{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter14 : Electromagnetism" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example No. 14_1 Page No. 421" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The Amps-Turn (A.t) of Magneto-Motive Force (mmf) = 10.00 A.t\n" ] } ], "source": [ "# Calculate the ampere-turns of mmf for a coil with 2000 turns and a 5-mA current.\n", "\n", "# Given data\n", "\n", "I = 5*10**-3# # Current=5 mAmps\n", "N = 2000# # No. of Turns=2000\n", "\n", "mmf = I*N#\n", "print 'The Amps-Turn (A.t) of Magneto-Motive Force (mmf) = %0.2f A.t'%mmf" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example No. 14_2 Page No. 421" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The Turns necessary are : 150\n" ] } ], "source": [ "# A coil with 4 A is to provide a magnetizing force of 600 A\u0002 t. How many turns are necessary?\n", "\n", "# Given data\n", "\n", "I = 4# # Current=4 Amps\n", "mmf = 600# # Magnetizing Force=600 A.t\n", "\n", "N = mmf/I#\n", "print 'The Turns necessary are : ',N" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example No. 14_3 Page No. 424" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The Current necessary = 2 Amps\n" ] } ], "source": [ "# A coil with 400 turns must provide 800 A\u0002 t of magnetizing force. How much current is necessary?\n", "\n", "# Given data\n", "\n", "mmf = 800# # Magnetizing Force=800 A.t\n", "N = 400# # No. of Turns=400\n", "\n", "I = mmf/N#\n", "print 'The Current necessary = %0.f Amps'%I" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example No. 14_4 Page No. 426" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The Current necessary when a wire is connected to 6-V Battery = 2 Amps\n", "The Amps-Turn (A.t) of Magneto-Motive Force (mmf) = 500 A.t\n" ] } ], "source": [ "# The wire in a solenoid of 250 turns has a resistance of 3 Ohms. (a)How much is the current when the coil is connected to a 6-V battery? (b) Calculate the ampereturns of mmf.\n", "\n", "# Given data\n", "\n", "V = 6# # Voltage=6 Volts\n", "R = 3# # Resistance=3 Ohms\n", "N = 250# # No. of Turns=250\n", "\n", "I = V/R#\n", "print 'The Current necessary when a wire is connected to 6-V Battery = %0.f Amps'%I\n", "\n", "mmf = I*N#\n", "print 'The Amps-Turn (A.t) of Magneto-Motive Force (mmf) = %0.f A.t'%mmf" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example No. 14_5 Page No. 426" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The Absolute u as B/H in CGS = 500 (G/Oe)\n", "The Absolute u as B/H in SI = 6.300e-04 (T/(A.t/m))\n", "i.e 630*10**-6 T/(A.t/m)\n" ] } ], "source": [ "# A magnetic material has a \u0003ur of 500. Calculate the absolute u\u0003 as B/H (a) in CGS units and (b) in SI units.\n", "\n", "# Given data\n", "\n", "ur = 500# # ur=500\n", "uoa = 1# # uo for CGS Units=1\n", "uob = 1.26*10**-6# # uo for SI Units=1.26 u\n", "\n", "ua = ur*uoa#\n", "print 'The Absolute u as B/H in CGS = %0.f (G/Oe)'%ua\n", "\n", "ub = ur*uob#\n", "print 'The Absolute u as B/H in SI = %0.3e (T/(A.t/m))'%ub\n", "print 'i.e 630*10**-6 T/(A.t/m)'" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example No. 14_6 Page No. 427" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The Flux density = 0.63 Tesla\n" ] } ], "source": [ "# u = 630*10**-\u00056 in SI units, calculate the flux density B that will be produced by the field intensity H equal to 1000 A.t/m.\n", "\n", "# Given data\n", "\n", "u = 630*10**-6# # u=630 micro T/(A.t/m)\n", "H = 1000# # H=1000 A.t/m\n", "\n", "B = u*H#\n", "print 'The Flux density = %0.2f Tesla'%B" ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.9" } }, "nbformat": 4, "nbformat_minor": 0 }