{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter17 : Capacitive Reactance" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example No. 17_1 Page No. 530" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The Capacitive Reactance = 1136.82 Ohms\n", "approx 1140 Ohms\n", "The Capacitive Reactance = 113.68 Ohms\n", "approx 114 Ohms\n" ] } ], "source": [ "from math import pi\n", "# How much is Xc for (a) 0.1 u\u0003F of C at 1400 Hz? (b) 1 u\u0003F of C at the same frequency?\n", "\n", "# Given data\n", "\n", "f = 1400# # Frequency=1400 Hz\n", "C1 = 0.1*10**-6# # Cap1=0.1 uF\n", "C2 = 1*10**-6# # Cap2=1 uF\n", "\n", "Xc1 = 1./(2.*pi*f*C1)#\n", "print 'The Capacitive Reactance = %0.2f Ohms'%Xc1\n", "print 'approx 1140 Ohms'\n", "\n", "Xc2 = 1./(2.*pi*f*C2)#\n", "print 'The Capacitive Reactance = %0.2f Ohms'%Xc2\n", "print 'approx 114 Ohms'" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example No. 17_2 Page No. 530" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The Capacitive Reactance = 3386.28 Ohms\n", "approx 3388 Ohms\n", "The Capacitive Reactance = 338.63 Ohms\n" ] } ], "source": [ "from math import pi\n", "#How much is the Xc of a 47-pF value of C at (a) 1 MHz? (b) 10 MHz?\n", "\n", "# Given data\n", "\n", "f1 = 1*10**6# # Frequency1=1 MHz\n", "f2 = 10*10**6# # Frequency2=10 MHz\n", "C = 47*10**-12# # Cap=47 pF\n", "\n", "# For 1 MHz\n", "\n", "Xc1 = 1./(2.*pi*f1*C)#\n", "print 'The Capacitive Reactance = %0.2f Ohms'%Xc1\n", "print 'approx 3388 Ohms'\n", "\n", "# For 10 MHz\n", "\n", "Xc2 = 1./(2.*pi*f2*C)#\n", "print 'The Capacitive Reactance = %0.2f Ohms'%Xc2" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example No. 17_3 Page No. 532" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The Capacitance = 4.68e-10 Farads\n", "approx 468 pF\n" ] } ], "source": [ "from math import pi\n", "# What C is needed for Xc of 100 Ohms\u0003 at 3.4 MHz?\n", "\n", "# Given data\n", "\n", "f = 3.4*10**6# # Frequency=3.4 MHz\n", "Xc = 100# # Capacitive Reactance=100 Ohms\n", "\n", "C = 1./(2.*pi*f*Xc)#\n", "print 'The Capacitance = %0.2e Farads'%C\n", "print 'approx 468 pF'" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example No. 17_4 Page No. 533" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The Frequency = 159.15 Hertz\n", "approx 159 Hz\n" ] } ], "source": [ "from math import pi\n", "# At what frequency will a 10 uF capacitor have Xc equal to 100 Ohms\u0003?\n", "\n", "# Given data\n", "\n", "Xc = 100# # Capacitive Reactance=100 Ohms\n", "C = 10*10**-6# # Cap=10 uF\n", "\n", "f = 1./(2.*pi*C*Xc)#\n", "print 'The Frequency = %0.2f Hertz'%f\n", "print 'approx 159 Hz'" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example No. 17_5 Page No. 534" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The Instantaneous Value of Charging Current ic produced = 3.00e-04 Amps\n", "i.e 300 uAmps\n" ] } ], "source": [ "# Calculate the instantaneous value of charging current ic produced by a 6 u\u0003F C when its potential difference is increased by 50 V in 1 s.\n", "\n", "# Given data\n", "\n", "C = 6*10**-6# # Cap=6 uF\n", "dv = 50.# # differential voltage increased by 50 Volts\n", "dt = 1.# # differectial time is 1 sec\n", "\n", "ic = C*(dv/dt)#\n", "print 'The Instantaneous Value of Charging Current ic produced = %0.2e Amps'%ic\n", "print 'i.e 300 uAmps'" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example No. 17_6 Page No. 535" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The Instantaneous Value of Discharging Current ic produced = -3.00e-04 Amps\n", "i.e -300 uAmps\n" ] } ], "source": [ "# Calculate the instantaneous value of charging current ic produced by a 6 u\u0003F C when its potential difference is decreased by 50 V in 1 s.\n", "\n", "# Given data\n", "\n", "C = 6*10**-6# # Cap=6 uF\n", "dv = -50.# # differential voltage decreased by 50 Volts\n", "dt = 1.# # differectial time is 1 sec\n", "\n", "ic = C*(dv/dt)#\n", "print 'The Instantaneous Value of Discharging Current ic produced = %0.2e Amps'%ic\n", "print 'i.e -300 uAmps'" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example No. 17_7 Page No. 536" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The Instantaneous Value of ic produced = 1.25e-02 Amps\n", "12500 uAmps or 12.5 mAmps\n" ] } ], "source": [ "# Calculate ic produced by a 250-pF capacitor for a change of 50 V in 1 u\u0002s.\n", "\n", "# Given data\n", "\n", "C = 250*10**-12# # Cap=250 pF\n", "dv = 50.# # differential voltage increased by 50 Volts\n", "dt = 1.*10**-6# # differectial time is 1 usec\n", "\n", "ic = C*(dv/dt)#\n", "print 'The Instantaneous Value of ic produced = %0.2e Amps'%ic\n", "print '12500 uAmps or 12.5 mAmps'" ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.9" } }, "nbformat": 4, "nbformat_minor": 0 }