{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 33 : Operational Amplifiers" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example No. 33_1 Page No. 1072" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The Differential Voltage Gain =143.00\n", "The Ac Output Voltage = 1.43 Volts(p-p)\n" ] } ], "source": [ "# Calculate the differential voltage gain, Ad, and the ac output voltage, Vout.\n", "\n", "# Given data\n", "\n", "Vin = 10*10**-3# # Input voltage=10 mVolts(p-p)\n", "Rc = 10*10**3# # Collector resistance=10 kOhms\n", "Ie = 715.*10**-6# # Emitter current=715 uAmps\n", "\n", "re = (25*10**-3)/Ie#\n", "\n", "Ad = Rc/(2*re)#\n", "print 'The Differential Voltage Gain =%0.2f'%Ad\n", "\n", "Av = Ad\n", "\n", "Vo = Av*Vin#\n", "print 'The Ac Output Voltage = %0.2f Volts(p-p)'%Vo" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example No. 33_2 Page No. 1073" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The Common-Mode Voltage Gain Acm = 0.50\n", "The Commom-Mode Rejection Ratio = 49.12 dB\n" ] } ], "source": [ "from math import log10\n", "# calculate the common-mode voltage gain, ACM, and the CMRR (dB).\n", "\n", "# Given data\n", "\n", "Rc = 10*10**3# # Collector resistance=10 kOhms\n", "Re = 10.*10**3# # Emitter resistance=10 kOhms\n", "Ad = 142.86# # Differential gain=142.86\n", "\n", "Acm = Rc/(2*Re)#\n", "print 'The Common-Mode Voltage Gain Acm = %0.2f'%Acm\n", "\n", "CMRR = 20*log10(Ad/Acm)#\n", "print 'The Commom-Mode Rejection Ratio = %0.2f dB'%CMRR" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example No. 33_3 Page No. 1074" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The Output Frequency = 7.96e+04 Hertz\n", "i.e 79.6 kHz\n" ] } ], "source": [ "from math import pi\n", "# Calculate fmax for an op amp that has an Sr of 5 V/u\u0002s and a peak output voltage of 10 V.\n", "\n", "# Given data\n", "\n", "Vpk = 10.# # Peak output voltage=10 Volts\n", "Sr = 5./10**-6# # Slew rate=5 V/us\n", "\n", "\n", "fo = Sr/(2*pi*Vpk)#\n", "print 'The Output Frequency = %0.2e Hertz'%fo\n", "print 'i.e 79.6 kHz'" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example No. 33_4 Page No. 1075" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The Closed-Loop Voltage Gain Acl =-10.00\n", "The Output Voltage = 10.00 Volts(p-p)\n", "The -ve sign indicates that input and output voltages are 180° out-of-phase\n" ] } ], "source": [ "# calculate the closed-loop voltage gain, Acl, and the output voltage, Vout.\n", "\n", "# Given data\n", "\n", "Vin = 1.# # Input voltage=1 Volts(p-p)\n", "Rf = 10.*10**3# # Feedback resistance=10 kOhms\n", "Ri = 1.*10**3# # Input resistance=1 kOhms\n", "\n", "Acl = -(Rf/Ri)#\n", "print 'The Closed-Loop Voltage Gain Acl =%0.2f'%Acl\n", "\n", "Vo = -Vin*Acl#\n", "print 'The Output Voltage = %0.2f Volts(p-p)'%Vo\n", "print 'The -ve sign indicates that input and output voltages are 180° out-of-phase'" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example No. 33_5 Page No. 1076" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The Differential Input Voltage = 1.00e-04 Volts(p-p)\n", "i.e 100 uVolts(p-p)\n" ] } ], "source": [ "#If Avol equals 100,000, calculate the value of Vid.\n", "\n", "# Given data\n", "\n", "Avol = 100000.# # Open loop voltage gain=100,000\n", "Vo = 10.# # Output voltage=10 Volts(p-p)\n", "\n", "Vid = Vo/Avol#\n", "print 'The Differential Input Voltage = %0.2e Volts(p-p)'%Vid\n", "print 'i.e 100 uVolts(p-p)'" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example No. 33_6 Page No. 1078" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The Input Impedence = 1.00e+03 Ohms\n", "i.e 1 kOhms\n", "The Closed Loop Output Impedence = 0.01 Ohms\n" ] } ], "source": [ "# calculate Zin and Zout(CL). Assume AVOL is\u0004 100,000 and Zout(OL) is\u0004 75 Ohms.