{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 26 : Filters" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example No. 26_1 Page No. 824" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The Cutoff Frequency = 1591.55 Hertz\n", "i.e 1.592 kHz\n", "The Output Voltage = 7.07 Vpp\n", "The Phase angle (Theta z) = -45.00 Degree\n" ] } ], "source": [ "from math import pi,sqrt,atan\n", "# Calculate (a)the cutoff frequency fc# (b)Vout at fc# (c)Theta at fc (Assume Vin = 10 Vpp for all frequencies)\n", "\n", "# Given data\n", "\n", "R = 10.*10**3# # Resistor=10 kOhms\n", "C = 0.01*10**-6# # Capacitor=0.01 uFarad\n", "Vin = 10.# # Input Voltage=10Vpp\n", "# To calculate fc\n", "\n", "fc = 1./(2*pi*R*C)#\n", "print 'The Cutoff Frequency = %0.2f Hertz'%fc\n", "print 'i.e 1.592 kHz'\n", "\n", "# To calculate Vout at fc\n", "\n", "Xc = 1./(2*pi*fc*C)#\n", "\n", "Zt = sqrt((R*R)+(Xc*Xc))#\n", "\n", "Vout = Vin*(Xc/Zt)#\n", "print 'The Output Voltage = %0.2f Vpp'%Vout\n", "\n", "# To calculate Theta\n", "\n", "Theta = atan(-(R/Xc))*180/pi\n", "print 'The Phase angle (Theta z) = %0.2f Degree'%Theta" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example No. 26_2 Page No. 825" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The Cutoff Frequency = 3183.10 Hertz i.e 3.183 kHz\n", "The Output Voltage = 9.54 Vpp\n", "approx 9.52 Volts(p-p)\n", "The Phase angle (Theta z) = -17.44 Degree\n" ] } ], "source": [ "from math import pi,sqrt,atan\n", "# Calculate (a)the cutoff frequency fc# (b)Vout at 1 kHz# (c)Theta at 1 kHz (Assume Vin = 10 Vpp for all frequencies)\n", "\n", "# Given data\n", "\n", "R = 1.*10**3# # Resistor=1 kOhms\n", "L = 50.*10**-3 # Inductor=50 mHenry\n", "Vin = 10.# # Input Voltage=10Vpp\n", "f = 1.*10**3# # Frequency=1 kHz\n", "# To calculate fc\n", "\n", "fc = R/(2*pi*L)#\n", "print 'The Cutoff Frequency = %0.2f Hertz'%fc,\n", "print 'i.e 3.183 kHz'\n", "\n", "# To calculate Vout at fc\n", "\n", "Xl = 2*pi*f*L#\n", "\n", "Zt = sqrt((R*R)+(Xl*Xl))#\n", "\n", "Vout = Vin*(R/Zt)#\n", "print 'The Output Voltage = %0.2f Vpp'%Vout\n", "print 'approx 9.52 Volts(p-p)'\n", "\n", "# To calculate Theta\n", "\n", "Theta = atan(-(Xl/R))*180/pi\n", "print 'The Phase angle (Theta z) = %0.2f Degree'%Theta" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example No. 26_3 Page No. 826" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The Cutoff Frequency for RC High-Pass Filter = 10610.33 Hertz\n", "i.e 10.61 kHz\n", "The Cutoff Frequency for RL High-Pass Filter = 2387.32 Hertz\n", "approx 2.39 kHz\n" ] } ], "source": [ "from math import pi,sqrt\n", "# Calculate the cutoff frequency for (a) the RC high-pass filter# (b) the RL high-pass filter\n", "\n", "# Given data\n", "\n", "R = 1.5*10**3# # Resistor=1.5 kOhms\n", "L = 100.*10**-3 # Inductor=100 mHenry\n", "C = 0.01*10**-6# # Capacitor=0.01 uFarad\n", "\n", "# To calculate fc for RC high-pass filter\n", "\n", "fc = 1./(2*pi*R*C)#\n", "print 'The Cutoff Frequency for RC High-Pass Filter = %0.2f Hertz'%fc\n", "print 'i.e 10.61 kHz'\n", "\n", "# To calculate fc for RL high-pass filter\n", "\n", "fc1 = R/(2*pi*L)#\n", "print 'The Cutoff Frequency for RL High-Pass Filter = %0.2f Hertz'%fc1\n", "print 'approx 2.39 kHz'" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example No. 26_4 Page No. 827" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The Cutoff Frequency for RC High-Pass filter = 159.15 Hertz\n", "i.e 159 Hz\n", "The Cutoff Frequency for RC High-Pass filter = 1591.55 Hertz\n", "i.e 1.59 kHz\n" ] } ], "source": [ "from math import pi\n", "# Calculate the cutoff frequencies fc1 and fc2.\n", "\n", "#Given data\n", "\n", "R1 = 1.*10**3# # Resistor 1=1 kOhms\n", "C1 = 1.*10**-6# # Capacitor 1=1 uFarad\n", "R2 = 100.