{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Ch-3, Power Plant Economics" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## example 3.1 - pg 43" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " solution for (a)\n", " afc1=Rs.1.98e+08\n", " e1=5.2998e+08 kWh\n", " annualfual1=3.70986e+08 kg \n", " fc1=Rs.5.56479e+08 \n", " om1=Rs.1.112958e+08 \n", " aoc1=Rs.5.564790e+08 \n", " apc1=Rs.7.54479e+08 \n", " gc1=1.3558 kWh\n", "\n", " solution for (b)\n", " afc2=Rs.3.30e+08 \n", " e2=5.7816e+08 kWh\n", " annualfual2=3.75804e+08 kg \n", " fc2=Rs.563706000 \n", " om22=Rs.84555900 \n", " aoc2=Rs.648261900 \n", " apc2=Rs.978261900 \n", " gc2=1kWh\n", "\n", " solution of (c)\n", " ogc=Rs.1.564/kWh\n" ] } ], "source": [ "from __future__ import division\n", "totpow=110*10**3 #(kW)\n", "uc1=18000; fcr1=0.1; cf1=0.55; fuelcons1=0.7; fuelcost1=1500/1000; om1=0.2; utilizationf1=1 \n", "uc2=30000 ;fcr2=0.1; cf2=0.60 ;fuelcons2=0.65 ;fuelcost2=1500/1000 ;om2=0.15 ;utilizationf2=1 \n", "#given uck=unit capital cost k fcrk= fixed charge rate of kth unit cfk=capacity factor at k th unit omk=annual cost of operating labour totpow=total power rating of units\n", "afc1=fcr1*uc1*totpow; afc2=fcr2*uc2*totpow \n", "e1=8760*cf1*totpow; e2=8760*cf2*totpow \n", "annualfuel1=e1*fuelcons1 ;annualfuel2=e2*fuelcons2 \n", "fc1=annualfuel1*fuelcost1 ;fc2=annualfuel2*fuelcost2 \n", "om11=om1*fc1; om22=om2*fc2 \n", "aoc1=fc1+om1 ;aoc2=fc2+om22 \n", "apc1=aoc1+afc1; apc2=aoc2+afc2 \n", "gc1=apc1/fc1 ;gc2=apc2/fc2\n", "print \" solution for (a)\"\n", "print \" afc1=Rs.%0.2e\\n e1=%0.4e kWh\\n annualfual1=%0.5e kg \\n fc1=Rs.%0.5e \\n om1=Rs.%0.6e \\n aoc1=Rs.%0.6e \\n apc1=Rs.%0.5e \\n gc1=%0.4f kWh\\n\"%(afc1,e1,annualfuel1,fc1,om11,aoc1,apc1,gc1)\n", "print \" solution for (b)\"\n", "print \" afc2=Rs.%0.2e \\n e2=%0.4e kWh\\n annualfual2=%0.5e kg \\n fc2=Rs.%d \\n om22=Rs.%d \\n aoc2=Rs.%.f \\n apc2=Rs.%.f \\n gc2=%.fkWh\\n\"%(afc2,e2,annualfuel2,fc2,om22,aoc2,apc2,gc1)\n", "ogc=(apc1+apc2)/(e1+e2)\n", "\n", "print \" solution of (c)\\n ogc=Rs.%0.3f/kWh\"%(ogc)\n", "# Ans in the textbook are not accurate." