{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 5 : Parallel Circuits" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example No. 5_1 Page No. 149" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The Current Resistor R1 = 0.015 Amps\n", "i.e 15 mAmps\n", "The Current Resistor R2 = 0.03 Amps\n", "i.e 25 mAmps\n" ] } ], "source": [ "# Solve for branch currents I1 and I2.\n", "\n", "R1 = 1.*10**3# # Resistor 1=1*10**3 Ohms\n", "R2 = 600.# # Resistor 2=600 Ohms\n", "Va = 15.# # Applied Voltage=15 Volts\n", "\n", "I1 = Va/R1#\n", "print 'The Current Resistor R1 = %0.3f Amps'%I1\n", "print 'i.e 15 mAmps'\n", "\n", "I2 = Va/R2#\n", "print 'The Current Resistor R2 = %0.2f Amps'%I2\n", "print 'i.e 25 mAmps'" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example No. 5_2 Page No. 150" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The Total Current in the Mainline = 11 Amps\n" ] } ], "source": [ "# An R1 of 20 Ohms\u0002, an R2 of 40 Ohms\u0002, and an R3 of 60 Ohms\u0002 are connected in parallel across the 120-V power line. Using Kirchhoff’s current law, determine the total current It.\n", "\n", "# Given data\n", "\n", "R1 = 20.# # Resistor 1=20 Ohms\n", "R2 = 40.# # Resistor 2=40 Ohms\n", "R3 = 60.# # Resistor 3=60 Ohms\n", "Va = 120.# # Applied Voltage=120 Volts\n", "\n", "I1 = Va/R1#\n", "I2 = Va/R2#\n", "I3 = Va/R3#\n", "\n", "It = I1+I2+I3\n", "print 'The Total Current in the Mainline = %0.f Amps'%It" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example No. 5_3 Page No. 151" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The Current in R2 branch = 5 Amps\n" ] } ], "source": [ "# Two branches R1 and R2 across the 120-V power line draw a total line current It of 15 A. The R1 branch takes 10 A. How much is the current I2 in the R2 branch?\n", "\n", "# Given data\n", "\n", "I1 = 10# # Current in R1 branch=10 Amps\n", "It = 15# # Total Current=15 Amps\n", "\n", "I2 = It-I1#\n", "print 'The Current in R2 branch = %0.f Amps'%I2" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example No. 5_4 Page No. 152" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The Total Current = 0.6008 Amps\n", "i.e 600.8 mAmps\n" ] } ], "source": [ "# Three parallel branch currents are 0.1 A, 500 mA, and 800 \u0002A. Using Kirchhoff’s current law, calculate It.\n", "\n", "\n", "# Given data\n", "\n", "I1 = 0.1# # Branch Current 1=0.1 Amps\n", "I2 = 0.5# # Branch Current 2=500m Amps\n", "I3 = 800*10**-6# # Branch Current 3=800u Amps\n", "\n", "It = I1+I2+I3#\n", "print 'The Total Current = %0.4f Amps'%It\n", "print 'i.e 600.8 mAmps'" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example No. 5_5 Page No. 153" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The Equivalent Resistance Req = 9 Ohms\n" ] } ], "source": [ "# Two branches, each with a 5-A current, are connected across a 90-V source. How much is the equivalent resistance Req?\n", "\n", "# Given data\n", "\n", "I1 = 5# # Branch Current 1=5 Amps\n", "I2 = 5# # Branch Current 2=5 Amps\n", "Va = 90# # Applied Voltage=90 Volts\n", "\n", "It = I1+I2#\n", "Req = Va/It#\n", "print 'The Equivalent Resistance Req = %0.f Ohms'%Req" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example No. 5_6 Page No. 158" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The Value of Rx = 60.00 Ohms\n" ] } ], "source": [ "# What Rx in parallel with 40 Ohms\u0002 will provide an Req of 24 Ohms?\n", "\n", "# Given data\n", "\n", "R = 40.0# # Resistance=40 Ohms\n", "Req = 24.0# # Equivqlent Resistance=24 Ohms\n", "\n", "Rx = (R*Req)/(R-Req)#\n", "print 'The Value of Rx = %0.2f Ohms'%Rx" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example No. 5_7 Page No. 158" ] }, { "cell_type": "code", "execution_count": 16, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The value of R = 50000 Ohms\n", "i.e 50 kohms\n" ] } ], "source": [ "# What R in parallel with 50 kOhms will provide an Req of 25 kOhms\u0002\n", "\n", "# Given data\n", "\n", "R1 = 50*10**3# # R1=50k Ohms\n", "Req = 25*10**3# # Req=25k Ohms\n", "\n", "R = (R1*Req)/(R1-Req)#\n", "print 'The value of R = %0.f Ohms'%R\n", "print 'i.e 50 kohms'" ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.9" } }, "nbformat": 4, "nbformat_minor": 0 }