "print 'The Load Current = %0.2f Amps'%Il\n", "print 'i.e 350.8 mAmps'\n", "\n", "Idiode = Il/2#\n", "print 'The DC Diode Current = %0.4f Amps'%Idiode\n", "print 'i.e 175.4 mAmps'\n", "\n", "C = Vspk-0.7#\n", "\n", "PIV = C#\n", "print 'The PIV for each Diode = %0.2f Volts'%PIV\n", "\n", "f =120#\n", "print 'The Output Frequency = %0.2f Hertz'%f" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example No. 27_7 Page No. 883" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The Ripple Voltage for Turns Ratio Np:Ns=4:1 = 5.21 Volts(p-p)\n", "Approx 5.21 Volts(p-p)\n", "The DC Voltage for Turns Ratio Np:Ns=4:1 = 39.12 Volts\n", "Approx 39.12 Volts\n", "The Ripple Voltage for Turns Ratio Np:Ns=2:1 = 2.69 Volts(p-p)\n", "Approx 2.69 Volts(p-p)\n", "The DC Voltage for Turns Ratio Np:Ns=2:1 = 40.38 Volts\n", "Approx 40.38 Volts\n" ] } ], "source": [ "from math import exp\n", "# Assume the transformer turns ratio Np:Ns = 4:1 in Fig. 27–21 a and 2:1 in Fig. 27–22a. Compare Vripple and Vdc if C =\u0006 500 uF and Rl =\u0006 250\u0007.\n", " \n", "# Given data\n", "\n", "A1 = 4./1# # Turns ratio Np:Ns=4:1\n", "B1 = 1./4# # Turns ratio Ns:Np=1:4\n", "A2 = 2./1# # Turns ratio Np:Ns=2:1\n", "B2 = 1./2# # Turns ratio Ns:Np=1:2\n", "Vp = 120.# # Primary voltage=120 Vac\n", "Vb = 0.7# # \n", "t1 = 16.67*10**-3# # Charging Time of Capacitor of Turns ratio Np:Ns=4:1=16.67 mSec\n", "t2 = 8.33*10**-3# # Charging Time of Capacitor of Turns ratio Np:Ns=4:1=8.33 mSec\n", "Rl = 250.# # Load resistance=250 Ohms\n", "C = 500.*10**-6# # Capacitor=500 uFarad\n", "\n", "# Calculations for Turns Ratio Np:Ns=4:1\n", "\n", "Vs1 = B1*Vp#\n", "Vspk1 = Vs1*1.414#\n", "Vopk1 = Vspk1 - Vb#\n", "D = -t1/(Rl*C)#\n", "\n", "Vrp1 = Vopk1*(1-exp(D))#\n", "print 'The Ripple Voltage for Turns Ratio Np:Ns=4:1 = %0.2f Volts(p-p)'%Vrp1\n", "print 'Approx 5.21 Volts(p-p)'\n", "\n", "Vdc1 = Vopk1-(Vrp1/2)#\n", "print 'The DC Voltage for Turns Ratio Np:Ns=4:1 = %0.2f Volts'%Vdc1\n", "print 'Approx 39.12 Volts'\n", "\n", "# Calculations for Turns Ratio Np:Ns = 2:1\n", "\n", "Vs2 = B2*Vp#\n", "V2 = Vs2/2#\n", "V2pk2 = V2*1.414\n", "Vopk2 = V2pk2 - Vb#\n", "E = -t2/(Rl*C)#\n", "\n", "Vrp2 = Vopk2*(1-(exp(E)))\n", "print 'The Ripple Voltage for Turns Ratio Np:Ns=2:1 = %0.2f Volts(p-p)'%Vrp2\n", "print 'Approx 2.69 Volts(p-p)'\n", "\n", "Vdc2 = Vopk2-(Vrp2/2)#\n", "print 'The DC Voltage for Turns Ratio Np:Ns=2:1 = %0.2f Volts'%Vdc2\n", "print 'Approx 40.38 Volts'" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example No. 27_8 Page No. 885" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The LED Current = 0.01 Amps\n", "i.e 10 mAmps\n" ] } ], "source": [ "# Calculate the LED current.\n", "\n", "# Given data\n", "\n", "Vin = 24.# # Input voltage=24 Volts\n", "Vled = 2.# # Voltage drop at LED=2 Volts\n", "Rs = 2.2*10**3# # Source Resistance=2.2 kOhms\n", "\n", "Iled = (Vin-Vled)/Rs#\n", "print 'The LED Current = %0.2f Amps'%Iled\n", "print 'i.e 10 mAmps'" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example No. 27_9 Page No. 888" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The Resistance Rs, Required to Provide an LED Current of 25 mA = 880.00 Ohms\n" ] } ], "source": [ "# Calculate the resistance Rs, required to provide an LED current of 25 mA.\n", "\n", "# Given data\n", "\n", "Vin = 24.# # Input voltage=24 Volts\n", "Vled = 2.# # Voltage drop at LED=2 Volts\n", "Iled = 25.*10**-3# # LED Current=25 mAmps\n", "\n", "Rs = (Vin-Vled)/Iled#\n", "print 'The Resistance Rs, Required to Provide an LED Current of 25 mA = %0.2f Ohms'%Rs" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example No. 27_10 Page No. 889" ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The Maximum Rated Current of Zener = 0.10 Amps\n", "i.e 100 mAmps\n" ] } ], "source": [ "# Calculate the maximum rated zener current for a 1 W, 10 V zener.\n", "\n", "# Given data\n", "\n", "Pzm = 1.# # Power rating of zener= 1 Watts\n", "Vz = 10.# # Voltage rating of zener= 10 Volts\n", "\n", "Izm = Pzm/Vz#\n", "print 'The Maximum Rated Current of Zener = %0.2f Amps'%Izm\n", "print 'i.e 100 mAmps'" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example No. 27_11 Page No. 890" ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The Zener Current = 0.01 Amps\n", "i.e 15 mAmps\n" ] } ], "source": [ "# If Vz=10 V, calculate Iz.\n", "\n", "# Given data\n", "\n", "Vin = 25.# # Input voltage=25 Volts\n", "Vz = 10.# # Zener voltage=10 Volts\n", "Rs = 1.*10**3# # Source Resistance=1 kOhms\n", "\n", "Iz = (Vin-Vz)/Rs#\n", "print 'The Zener Current = %0.2f Amps'%Iz\n", "print 'i.e 15 mAmps'" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example No. 27_12 Page No. 891" ] }, { "cell_type": "code", "execution_count": 20, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The Source Current = 0.075 Amps\n", "i.e 75 mAmps\n", "The Load Current = 0.03 Amps\n", "i.e 30 mAmps\n", "The Zener Current = 0.045 Amps\n", "i.e 45 mAmps\n", "The Power Dissipation of Zener = 0.3375 Watts\n", "i.e 337.5 mWatts\n" ] } ], "source": [ "# If R L increases to 250 Ohms, calculate the following: Is, Il, Iz, and Pz.\n", "\n", "# Given data\n", "\n", "Vin = 25# # Input voltage=25 Volts\n", "Vz = 7.5# # Zener voltage=7.5 Volts\n", "Rl = 250# # Load Resistance=250 Ohms\n", "Is = 75*10**-3# # Source current=75 mAmps\n", "\n", "print 'The Source Current = %0.3f Amps'%Is\n", "print 'i.e 75 mAmps'\n", "\n", "Il = Vz/Rl#\n", "print 'The Load Current = %0.2f Amps'%Il\n", "print 'i.e 30 mAmps'\n", "\n", "Iz = Is-Il#\n", "print 'The Zener Current = %0.3f Amps'%Iz\n", "print 'i.e 45 mAmps'\n", "\n", "Pz = Vz*Iz#\n", "print 'The Power Dissipation of Zener = %0.4f Watts'%Pz\n", "print 'i.e 337.5 mWatts'" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example No. 27_13 Page No. 892" ] }, { "cell_type": "code", "execution_count": 21, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The Source Current = 0.06 Amps.\n", "i.e 60 mAmps\n", "The Load Current for 200 ohms Load = 0.05 Amps.\n", "i.e 50 mAmps\n", "The Zener Current for 200 ohms Load = 0.01 Amps.\n", "i.e 10 mAmps\n", "The Load Current for 500 ohms Load = 0.02 Amps.\n", "i.e 20 mAmps\n", "The Zener Current for 500 ohms load = 0.04 Amps.\n", "i.e 40 mAmps\n" ] } ], "source": [ "# Calculate Is, Il and Iz for (a)Rl=200 ohms# (b)Rl=500 ohms.\n", "\n", "# Given data\n", "\n", "Vin = 16.# # Vin=16 Volts given\n", "Vz = 10.# # Vz=10 Volts given\n", "Rs = 100.# # Source Resistance = 100 ohms given\n", "Rla = 200.# # Load Resistance A = 200 ohms given\n", "Rlb = 500.# #Load Resistance B = 500 ohms given\n", "\n", "# For Rl 200 ohms\n", "\n", "Is = (Vin-Vz)/Rs#\n", "print 'The Source Current = %0.2f Amps.'%Is\n", "print 'i.e 60 mAmps'\n", "\n", "Ila = Vz/Rla#\n", "print 'The Load Current for 200 ohms Load = %0.2f Amps.'%Ila\n", "print 'i.e 50 mAmps'\n", "\n", "Iza = Is-Ila\n", "print 'The Zener Current for 200 ohms Load = %0.2f Amps.'%Iza\n", "print 'i.e 10 mAmps'\n", "\n", "# For Rl 500 ohms\n", "\n", "Ilb = Vz/Rlb#\n", "print 'The Load Current for 500 ohms Load = %0.2f Amps.'%Ilb\n", "print 'i.e 20 mAmps'\n", "\n", "Izb = Is-Ilb\n", "print 'The Zener Current for 500 ohms load = %0.2f Amps.'%Izb\n", "print 'i.e 40 mAmps'" ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.9" } }, "nbformat": 4, "nbformat_minor": 0 }