{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 22 : RC and L/R Time Constants" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example No. 22_1 Page No. 674" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The Time Constant = 0.20 Seconds\n" ] } ], "source": [ "# What is the time constant of a 20-H coil having 100 Ohms\u0002 of series resistance?\n", "\n", "# Given data\n", "\n", "L = 20.# # Inductor=20 Henry\n", "R = 100.# # Resistor=100 Ohms\n", "\n", "T = L/R#\n", "print 'The Time Constant = %0.2f Seconds'%T" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example No. 22_2 Page No. 674" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Since 0.2 sec is one time constant, I is 63% of 100 mA\n", "The current at 0.2 sec time constant = 0.06 A\n", "After 1 sec the current reaches its steady state value of 100 mAmps \n" ] } ], "source": [ "# An applied dc voltage of 10 V will produce a steady-state current of 100 mA in the 100-Ohms coil. How much is the current after 0.2 s? After 1 s?\n", "\n", "# Given data\n", "\n", "L = 20.# # Inductor=20 Henry\n", "R = 100.# # Resistor=100 Ohms\n", "I = 100.*10**-3# # Steady-state current=100 mAmps\n", "\n", "print 'Since 0.2 sec is one time constant, I is 63% of 100 mA'\n", "I1 = 0.63*I#\n", "print 'The current at 0.2 sec time constant = %0.2f A'%I1\n", "\n", "print 'After 1 sec the current reaches its steady state value of 100 mAmps '" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example No. 22_3 Page No. 675" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The Time Constant = 2.00e-05 Seconds\n", "i.e 20 us\n" ] } ], "source": [ "# If a 1-M Ohms\u0002 R is added in series with the coil, how much will the time constant be for the higher resistance RL circuit?\n", "\n", "# Given data\n", "\n", "L = 20.# # Inductor=20 Henry\n", "R = 1.*10**6# # Resistor=1 MOhms\n", "\n", "T = L/R#\n", "print 'The Time Constant = %0.2e Seconds'%T\n", "print 'i.e 20 us'" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example No. 22_4 Page No. 676" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The Time Constant = 1.00e-02 Seconds\n" ] } ], "source": [ "# What is the time constant of a 0.01-u\u0003F capacitor in series with a 1-M\u0002 Ohmsresistance?\n", "\n", "# Given data\n", "\n", "C = 0.01*10**-6# # Capacitor=0.01 uFarad\n", "R = 1*10**6# # Resistor=1 MOhms\n", "\n", "T = C*R#\n", "print 'The Time Constant = %0.2e Seconds'%T" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example No. 22_5 Page No. 677" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The Time Constant = 1.00e-02 Seconds\n", "Since 0.01 sec is one time constant, the voltage across C then is 63% of 300 V,\n", "The Capacitor voltage at 0.01 Sec = 189.00 Volts\n", "After 5 time constants or 0.05 Sec Capacitor voltage = 300.00 volts \n", "After 2 hours or 2 days the C will be still charged to 300 V if the supply is still connected\n" ] } ], "source": [ "# With a dc voltage of 300 V applied, how much is the voltage across C in Example 22–4 after 0.01 s of charging? After 0.05 s? After 2 hours? After 2 days?\n", "\n", "# Given data\n", "\n", "C = 0.01*10**-6# # Capacitor=0.01 uFarad\n", "R = 1.*10**6# # Resistor=1 MOhms\n", "V = 300.# # Applied DC=300 Volts\n", "\n", "T = C*R#\n", "print 'The Time Constant = %0.2e Seconds'%T\n", "\n", "print 'Since 0.01 sec is one time constant, the voltage across C then is 63% of 300 V,'\n", "\n", "T1 = 0.63*V#\n", "print 'The Capacitor voltage at 0.01 Sec = %0.2f Volts'%T1\n", "\n", "T2 = V\n", "print 'After 5 time constants or 0.05 Sec Capacitor voltage = %0.2f volts '%V\n", "\n", "print 'After 2 hours or 2 days the C will be still charged to 300 V if the supply is still connected'" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example No. 22_6 Page No. 678" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "In one time constant, C discharges to 37% of its initial voltage\n", "The Capacitor voltage after 0.01 sec start of discharge = 1110 volts\n" ] } ], "source": [ "# If the capacitor is allowed to charge to 300 V and then discharged, how much is the capacitor voltage 0.01 s after the start of discharge? The series resistance is the same on discharge as on charge.