\n", "\n", "# Given data\n", "\n", "Avol = 100000.# # Open loop voltage gain=100,000\n", "Rf = 10.*10**3# # Feedback resistance=10 kOhms\n", "Ri = 1.*10**3# # Input resistance=1 kOhms\n", "Zool = 75.# # Output impedence (open-loop)=75 Ohms\n", "\n", "Zi = Ri#\n", "print 'The Input Impedence = %0.2e Ohms'%Zi\n", "print 'i.e 1 kOhms'\n", "\n", "Beta = Ri/(Ri+Rf)#\n", "\n", "A = Avol*Beta#\n", "\n", "Zocl = Zool/(1+A)#\n", "print 'The Closed Loop Output Impedence = %0.2f Ohms'%Zocl" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example No. 33_7 Page No. 1083" ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The Output Frequency = 1.59e+04 Hertz\n", "i.e 15.915 kHz\n" ] } ], "source": [ "from math import pi\n", "# Calculate the 5-V power bandwidth.\n", "\n", "# Given data\n", "\n", "Vo = 10.# # Output voltage=10 Volts(p-p)\n", "Sr = 0.5/10**-6# # Slew rate=0.5 V/us\n", "\n", "Vpk = Vo/2#\n", "\n", "fo = Sr/(2*pi*Vpk)#\n", "print 'The Output Frequency = %0.2e Hertz'%fo\n", "print 'i.e 15.915 kHz'" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example No. 33_8 Page No. 1085" ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The Closed-Loop Voltage Gain Acl =11.00\n", "The Output Voltage = 11.00 Volts(p-p)\n" ] } ], "source": [ "# Calculate the closed-loop voltage gain, Acl, and the output voltage, Vout.\n", "\n", "# Given data\n", "\n", "Vin = 1# # Input voltage=1 Volts(p-p)\n", "Rf = 10.*10**3# # Feedback resistance=10 kOhms\n", "Ri = 1.*10**3# # Input resistance=1 kOhms\n", "\n", "Acl = 1+(Rf/Ri)#\n", "print 'The Closed-Loop Voltage Gain Acl =%0.2f'%Acl\n", "\n", "Vo = Vin*Acl#\n", "print 'The Output Voltage = %0.2f Volts(p-p)'%Vo" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example No. 33_9 Page No. 1089" ] }, { "cell_type": "code", "execution_count": 16, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The Input Impedence Closed-Loop = 1.82e+10 Ohms\n", "i.e 18 GOhms\n", "The Closed-Loop Output Impedence = 0.01 Ohms\n" ] } ], "source": [ "# Calculate Zin(CL) and Zout(CL). Assume Rin is\u0004 2 MOhms\u0006, Avol is 100,000, and Zout(OL) is 75 Ohms.\n", "\n", "# Given data\n", "\n", "Avol = 100000.# # Open loop voltage gain=100,000\n", "Ri = 2.*10**6# # Input resistance=2 MOhms\n", "B = 0.0909# # Beta=0.0909\n", "Zool = 75.# # Output impedence (open-loop)=75 Ohms\n", "\n", "Zicl = Ri*(1+Avol*B)#\n", "print 'The Input Impedence Closed-Loop = %0.2e Ohms'%Zicl\n", "print 'i.e 18 GOhms'\n", "\n", "A = Avol*B#\n", "\n", "Zocl = Zool/(1+A)#\n", "print 'The Closed-Loop Output Impedence = %0.2f Ohms'%Zocl" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example No. 33_10 Page No. 1090" ] }, { "cell_type": "code", "execution_count": 17, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The Input impedence closed-loop = 2.00e+11 Ohms\n", "i.e 200 GOhms\n", "The Closed loop Output Impedence = 0.001 Ohms\n" ] } ], "source": [ "# Assume Rin is 2 MOhms, Avol is 100,000, and Zout(OL) is 75 Ohms. Calculate Zin(CL) and Zout(CL)\n", "\n", "# Given data\n", "\n", "Avol = 100000.# # Open loop voltage gain=100,000\n", "Ri = 2.0*10**6# # Input resistance=2 MOhms\n", "B = 1.0# # Beta=1\n", "Zool = 75.