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## example 3.2 - pg 45" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "solution for (a)\n", "annual straight line depreciation reserve =Rs. 6.8e+06 per year\n", "\n", "solution for (b)\n", "annual sinking fund depreciation reserve is =Rs. 2.325e+08 per year\n" ] } ], "source": [ "c=2*10**8 #cost\n", "s=0.15 #salvage value\n", "ul=25 #/useful value\n", "i=0.08 #life of plant\n", "print \"solution for (a)\"\n", "print \"annual straight line depreciation reserve =Rs. %.1e per year\\n\"%(c*(1-s)/ul)\n", "print \"solution for (b)\"\n", "it=(i+1)**25-1\n", "iit=i/it\n", "asdr=c*(1-s)*iit*100\n", "print \"annual sinking fund depreciation reserve is =Rs. %.3e per year\"%(asdr)\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## example 3.3 - pg 45" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "rate of depretion by fixed percentage method = 7.3 %\n", "remaining depreciation at the end of 10th year = Rs.9.364e+07\n", "accumulated depreciation at the end of 10 year is Rs.1.064e+08\n" ] } ], "source": [ "cost=2*10**8\n", "sal=0.15\n", "use=25\n", "t=(1-(sal**(1/use)))\n", "print \"rate of depretion by fixed percentage method = %0.1f %%\"%(t*100)\n", "rd=cost*(1-t)**10\n", "print \"remaining depreciation at the end of 10th year = Rs.%0.3e\"%(rd)\n", "print \"accumulated depreciation at the end of 10 year is Rs.%0.3e\"%(cost-rd)\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## example 3.4 - pg 46" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "negp : [1712418.7671232875, 856254.38356164377, 570866.25570776255, 428172.19178082189, 342555.75342465751]\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZQAAAEACAYAAACUMoD1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xu8VXWd//HXWxHyQiBYiIBKejQxNaRAK/OYgdqUOuUF\nJxWV6pfmoKNTCk6CjV2wzOhROt1UxEJKzctkAqlnBmsA7+IFAUdMQDBRsIuTIJ/fH9/vgcVxA57N\nhrXPOe/n47EfZ+3vWuu7P+co53O+16WIwMzMbHNtU3YAZmbWPjihmJlZTTihmJlZTTihmJlZTTih\nmJlZTTihmJlZTWw0oUi6VtIySXMKZYMlzZb0iKQHJH2wcG60pPmS5koaVigfJGlOPjehUN5F0pRc\nPlPSHoVzIyTNy6/TC+X9Jc3K99wkabta/CDMzGzzbKqFch1wdIuyK4CvRsRA4NL8HkkDgJOBAfme\nqyUp33MNMDIiGoAGSc11jgSW5/KrgPG5rh