\n", "\n", "# Given data\n", "\n", "C = 0.01*10**-6# # Capacitor=0.01 uFarad\n", "R = 1.*10**6# # Resistor=1 MOhms\n", "V = 3000# # Applied DC=300 Volts\n", "\n", "print 'In one time constant, C discharges to 37% of its initial voltage'\n", "\n", "V1 = 0.37*V#\n", "print 'The Capacitor voltage after 0.01 sec start of discharge = %0.f volts'%V1" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example No. 22_7 Page No. 680" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "In one time constant, C discharges to 37% of its initial voltage\n", "The Capacitor voltage after 0.01 sec start of discharge = 74 volts\n" ] } ], "source": [ "# Assume the capacitor is discharging after being charged to 200 V. How much will the voltage across C be 0.01 s after the beginning of discharge? The series resistance is the same on discharge as on charge.\n", "\n", "# Given data\n", "\n", "C = 0.01*10**-6# # Capacitor=0.01 uFarad\n", "R = 1*10**6# # Resistor=1 MOhms\n", "V = 200# # Capacitor voltage=200 Volts\n", "\n", "print 'In one time constant, C discharges to 37% of its initial voltage'\n", "\n", "V1 = 0.37*V#\n", "print 'The Capacitor voltage after 0.01 sec start of discharge = %0.f volts'%V1" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example No. 22_8 Page No. 681" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The Time Constant = 2.00e-02 Seconds\n" ] } ], "source": [ "# If a 1-M Ohms resistance is added in series with the capacitor 0.01-u\u0003F and resistor 1-M Ohms in, how much will the time constant be?\n", "\n", "# Given data\n", "\n", "C = 0.01*10**-6# # Capacitor=0.01 uFarad\n", "R = 2*10**6# # Resistor= 2 MOhms \n", "\n", "T = C*R#\n", "print 'The Time Constant = %0.2e Seconds'%T" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example No. 22_9 Page No. 682" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The Value of Vr = 5.42 Volts\n" ] } ], "source": [ "from math import log10\n", "# An RC circuit has a time constant of 3 s. The capacitor is charged to 40 V. Then C is discharged. After 6 s of discharge, how much is Vr?\n", "\n", "# Given data\n", "\n", "RC = 3# # RC time constant=3 Sec\n", "t = 6# # Discharge time=6 Sec\n", "Vc = 40# # Capacitor voltage=40 Volts\n", "\n", "A = t/RC# # constant factor\n", "B = log10(Vc)#\n", "\n", "Vr = 10**(B-(A*0.434))#\n", "print 'The Value of Vr = %0.2f Volts'%Vr" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example No. 22_10 Page No. 682" ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The Time Constant = 5.00e-04 Seconds\n", "i.e 0.5*10**-3 Sec OR 0.5 mSec\n", "Time required to charge Capacitor upto 24 Volts = 5.49e-04 Seconds\n", "i.e approx 0.549*10**-3 Sec OR 0.549 mSec\n" ] } ], "source": [ "from math import log10\n", "# An RC circuit has an R of 10 k Ohms\u0002 and a C of 0.05 u\u0003F. The applied voltage for charging is 36 V. (a) Calculate the time constant. (b) How long will it take C to charge to 24 V?\n", "\n", "C = 0.05*10**-6# # Capacitor=0.05 uFarad\n", "R = 10*10**3# # Resistor=10 kOhms\n", "V = 36# # Applied voltage=36 Volts\n", "v = 12# # Voltage drops from 36 to 12 Volts\n", "A = 2.3# # Specific factor\n", "\n", "T = C*R#\n", "print 'The Time Constant = %0.2e Seconds'%T\n", "print 'i.e 0.5*10**-3 Sec OR 0.5 mSec'\n", "\n", "t = A*T*log10(V/v)#\n", "print 'Time required to charge Capacitor upto 24 Volts = %0.2e Seconds'%t\n", "print 'i.e approx 0.549*10**-3 Sec OR 0.549 mSec'" ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.9" } }, "nbformat": 4, "nbformat_minor": 0 }