{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 20 : Inductive Reactance" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example No. 20_1 Page No. 625" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The Inductive Reactance = 15709.22 Ohms\n" ] } ], "source": [ "from math import pi\n", "# How much is Xl of a 6-mH L at 41.67 kHz?\n", "\n", "# Given data\n", "\n", "f = 41.67*10**3# # Frequency=41.67 kHz\n", "L = 6.*10**-3# # Inductor=6 mH\n", "\n", "Xl = 20*pi*f*L#\n", "print 'The Inductive Reactance = %0.2f Ohms'%Xl" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example No. 20_2 Page No. 627" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The Inductive Reactance = 37680 Ohms\n", "The Inductive Reactance = 1884 Ohms\n" ] } ], "source": [ "from math import pi\n", "# Calculate the Xl of (a) a 10-H L at 60 Hz and (b) a 5-H L at 60 Hz.\n", "\n", "# Given data\n", "\n", "f = 60.# # Frequency=60 Hz\n", "L1 = 10.# # Inductor 1=10 H\n", "L2 = 5.# # Inductor 2=5 H\n", "pi = 3.14\n", "\n", "Xl1 = 20*pi*f*L1#\n", "print 'The Inductive Reactance = %0.f Ohms'%Xl1\n", "\n", "Xl2 = 2*pi*f*L2#\n", "print 'The Inductive Reactance = %0.f Ohms'%Xl2" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example No. 20_3 Page No. 629" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The Inductive Reactance = 1570 Ohms\n", "The Inductive Reactance = 15700 Ohms\n" ] } ], "source": [ "from math import pi\n", "# Calculate the Xl of a 250-u\u0003H coil at (a) 1 MHz and (b) 10 MHz.\n", "\n", "# Given data\n", "\n", "f1 = 1.*10**6# # Frequency1=1 MHz\n", "f2 = 10.0*10**6# # Frequency2=10 MHz\n", "L = 250.0*10**-6# # Inductor=250 uH\n", "pi = 3.14#\n", "\n", "# For 1 Mhz\n", "\n", "Xl1 = 2*pi*f1*L#\n", "print 'The Inductive Reactance = %0.f Ohms'%Xl1\n", "\n", "# For 10 Mhz\n", "\n", "Xl2 = 2*pi*f2*L#\n", "print 'The Inductive Reactance = %0.f Ohms'%Xl2" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example No. 20_4 Page No. 631" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The Inductive Reactance = 6280 Ohms\n" ] } ], "source": [ "# A coil with negligible resistance has 62.8 V across it with 0.01 A of current. How much is Xl?\n", "\n", "# Given data\n", "\n", "Vl = 62.8# # Voltage across coil=62.8 Volts\n", "Il = 0.01# # Current in coil=0.01 Amps\n", "\n", "Xl = Vl/Il#\n", "print 'The Inductive Reactance = %0.f Ohms'%Xl" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example No. 20_5 Page No. 632" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The value of Inductor = 1.00 Henry\n" ] } ], "source": [ "from math import pi\n", "# Calculate L of the coil when the frequency is 1000 Hz.\n", "\n", "# Given data\n", "\n", "Xl = 6280.# # Inductive reactance=6280 Ohms\n", "f = 1000.# # Frequency=1000 Hz\n", "pi = 3.14#\n", "\n", "L = Xl/(2.*pi*f)#\n", "print'The value of Inductor = %0.2f Henry'% L" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example No. 20_6 Page No. 633" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The value of Inductor = 2.08e-04 Henry\n", "i.e Approx 208.8*10**-6 OR 208.8 uH\n" ] } ], "source": [ "from math import pi\n", "# Calculate L of a coil that has 15,700 Ohms\u0003 of Xl at 12 MHz.\n", "\n", "# Given data\n", "\n", "Xl = 15700.# # Inductive reactance=15700 Ohms\n", "f = 12.0*10**6# # Frequency=12 MHz\n", "pi = 3.14#\n", "\n", "L = Xl/(2*pi*f)#\n", "print'The value of Inductor = %0.2e Henry'% L\n", "print 'i.e Approx 208.8*10**-6 OR 208.8 uH'" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example No. 20_7 Page No. 634" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The Frequency = 159.15 Hertz\n" ] } ], "source": [ "from math import pi\n", "# At what frequency will an inductance of 1 H have a reactance of 1000 \u0003?\n", "\n", "# Given data\n", "\n", "Xl = 1000.# # Inductive reactance=1000 Ohms\n", "L = 1.# # Inductor=1 H\n", "\n", "f = Xl/(2.*pi*L)#\n", "print 'The Frequency = %0.2f Hertz'%f" ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.9" } }, "nbformat": 4, "nbformat_minor": 0 }