657sH5NVZSt3zPeODKfM+ruQ4zMyvZRhNKRMwg/dIu\nehFo/uXeHVicj48DJkfEqohYCCwAhkjqDXSNiNn5uhuA4/PxscDEfHwLcGQ+PgqYFhErImIFMB04\nJieoI4Cb83UTC3WZmVmJOlVxz8XA/ZK+Q0pIh+by3YCZhesWAX2AVfm42eJcTv76AkBErJa0UlLP\nXNeiCnX1AFZExJoKdZmZWYmqGZT/GTAqInYH/gW4trYhbZD3iDEzq2PVtFAGR8TH8/HNwE/z8WKg\nX+G6vqSWxeJ83LK8+Z7dgSWSOgHdImK5pMVAY+GefsC9wCtAd0nb5FZKX9Z1ua1HkhOQmVkVIkKb\nvuqtqmmhLJB0eD7+GDAvH98BDJfUWVJ/oAGYHRFLgdckDcljIKcBtxfuGZGPTwDuycfTgGGSukva\nGRgKTI20k+V9wIn5uhHAbRsKNCLq/jV27NjSY3CcjtFxOs7m1+bYaAtF0mTgcGAXSS+QZl59Afih\npC7A6/k9EfGUpF8CTwGrgXNiXXTnANcD2wN3RcTdufxnwCRJ84HlwPBc1yuS/h14IF93WaTBeYCL\ngJskXQ48nOswM7OSbTShRMQpGzg1ZAPXfwP4RoXyh4ADKpT/HThpA3VdR5q23LL8uQ19vpmZlccr\n5UvW2NhYdghvi+OsnbYQIzjOWmsrcW4ObW6fWb2SFO31ezMz21IkEVtxUN7MzOwtnFDMzKwmnFDM\nzKwmnFDMzKwmnFDMzKwmnFDMzKwm2nVCWbRo09eYmVlttOuEMmIErFmz6evMzGzzteuE8vrrMGHC\npq8zM7PN165Xyi9YEBxyCNx7Lxzwlp3EzMysJa+U34C99oLx4+Gzn4W//73saMzM2rd23UJJ+/vD\npz8Ne+8N3/522VGZmdW3zWmhtPuEAvDyy3DQQXDjjXDEESUHZmZWx9zltQm77AI//Wma9bVixaav\nNzOz1usQLZRm554Lr74KP/95SUGZmdU5t1DepiuugIcfhsmTy47EzKz96VAtFICHHoJjjoEHH4Td\ndy8hMDOzOrbFWiiSrpW0TNKcFuX/LOlpSU9IGl8oHy1pvqS5koYVygdJmpPPTSiUd5E0JZfPlLRH\n4dwISfPy6/RCeX9Js/I9N0narjXf8KBBcP75cMYZXkVvZlZLm+ryug44ulgg6QjgWODAiHgf8J1c\nPgA4GRiQ77laUnOWuwYYGRENQIOk5jpHAstz+VXA+FxXD+BSYHB+jZXULd8zHrgy3/NqrqNVLroI\n3ngDrrqqtXeamdmGbDShRMQM0i/torOBb0bEqnzNn3L5ccDkiFgVEQuBBcAQSb2BrhExO193A3B8\nPj4WmJiPbwGOzMdHAdMiYkVErACmA8fkBHUEcHO+bmKhrrdt221h0iT41rfg8cdbe7eZmVVSzaB8\nA/DR3EXVJOkDuXw3oLi/7yKgT4Xyxbmc/PUFgIhYDayU1HMjdfUAVkTEmgp1tUr//mmh42c/C//3\nf9XUYGZmRZ2qvGfniDhE0geBXwLvqW1YFbV69sC4cePWHjc2NtLY2Lje+REj4M474ZJL4MorNzc8\nM7O2p6mpiaampprUVU1CWQTcChARD0haI2kXUmuhX+G6vvnaxfm4ZTn53O7AEkmdgG4RsVzSYqCx\ncE8/4F7gFaC7pG1yK6VvrqOiYkKpRIIf/Sitov/EJ+DIIzd6uZlZu9Pyj+3LLrus6rqq6fK6DfgY\ngKR9gM4R8TJwBzBcUmdJ/UldY7MjYinwmqQheQzkNOD2XNcdwIh8fAJwTz6eBgyT1F3SzsBQYGqe\nB3wfcGK+bkSOp2q77ALXXgtnnpkWPZqZWXU2ug5F0mTgcKAn8BJp5tWNwLXA+4E3gAsjoilfPwY4\nC1gNnBcRU3P5IOB6YHvgrogYlcu7AJOAgcByYHge0EfSmcCYHMrlETExl/cHbiKNpzwMnNo8QaBF\n7BXXoWzIqFHw0ktp0aOqmoFtZtb2eXPIClqbUF5/Pa1RueSSNFBvZtYROaFU0NqEAmlblqOOSqvo\n99hj09ebmbU33surRg4+GC68MM3+evPNsqMxM2tbnFBa+PKX05Ys3/1u2ZGYmbUt7vKqYOFC+OAH\n4Xe/S1OKzcw6Cnd51diee6aFjl5Fb2b29rmFsgERcPLJ0KePN5E0s47Ds7wq2NyEAvDKK3DggXDd\ndTB0aI0CMzOrY+7y2kJ69EjJ5KyzUnIxM7MNcwvlbTj/fFiyBKZM8Sp6M2vf3ELZwr75TXjySbjx\nxrIjMTOrX26hvE2PPprGUR54IM0CMzNrj9xC2Qre//606PH0072K3sysEieUVrjwwjSG8p3vlB2J\nmVn9cZdXKz3/fFpFP3UqDBxY8+rNzErlLq+taI890j5fn/1s2vLezMwSt1CqEAGnnAK9esGECVvk\nI8zMSuGV8hVsyYQC6XHBBx4IP/sZDBu2xT7GzGyrcpdXCXbeGa6/Pq2iX7687GjMzMrnFspmuuAC\n+OMf4Ve/8ip6M2v7tlgLRdK1kpZJmlPh3IWS1kjqUSgbLWm+pLmShhXKB0mak89NKJR3kTQll8+U\ntEfh3AhJ8/Lr9EJ5f0mz8j03Sdqumm+8Vr7xDXjmGbjhhjKjMDMr36a6vK4Djm5ZKKkfMBR4vlA2\nADgZGJDvuVpa+zf7NcDIiGgAGiQ11zkSWJ7LrwLG57p6AJcCg/NrrKRu+Z7xwJX5nldzHaV5xzvS\nliz/+q/w3HNlRmJmVq6NJpSImEH6pd3Sd4GvtCg7DpgcEasiYiGwABgiqTfQNSJm5+tuAI7Px8cC\nE/PxLcCR+fgoYFpErIiIFcB04JicoI4Abs7XTSzUVZqDDoKLLoLTTvMqejPruFo9KC/pOGBRRDze\n4tRuwKLC+0VAnwrli3M5+esLABGxGlgpqedG6uoBrIiINRXqKtUFF0DnznDFFWVHYmZWjk6tuVjS\nDsAYUnfX2uKaRrRhrR5hHzdu3NrjxsZGGhsbaxjO+rbZBiZOhEGD4Kij4OCDt9hHmZnVTFNTE01N\nTTWpq1UJBdgL2BN4LA+P9AUekjSE1FroV7i2L6llsTgftywnn9sdWCKpE9AtIpZLWgw0Fu7pB9wL\nvAJ0l7RNbqX0zXVUVEwoW0O/fvC976VV9A89BDvssFU/3sys1Vr+sX3ZZZdVXVerurwiYk5E9IqI\n/hHRn5QYDo6IZcAdwHBJnSX1BxqA2RGxFHhN0pA8BnIacHuu8g5gRD4+AbgnH08DhknqLmlnUoto\nap4HfB9wYr5uBHBbFd/3FvNP/5T2+LroorIjMTPbujY1bXgy8AdgH0kvSDqzxSVru6Ei4ingl8BT\nwG+BcwoLQc4BfgrMBxZExN25/GdAT0nzgfOBi3NdrwD/DjwAzAYuy4PzABcBF+R7ds511JUf/hBu\nvx3uvnvT15qZtRde2LiF3HcfnHoqPPYY7LJLaWGYmbWK9/KqoOyEAuvWptx8s1fRm1nb4L286tTX\nvw7z56c9v8zM2ju3ULawOXPgYx+DWbPgPe8pOxozs41zC6WOHXAAjB6dVtGvXl12NGZmW44TylZw\n/vlpz6/x48uOxMxsy3GX11ayaFFaPX/XXfCBD5QdjZlZZe7yagP69oXvfz9NJf7b38qOxsys9txC\n2cpOPRW6dUuLH83M6o3XoVRQrwllxYq03f0118AnPlF2NGZm63NCqaBeEwpAU1Pa8+uxx+Bd7yo7\nGjOzdZxQKqjnhALwla+kRY+33upV9GZWPzwo3wb9+7+nbVmuvbbsSMzMasMtlBI9+SQ0NsLMmbDX\nXmVHY2bmFkqbtf/+cMklaeaXV9GbWVvnhFKyUaNgp53gm98sOxIzs83jLq86sHhxWkV/550weHDZ\n0ZhZR+YurzauTx/4wQ9S19df/1p2NGZm1XELpY6cfjrsuGNa9GhmVgavQ6mgLSaUlSvTKvof/AA+\n+cmyozGzjmiLdXlJulbSMklzCmXflvS0pMck3SqpW+HcaEnzJc2VNKxQPkjSnHxuQqG8i6QpuXym\npD0K50ZImpdfpxfK+0uale+5SdJ21Xzj9ahbN7jhBvjCF+Cll8qOxsysdTY1hnIdcHSLsmnA/hFx\nEDAPGA0gaQBwMjAg33O1tHYN+DXAyIhoABokNdc5Eliey68Cxue6egCXAoPza2whcY0Hrsz3vJrr\naDc++tHU9fX5z0Mba2CZWQe30YQSETNIv7SLZdMjYk1+Owvom4+PAyZHxKqIWAgsAIZI6g10jYjZ\n+bobgOPz8bHAxHx8C3BkPj4KmBYRKyJiBTAdOCYnqCOAm/N1Ewt1tRtf+xr88Y/w05+WHYmZ2du3\nubO8zgLuyse7AYsK5xYBfSqUL87l5K8vAETEamClpJ4bqasHsKKQ0Ip1tRudO8PPfw5jxqT9vszM\n2oJO1d4o6RLgjYj4RQ3j2ZhWdwCNGzdu7XFjYyONjY01DGfLGjAAvvrV9Cz6+++HTlX/lzIz27Cm\npiaamppqUldVv6YknQF8gnVdVJBaC/0K7/uSWhaLWdctVixvvmd3YImkTkC3iFguaTHQWLinH3Av\n8ArQXdI2uZXSN9dRUTGhtEXnngu/+Q18/eswdmzZ0ZhZe9Tyj+3LLrus6rpa3eWVB9S/DBwXEf9X\nOHUHMFxSZ0n9gQZgdkQsBV6TNCSPgZwG3F64Z0Q+PgG4Jx9PA4ZJ6i5pZ2AoMDXPA74PODFfNwK4\nrbXfQ1uxzTZw3XVw9dUwa1bZ0ZiZbdxG16FImgwcDuwCLAPGkmZ1dSa1FgD+JyLOydePIY2rrAbO\ni4ipuXwQcD2wPXBXRIzK5V2AScBAYDkwPA/oI+lMYEz+jMsjYmIu7w/cRBpPeRg4NSJWVYi9za1D\n2ZCbb4bRo+GRR9K+X2ZmW4oXNlbQnhIKwBlnQJcu8KMflR2JmbVn3surA/j+92H6dLjjjrIjMTOr\nzC2UNuT+++HEE+HRR6FXr7KjMbP2yF1eFbTHhAJpbcqcOaml4mfRm1mtucurAxk3DpYsgR//uOxI\nzMzW5xZKG/T002nPr9//HvbZp+xozKw9cQulg9lvv9RSOfVUWPWWCdNmZuVwQmmjzjkHevaEyy8v\nOxIzs8RdXm3Yiy/CwIHw61/DoYeWHY2ZtQfu8uqgevdO27Kcdhr85S9lR2NmHZ1bKO3AWWfBttvC\nT35SdiRm1ta5hdLBTZgA994Lt7XbbTLNrC1wC6Wd+MMf4NOfTqvod9217GjMrK1yC8X40Ifgc5+D\nkSP9LHozK4cTSjsydiy89BL8x3+UHYmZdUTu8mpnnnkGPvKRtJHkvvuWHY2ZtTXu8rK19t0XvvY1\nr6I3s63PCaUd+uIX4d3vTonFzGxrcZdXO7V0aVpFf8stacDezOztcJeXvcWuu6bB+dNOgz//uexo\nzKwj2GhCkXStpGWS5hTKekiaLmmepGmSuhfOjZY0X9JcScMK5YMkzcnnJhTKu0iakstnStqjcG5E\n/ox5kk4vlPeXNCvfc5Ok7Wrxg2iPjjsOjjgCzj+/7EjMrCPYVAvlOuDoFmUXA9MjYh/gnvweSQOA\nk4EB+Z6rpbXPFLwGGBkRDUCDpOY6RwLLc/lVwPhcVw/gUmBwfo2V1C3fMx64Mt/zaq7DNuB734P/\n+i+49dayIzGz9m6jCSUiZpB+aRcdC0zMxxOB4/PxccDkiFgVEQuBBcAQSb2BrhExO193Q+GeYl23\nAEfm46OAaRGxIiJWANOBY3KCOgK4ucLnWwU77QSTJqXt7l98sexozKw9q2YMpVdELMvHy4Be+Xg3\nYFHhukVAnwrli3M5+esLABGxGlgpqedG6uoBrIiINRXqsg049FD4f/8vbSLZgecpmNkW1mlzbo6I\nkLS1fkW1+nPGjRu39rixsZHGxsYahtO2/Nu/wYc/nLa7/9KXyo7GzOpFU1MTTU1NNamrmoSyTNKu\nEbE0d2e9lMsXA/0K1/UltSwW5+OW5c337A4skdQJ6BYRyyUtBhoL9/QD7gVeAbpL2ia3UvrmOioq\nJpSObrvt4MYbU1L52MfSY4TNzFr+sX3ZZZdVXVc1XV53ACPy8QjgtkL5cEmdJfUHGoDZEbEUeE3S\nkDwGchpwe4W6TiAN8gNMA4ZJ6i5pZ2AoMDUvLLkPOLHC59sm7LNPemTwqafCG2+UHY2ZtTcbXdgo\naTJwOLALabzkUlIy+CWpZbEQOCkPnCNpDHAWsBo4LyKm5vJBwPXA9sBdETEql3cBJgEDgeXA8Dyg\nj6QzgTE5lMsjYmIu7w/cRBpPeRg4NSLesslIR1/YuCERcOyxcOCB8PWvlx2NmdWbzVnY6JXyHdCy\nZfD+98OvfpU2kjQza+aV8tYqvXrBj38Mp58Or71WdjRm1l64hdKBfeELaUfi664rOxIzqxduoVhV\nvvvd9NyUW24pOxIzaw/cQungZs1Kg/SPPAK77VZ2NGZWNrdQrGpDhqRtWc48E9as2fT1ZmYb4oRi\nXHIJrFwJP/xh2ZGYWVvmLi8DYP789CCu//ovGDCg7GjMrCzu8rLN1tAA3/gGfPazXkVvZtVxC8XW\nioDjj08tlG9+s+xozKwMXilfgRNKdV56Ka2inzIFDjus7GjMbGtzl5fVzLvfDT/5SVpFv3Jl2dGY\nWVviFopVdPbZ8Le/wcSJm77WzNoPt1Cs5r7zHZg5M20gaWb2driFYhs0ezZ86lPw8MPQxw9aNusQ\n3EKxLWLwYDj33LSKftVbnjhjZrY+JxTbqNGjYccdYe+94Qc/gNdfLzsiM6tXTii2UZ06wa9/ncZS\n7rkH+veHb33LM8DM7K2cUOxtGTw4JZZ77oEnn4S99kp7gL30UtmRmVm9cEKxVtl/f5g0CR54AF59\nFd77XjjvPHjhhbIjM7OyVZ1QJI2W9KSkOZJ+IamLpB6SpkuaJ2mapO4trp8vaa6kYYXyQbmO+ZIm\nFMq7SJqSy2dK2qNwbkT+jHmSTq/2e7Dq9e8PV1+dWitduqTV9WedBc88U3ZkZlaWqhKKpD2BzwMH\nR8QBwLbAcOBiYHpE7APck98jaQBwMjAAOBq4WlLztLRrgJER0QA0SDo6l48Elufyq4Dxua4ewKXA\n4PwaW0xctnX17g1XXJF2K95zz7Rdy0knpQd2mVnHUm0L5TVgFbCDpE7ADsAS4FigeW31ROD4fHwc\nMDkiVkXEQmABMERSb6BrRMzO191QuKdY1y3Akfn4KGBaRKyIiBXAdFKSshL16AGXXgr/+79w6KFp\n/coxx8CMGWVHZmZbS1UJJSJeAa4E/khKJCsiYjrQKyKW5cuWAb3y8W7AokIVi4A+FcoX53Ly1xfy\n560GVkrquZG6rA7stBP8y7/As8/CZz6T1rAcdhj89rdpN2Mza786VXOTpL2A84E9gZXArySdWrwm\nIkJSqb9Cxo0bt/a4sbGRxsbG0mLpaLp0gc99Ds44A26+GS66CMaMSetaPvMZ2HbbsiM0M4Cmpiaa\nmppqUldVW69IOhkYGhGfy+9PAw4BPgYcERFLc3fWfRHxXkkXA0TEt/L1dwNjgefzNfvl8lOAj0bE\n2fmacRExM3ervRgR75I0HGiMiC/me34E3BsRU1rE6K1X6kgE/OY36SFeL78MF18Mp54KnTuXHZmZ\nFZWx9cpc4BBJ2+fB9Y8DTwF3AiPyNSOA2/LxHcBwSZ0l9QcagNkRsRR4TdKQXM9pwO2Fe5rrOoE0\nyA8wDRgmqbuknYGhwNQqvw/bSiT45Cfh979P2+NPmZJW30+YAH/9a9nRmVktVL05pKSvkH7hrwEe\nBj4HdAV+CewOLAROygPnSBoDnAWsBs6LiKm5fBBwPbA9cFdEjMrlXYBJwEBgOTA8D+gj6UxgTA7l\n8oh4yybrbqHUv4ceSk+GnDEDRo2CL30Junu+nlmp/MTGCpxQ2o6nn4bx4+HOO+Hzn0+D+r16bfo+\nM6s97zZsbdp++8H116cWy1/+kt6fey48/3zZkZlZazihWN3Yc8+0o/HTT0PXrnDwwTBiRHpvZvXP\nCcXqTq9eaWzl2Wdhn32gsTFNNX7wwbIjM7ONcUKxutW9e9rR+Lnn4PDD4R//EYYNg6YmL5I0q0ce\nlLc244034MYb0wB+z55poeQ//EOakmxmteFZXhU4obRfb74Jt96aFkmuWZMWSZ54YnoYmJltHieU\nCpxQ2r8IuPvuNN6yZEna3uX009O2L2ZWHSeUCpxQOpYZM1JieewxuPBC+MIX0kaVZtY6XodiHd5h\nh8Fdd8F//ifMmgXveQ987WvwyitlR2bWcTihWLsycGDaJ2zGjLQwsqEBvvxlePHFsiMza/+cUKxd\n2ndf+NnP0pMj33gD9t8fzj47PQDMzLYMJxRr13bfPe1o/Mwzaarx4MFp2/wnnig7MrP2xwnFOoR3\nvQsuvzytvn/f++DjH4fjj0/