# # Output impedence (open-loop)=75 Ohms\n", "\n", "Zicl = Ri*(1+Avol*B)#\n", "print 'The Input impedence closed-loop = %0.2e Ohms'% Zicl\n", "print 'i.e 200 GOhms'\n", "\n", "A = Avol*B#\n", "\n", "Zocl = Zool/(1+A)#\n", "print 'The Closed loop Output Impedence = %0.3f Ohms'%Zocl" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example No. 33_11 Page No. 1091" ] }, { "cell_type": "code", "execution_count": 18, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The Closed-Loop Voltage Gain Acl =-10.00\n", "The Output Voltage = 7.50 Volts\n" ] } ], "source": [ "# Calculate the closed-loop voltage gain, Acl, and the dc voltage at the op-amp output terminal.\n", "\n", "# Given data\n", "\n", "V = 15.# # Voltage at +ve terminal of op-amp=15 Volts\n", "Rf = 10.*10**3# # Feedback resistance=10 kOhms\n", "Ri = 1.*10**3# # Input resistance=1 kOhms\n", "R1 = 10.*10**3# # Resistance1=10 kOhms\n", "R2 = 10.*10**3# # Rsistance2=10 kOhms\n", "\n", "Acl = -(Rf/Ri)#\n", "print 'The Closed-Loop Voltage Gain Acl =%0.2f'%Acl\n", "\n", "Vo = V*(R2/(R1+R2))#\n", "print 'The Output Voltage = %0.2f Volts'%Vo" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example No. 33_12 Page No. 1095" ] }, { "cell_type": "code", "execution_count": 19, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The Output Voltage 1 Volts\n" ] } ], "source": [ "# Calculate the output voltage, Vout.\n", "\n", "# Given data\n", "\n", "V1 = 1# # Input voltage1=1 Volts\n", "V2 = -5# # Input voltage2=-5 Volts\n", "V3 = 3# # Input voltage3=3 Volts\n", "\n", "Vo = -(V1+V2+V3)#\n", "print 'The Output Voltage %0.f Volts'%Vo" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example No. 33_13 Page No. 1097" ] }, { "cell_type": "code", "execution_count": 20, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The Output Voltage = 3.00 Volts\n" ] } ], "source": [ "# Calculate the output voltage, Vout.\n", "\n", "# Given data\n", "\n", "V1 = 0.5# # Input voltage1=0.5 Volts\n", "V2 = -2.0# # Input voltage2=-2 Volts\n", "Rf = 10.*10**3# # Feedback resistance=10 kOhms\n", "R1 = 1.*10**3# # Resistance1=1 kOhms\n", "R2 = 2.5*10**3# # Rsistance2=2.5 kOhms\n", "\n", "A = Rf/R1#\n", "B = Rf/R2#\n", "\n", "Vo = -(A*V1+B*V2)#\n", "print 'The Output Voltage = %0.2f Volts'%Vo" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example No. 33_14 Page No. 1101" ] }, { "cell_type": "code", "execution_count": 21, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The Output Voltage of Case A = -12.50 Volts\n", "The Output Voltage of Case B = 10.00 Volts\n", "The Output Voltage of Case C = -0.00 Volts\n" ] } ], "source": [ "# Calculate the output voltage, Vout, if (a) Vx is 1 Vdc and Vy is -0.25 Vdc, (b) -Vx is 0.5 Vdc and Vy is 0.5 Vdc, (c) Vx is 0.3 V and Vy is 0.3 V.\n", "\n", "# Given data\n", "\n", "Rf = 10.*10**3# # Feedback resistance=10 kOhms\n", "R1 = 1.*10**3# # Resistance1=1 kOhms\n", "Vx1 = 1.# # Input voltage Vx1 at -ve terminal of op-amp=1 Volts\n", "Vy1 = -0.25# # Input voltage Vy1 at +ve terminal of op-amp=-0.25 Volts\n", "Vx2 = -0.5# # Input voltage Vx2 at -ve terminal of op-amp=-0.5 Volts\n", "Vy2 = 0.5# # Input voltage Vy2 at +ve terminal of op-amp=0.5 Volts\n", "Vx3 = 0.3# # Input voltage Vx3 at -ve terminal of op-amp=0.3 Volts\n", "Vy3 = 0.3# # Input voltage Vy3 at +ve terminal of op-amp=0.3 Volts\n", "\n", "A = -Rf/R1#\n", "\n", "# Case A\n", "\n", "Voa = A*(Vx1-Vy1)#\n", "print 'The Output Voltage of Case A = %0.2f Volts'%Voa\n", "\n", "# Case B\n", "\n", "Voa = A*(Vx2-Vy2)#\n", "print 'The Output Voltage of Case B = %0.2f Volts'%Voa\n", "\n", "# Case C\n", "\n", "Voa = A*(Vx3-Vy3)#\n", "print 'The Output Voltage of Case C = %0.2f Volts'%Voa" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example No. 33_15 Page No. 1102" ] }, { "cell_type": "code", "execution_count": 22, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The Output of Differential Amplifier = 5.00 Volts\n" ] } ], "source": [ "# Assume that Rd increases to 7.5 k\u0006 due to an increase in the ambient temperature. Calculate the output of the differential amplifier. Note: Rb is 5 kOhms\u0006.