*10**3# # Resistor 2=100 kOhms\n", "C2 = 0.001*10**-6# # Capacitor 2=0.001 uFarad\n", "\n", "# To calculate fc1 for RC high-pass filter\n", "\n", "fc1 = 1/(2*pi*R1*C1)#\n", "print 'The Cutoff Frequency for RC High-Pass filter = %0.2f Hertz'%fc1\n", "print 'i.e 159 Hz'\n", "\n", "# To calculate fc2 for RC high-pass filter\n", "\n", "fc2 = 1/(2*pi*R2*C2)#\n", "print 'The Cutoff Frequency for RC High-Pass filter = %0.2f Hertz'%fc2\n", "print 'i.e 1.59 kHz'" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example No. 26_5 Page No. 828" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The Notch Frequency for RC Low-Pass filter = 7957.75 Hertz\n", "i.e 7.96 kHz\n", "The Required Value of 2R1 = 2000.00 Ohms\n", "i.e 2 kohms\n", "The Required Value of 2C1 = 2.00e-08 Ohms\n", "0.02 uF\n" ] } ], "source": [ "from math import pi\n", "# Calculate the notch frequency fn if R1 is 1 kOhms\u0004 and C1 is\u0005 0.01 \u0002uF. Also, calculate the required values for 2R1 and 2C1 in the low-pass filter.\n", "\n", "# Given data\n", "\n", "R1 = 1.*10**3# # Resistor 1=1 kOhms\n", "C1 = 0.01*10**-6# # Capacitor 1=0.01 uFarad\n", "\n", "# To calculate Notch frequency fn for RC low-pass filter\n", "\n", "fn = 1/(4*pi*R1*C1)#\n", "print 'The Notch Frequency for RC Low-Pass filter = %0.2f Hertz'%fn\n", "print 'i.e 7.96 kHz'\n", "\n", "A = 2*R1#\n", "print 'The Required Value of 2R1 = %0.2f Ohms'%A\n", "print 'i.e 2 kohms'\n", "\n", "B = 2*C1#\n", "print 'The Required Value of 2C1 = %0.2e Ohms'%B\n", "print '0.02 uF'" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example No. 26_6 Page No. 829" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The Power Gain of Amplifier = 20.00 dB\n" ] } ], "source": [ "from math import log10\n", "# A certain amplifier has an input power of 1 W and an output power of 100 W.Calculate the dB power gain of the amplifier.\n", "\n", "# Given data\n", "\n", "Pi = 1.# # Input power=1 Watts\n", "Po = 100.# # Output power=100 Watts\n", "\n", "N = 10*log10(Po/Pi)#\n", "print 'The Power Gain of Amplifier = %0.2f dB'%N" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example No. 26_7 Page No. 830" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The Attenuation offered by the Filter = -13.01 dB\n" ] } ], "source": [ "from math import log10\n", "# The input power to a filter is 100 mW, and the output power is 5 mW. Calculate the attenuation, in decibels, offered by the filter.\n", "\n", "# Given data\n", "\n", "Pi = 100.*10**-3# # Input power=1 Watts\n", "Po = 5.*10**-3# # Output power=100 Watts\n", "\n", "N = 10*log10(Po/Pi)#\n", "print 'The Attenuation offered by the Filter = %0.2f dB'%N" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example No. 26_8 Page No. 832" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The Attenuation at 0 Hz = 0 dB\n", "The Attenuation at 1.592 kHz = -3.01 dB\n", "The Attenuation at 15.92 kHz = -20.05 dB\n" ] } ], "source": [ "from math import pi,log10,sqrt\n", "# Calculate the attenuation, in decibels, at the following frequencies: (a) 0 Hz# (b) 1.592 kHz# (c) 15.92 kHz. (Assume that Vin is 10 V p-p at all frequencies.)\n", "\n", "# Given data\n", "\n", "f1 = 0# # Frequency 1=0 Hz\n", "f2 = 1.592*10**3# # Frequency 2=1.592 kHz (cutoff frequency)\n", "f3 = 15.92*10**3# # Frequency 3=15.92 kHz\n", "Vi = 10.# # Voltage input=10 Volts(p-p)\n", "R = 10.*10**3# # Resistor 1=10 kOhms\n", "C = 0.01*10**-6# # Capacitor 1=0.01 uFarad \n", "\n", "Vo1 = Vi#\n", "Vo2 = 0.707*Vi#\n", "\n", "# At 0 Hz\n", "\n", "N1 = 20*log10(Vo1/Vi)#\n", "print 'The Attenuation at 0 Hz = %0.f dB'%N1\n", "\n", "#At 1.592 kHz (cutoff frequency)\n", "\n", "N2 = 20*log10(Vo2/Vi)#\n", "print 'The Attenuation at 1.592 kHz = %0.2f dB'%N2\n", "\n", "# At 15.92 kHz\n", "\n", "Xc = 1./(2*pi*f3*C)#\n", "\n", "A = R*R#\n", "B = Xc*Xc#\n", "\n", "Zt = sqrt (A+B)#\n", "\n", "N3 = 20*log10(Xc/Zt)#\n", "print 'The Attenuation at 15.92 kHz = %0.2f dB'%N3" ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.9" } }, "nbformat": 4, "nbformat_minor": 0 }