\n", "\n", "# Given data\n", "\n", "Vi = 5.# # Voltage input=5 Volts(dc)\n", "Rf = 10.*10**3# # Feedback resistance=10 kOhms\n", "R1 = 1.*10**3# # Resistance1=1 kOhms\n", "Ra = 5.*10**3# # Resistance A at wein bridge=5 kOhms\n", "Rb = 10.*10**3# # Resistance B at wein bridge=10 kOhms\n", "Rc = 5.*10**3# # Resistance C at wein bridge=5 kOhms\n", "Rd = 7.5*10**3# # Resistance D at wein bridge=7.5 kOhms\n", "\n", "Vx = Vi*(Ra/Rb)#\n", "Vy = Vi*(Rd/(Rd+Rc))#\n", "A = -Rf/R1\n", "\n", "Vo = A*(Vx-Vy)#\n", "print 'The Output of Differential Amplifier = %0.2f Volts'%Vo" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example No. 33_16 Page No. 1103" ] }, { "cell_type": "code", "execution_count": 25, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The Cutoff Frequency = 1.59e+03 Hertz\n", "i.e 1.591 kHz\n" ] } ], "source": [ "from math import pi\n", "# Calculate the cutoff frequency, fc.\n", "\n", "# Given data\n", "\n", "Rf = 10.*10**3# # Feedback resistance=10 kOhms\n", "Cf = 0.01*10**-6# # Feedback capacitance=0.01 uFarad\n", "\n", "fc = 1./(2.*pi*Rf*Cf)#\n", "print 'The Cutoff Frequency = %0.2e Hertz'%fc\n", "print 'i.e 1.591 kHz'" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example No. 33_17 Page No. 1104" ] }, { "cell_type": "code", "execution_count": 27, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The Closed-Loop Voltage Gain at 0 Hz =-10.00\n", "The Closed-Loop Voltage Gain at 1 MHz =-0.02\n" ] } ], "source": [ "from math import pi,sqrt\n", "# Calculate the Voltage gain, Acl at (a)0 Hz and (b) 1 MHz\n", "\n", "# Given data\n", "\n", "f1 = 1.*10**6# # Frequency=1 MHertz\n", "Rf = 10.*10**3# # Feedback resistance=10 kOhms\n", "R1 = 1.*10**3# # Resistance1=1 kOhms\n", "Cf = 0.01*10**-6# # Feedback capacitance=0.01 uFarad\n", "\n", "# At 0 Hz, Xcf = infinity ohms, So, Zf=Rf \n", "\n", "Acl = -Rf/R1#\n", "print 'The Closed-Loop Voltage Gain at 0 Hz =%0.2f'%Acl\n", "\n", "# At 1 MHz\n", "\n", "Xcf = 1/(2*pi*f1*Cf)#\n", "\n", "A = (Rf*Rf)#\n", "B = (Xcf*Xcf)#\n", "\n", "Zf = ((Xcf*Rf)/sqrt(A+B))#\n", "\n", "Acl1 = -Zf/R1#\n", "print 'The Closed-Loop Voltage Gain at 1 MHz =%0.2f'%Acl1" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example No. 33_18 Page No. 1105" ] }, { "cell_type": "code", "execution_count": 28, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The Voltage Gain at 0 Hz = 20.00 dB\n", "The Voltage Gain at 1.591 kHz = 16.99 dB\n", "approx 17dB\n" ] } ], "source": [ "from math import log10,pi,sqrt\n", "# Calculate the dB voltage gain, at (a)0 Hz and (b) 1.591 kHz\n", "\n", "# Given data\n", "\n", "f1 = 1.591*10**3# # Frequency=1.591 kHertz\n", "Rf = 10.*10**3# # Feedback resistance=10 kOhms\n", "Ri = 1.*10**3# # Input resistance=1 kOhms\n", "Cf = 0.01*10**-6# # Feedback capacitance=0.01 uFarad\n", "\n", "# At 0 Hz, Xcf = infinity ohms, So, Zf=Rf \n", "\n", "A = Rf/Ri\n", "\n", "Acl = 20*log10(A)#\n", "print 'The Voltage Gain at 0 Hz = %0.2f dB'%Acl\n", "\n", "# At 1.591 kHz\n", "\n", "Xcf = 1/(2*pi*f1*Cf)#\n", "B = (Rf*Rf)#\n", "C = (Xcf*Xcf)#\n", "Zf = (Xcf*Rf/sqrt(B+C))#\n", "D = Zf/Ri#\n", "\n", "Acl1 = 20*log10(D)#\n", "print 'The Voltage Gain at 1.591 kHz = %0.2f dB'%Acl1\n", "print 'approx 17dB'" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example No. 33_19 Page No. 1106" ] }, { "cell_type": "code", "execution_count": 30, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The Cutoff Frequency = 1591.55 Hertz\n", "i.e 1.591 kHz\n" ] } ], "source": [ "from math import pi\n", "# Calculate the cutoff frequency, fc.\n", "\n", "# Given data\n", "\n", "Ri = 1.*10**3# # Input resistance=10 kOhms\n", "Ci = 0.1*10**-6# # Input capacitance=0.01 uFarad\n", "\n", "fc = 1/(2*pi*Ri*Ci)#\n", "print 'The Cutoff Frequency = %0.2f Hertz'%fc\n", "print 'i.e 1.591 kHz'" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example No. 33_20 Page No. 1118" ] }, { "cell_type": "code", "execution_count": 31, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The Output Current = 5.00e-03 Amps\n", "i.e 5 mAmps\n" ] } ], "source": [ "# Vin is 5 V, R is 1 kOhms , and Rl is 100 Ohms . Calculate the output current, Iout.\n", "\n", "# Given data\n", "\n", "Vin = 5.# # Input votage=5 Volts\n", "Ri = 1.*10**3# # Input resistance=1 kOhms\n", "Rl = 100.# # Load resistance=100 Ohms\n", "\n", "Io = Vin/Ri#\n", "print 'The Output Current = %0.2e Amps'%Io\n", "print 'i.e 5 mAmps'" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example No. 33_21 Page No. 1120" ] }, { "cell_type": "code", "execution_count": 32, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The Output Voltage = 1.50 Volts\n" ] } ], "source": [ "# Iin is 1.5 mA, R is 1 kOhms, and Rl is 10 kOhms. Calculate Vout.\n", "\n", "# Given data\n", "\n", "Iin = 1.5*10**-3# # Input votage=5 Volts\n", "Ri = 1.*10**3# # Input resistance=1 kOhms\n", "Rl = 100.# # Load resistance=100 Ohms\n", "\n", "Vo = Iin*Ri#\n", "print 'The Output Voltage = %0.2f Volts'%Vo" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example No. 33_22 Page No. 1121" ] }, { "cell_type": "code", "execution_count": 34, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The Upper Trigger Point = 0.129 Volts\n", "i.e 128.7 mVolts\n", "The Lower Trigger Point = -0.129 Volts\n", "i.e -128.7 mVolts\n", "The Hysterisis Voltage = 0.257 Volts\n", "i.e 257.4 mVolts\n" ] } ], "source": [ "# R1 is 1 kOhms and R2 is 100 kOhms . Calculate UTP, LTP, and VH.\n", "\n", "# Given data\n", "\n", "R1 = 1.*10**3# # Resistance1=1 kOhms\n", "R2 = 100.*10**3# # Resistance2=100 kOhms\n", "Vcc = 15.# # Applied votage=15 Volts\n", "Vsat = 13.# # Assume Saturation voltage=13 Volts\n", "\n", "Beta = R1/(R1+R2)#\n", "\n", "Utp = Beta*Vsat#\n", "print 'The Upper Trigger Point = %0.3f Volts'%Utp\n", "print 'i.e 128.7 mVolts'\n", "\n", "Ltp = -Beta*Vsat#\n", "print 'The Lower Trigger Point = %0.3f Volts'%Ltp\n", "print 'i.e -128.7 mVolts'\n", "\n", "Vh = Utp-Ltp#\n", "print 'The Hysterisis Voltage = %0.3f Volts'%Vh\n", "print 'i.e 257.4 mVolts'" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example No. 33_23 Page No. 1124" ] }, { "cell_type": "code", "execution_count": 35, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The Minimum value of required Capacitor = 1.00e-04 Farads\n", "i.e 100 uFarad\n" ] } ], "source": [ "# Rl is 1 kOhms and the frequency of the input voltage equals 100 Hz. Calculate the minimum value of C required.\n", "\n", "# Given data\n", "\n", "f = 100.# # Applied frequency=100 Hertz\n", "Rl = 1.*10**3# # Load resistance=1 kOhms\n", "\n", "T = 1./f#\n", "\n", "C = (10*T)/Rl#\n", "print 'The Minimum value of required Capacitor = %0.2e Farads'%C\n", "print 'i.e 100 uFarad'" ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.9" } }, "nbformat": 4, "nbformat_minor": 0 }