jLWZWG04o1qF065bWrTz3HAwdCiedBEceCffc49X3ZpvL04atQ1u1\nCn7xC/jWt+Cd70yPKD72WNjGf2pZB+V1KBU4oVhrrFkDt92WVt+//npKLMOHe/W9dTxOKBU4oVg1\nImD69LRI8vnn4StfgTPOgHe8o+zIzLYOL2w0qxEp7Wh8331pI8rf/CYtkvz2t+HPfy47OrP65oRi\ntgEf+lB6LPFvfwsPP5wSy9ixsHx52ZGZ1aeqE4qk7pJulvS0pKckDZHUQ9J0SfMkTZPUvXD9aEnz\nJc2VNKxQPkjSnHxuQqG8i6QpuXympD0K50bkz5gn6fRqvwezt+Ogg2DyZPif/0kr7hsa4IILYPHi\nsiMzqy+b00KZANwVEfsBBwJzgYuB6RGxD3BPfo+kAcDJwADgaOBqae1TLK4BRkZEA9Ag6ehcPhJY\nnsuvAsbnunoAlwKD82tsMXGZbSl77w0//jE8/nh6f8ABaRPKBQvKjcusXlSVUCR1Aw6LiGsBImJ1\nRKwEjgUm5ssmAsfn4+OAyRGxKiIWAguAIZJ6A10jYna+7obCPcW6bgGOzMdHAdMiYkVErACmk5KU\n2VbRty9897swbx707g2HHgqnnLIu0Zh1VNW2UPoDf5J0naSHJf1E0o5Ar4hYlq9ZBvTKx7sBiwr3\nLwL6VChfnMvJX1+AlLCAlZJ6bqQus61ql13gssvS/mAHHwxHHw2f+lTqGjPriKqdZd8JOBg4NyIe\nkPQ9cvdWs4gISaXO2x03btza48bGRhobG0uLxdqvrl3Tjsb//M9w/fXwT/8Ee+yRHlE8dKgfUWz1\nrampiaampprUVdU6FEm7Av8TEf3z+48Ao4H3AEdExNLcnXVfRLxX0sUAEfGtfP3dwFjg+XzNfrn8\nFOCjEXF2vmZcRMyU1Al4MSLeJWk40BgRX8z3/Ai4NyKmtIjR61CsFKtXw003pdX373hHSizHH+/V\n99Y2bPV1KBGxFHhB0j656OPAk8CdwIhcNgK4LR/fAQyX1FlSf6ABmJ3reS3PEBNwGnB74Z7muk4g\nDfIDTAOG5VlmOwNDganVfB9mW0KnTmlH48cfh69+FcaPT9vnT5yYtnoxa6+qXikv6SDgp0Bn4Fng\nTGBb4JfA7sBC4KQ8cI6kMcBZwGrgvIiYmssHAdcD25NmjY3K5V2AScBAYDkwPA/oI+lMYEwO5fKI\naB68L8bnForVhQi49960rcuzz6ausaFD067HbrVYvfHWKxU4oVg9mjULfvIT+O//hpdfTosnDzss\nvQYNgi5dyo7QOjonlAqcUKzeLV0K99+fHlc8Y0aahjxo0LoE86EPpQF/s63JCaUCJxRra157LU05\nbk4wDz2UHmXcnGA+8hHo1WvT9ZhtDieUCpxQrK37+9/hwQfXJZg//CE9ebI5wRx2WNpfzNOSrZac\nUCpwQrH25s034Ykn1u8mi1i/BXPAAbDttmVHam2ZE0oFTijW3kWkRxk3J5cZM2DZsvUH+j/4QQ/0\nW+s4oVTghGId0bJlqQXT3IqZOzdtC9OcYA49FLp1KztKq2dOKBU4oZilh4IVB/offDBtv18ch9l1\n17KjtHrihFKBE4rZW/3972n2WHML5ve/h5491x+H2XtvD/R3ZE4oFTihmG3amjXw5JPrj8O8+WZK\nLM1J5sADPdDfkTihVOCEYtZ6EbBw4fozyV58MY29NCeZwYPTppfWPjmhVOCEYlYbf/rT+gnmqadg\n4MD1V/R39zNT2w0nlAqcUMy2jL/8JQ30NyeZBx6AvfZav5tst93KjtKq5YRSgROK2dbxxhvw8MPr\nWjD33w8777z+TLKGBg/0txVOKBU4oZiVY82a1C3WnFxmzEizy5pnkR12GBx0UHpujNUfJ5QKnFDM\n6sfzz68/k2zxYjjkkHUtmMGDYfvty47SwAmlIicUs/r18svrWi/335/2KHv/+9e1YD784dRtZluf\nE0oFTihmbcdf/wozZ65rwcyeDf37rz8O06dP2VF2DE4oFTihmLVdq1atG+hv3pvsne9cfybZvvt6\noH9LKC2hSNoWeBBYFBGfktQDmALswVufKT+a9Ez5N4FRETEtlzc/U/4dpGfKn5fLuwA3AAeTnil/\nckQ8n8+NAC7JYVweETdUiM0JxaydWLMmbXRZHId5/fWUYD7wgTSLbO+908tPudw8ZSaUC4BBQNeI\nOFbSFcBdqaNcAAAJqElEQVTLEXGFpIuAnSPiYkkDgF8AHwT6AL8DGiIiJM0Gzo2I2ZLuAr4fEXdL\nOgd4X0ScI+lk4B8jYnhOWg/kzwV4CBjUnLgKsTmhmLVjf/xjSiyPPQYLFsD8+fDss6kl09CwLsk4\n2bROKQlFUl9Sy+LrwAW5hTIXODwilknaFWiKiPfm1smaiBif770bGAc8D9wbEfvl8uFAY0R8MV8z\nNiJmSeoEvBgR75J0CvDRiDg73/Mf+XNuahGfE4pZB7NmDSxZsi7BNH9tmWyKiab5q5NNsjkJZXNm\ngl8FfBl4Z6GsV0Qsy8fLgOYnYO8GzCxct4jUUlmVj5stzuXkry8ARMRqSSsl9cx1LapQl5l1cNts\nA337pldj4/rnKiWbm25KXxcsSMmmOcE42VSnqoQi6ZPASxHxiKTGStfk7iw3EcysLmwq2bz44vqt\nmilT1rVsunat3KppaHCyKaq2hfIh4FhJnyANpr9T0iRgmaRdI2KppN7AS/n6xUC/wv19SS2Lxfm4\nZXnzPbsDS3KXV7eIWC5pMdBYuKcfcG+lIMeNG7f2uLGxkcaW/xeZmZGSTZ8+6dXy10REatlsKNns\ntNOGx2ze+c6KH1dXmpqaaGpqqkldmz1tWNLhwL/mMZQrgOURMV7SxUD3FoPyg1k3KL93bsXMAkYB\ns4HfsP6g/AERcXYeWzm+MCj/IGn2l0iD8gd7UN7MtrbmZNNyzKa5G6052VRq3dRrsil1HUpOKBfm\nWV49gF+SWhYLWX/a8BjStOHVwHkRMTWXN08b3p40bXhULu8CTAIGkqYND4+IhfncmcCYHMLlETGx\nQlxOKGZWmoi3dqMVv9ZrsvHCxgqcUMysXr2dZLOhCQJbOtk4oVTghGJmbVFzstlQN9qOO254gkAt\nko0TSgVOKGbW3kTA0qXr1ta0TDY77LB+gqkm2TihVOCEYmYdSTHZVGrdtEw2xa/duq2rxwmlAicU\nM7OkOdlsqBtt++3XJZgbbnBCeQsnFDOzTYuAZcvWdaONHOmE8hZOKGZmrbc5XV7b1DoYMzPrmJxQ\nzMysJpxQzMysJpxQzMysJpxQzMysJpxQzMysJpxQzMysJpxQzMysJpxQzMysJpxQzMysJpxQzMys\nJpxQzMysJpxQzMysJqpKKJL6SbpP0pOSnpA0Kpf3kDRd0jxJ0yR1L9wzWtJ8SXMlDSuUD5I0J5+b\nUCjvImlKLp8paY/CuRH5M+ZJOr26b93MzGqp2hbKKuBfImJ/4BDgS5L2Ay4GpkfEPsA9+T2SBgAn\nAwOAo4GrJTVvj3wNMDIiGoAGSUfn8pHA8lx+FTA+19UDuBQYnF9ji4mrrWlqaio7hLfFcdZOW4gR\nHGettZU4N0dVCSUilkbEo/n4L8DTQB/gWGBivmwicHw+Pg6YHBGrImIhsAAYIqk30DUiZufrbijc\nU6zrFuDIfHwUMC0iVkTECmA6KUm1SW3lfzLHWTttIUZwnLXWVuLcHJs9hiJpT2AgMAvoFRHL8qll\nQK98vBuwqHDbIlICalm+OJeTv74AEBGrgZWSem6kLjMzK9FmJRRJO5FaD+dFxJ+L5/LjEv3IRDOz\njiIiqnoB2wFTgfMLZXOBXfNxb2BuPr4YuLhw3d3AEGBX4OlC+SnANYVrDsnHnYA/5ePhwH8U7vkR\ncHKF+MIvv/zyy6/Wv6rNC52oQh5Q/xnwVER8r3DqDmAEaQB9BHBbofwXkr5L6p5qAGZHREh6TdIQ\nYDZwGvD9FnXNBE4gDfIDTAO+kQfiBQwFLmoZY7XPRDYzs+oo/zXfupukjwD/DTxOymgAo0lJ4ZfA\n7sBC4KQ8cI6kMcBZwGpSF9nUXD4IuB7YHrgrIpqnIHcBJpHGZ5YDw/OAPpLOBMbkz708IpoH783M\nrCRVJRQzM7OW2vxK+WoWWZYU5zskzZL0qKSnJH2zHuNsJmlbSY9IujO/r7s4JS2U9HiOc3Ydx9ld\n0s2Sns7/7YfUW5yS9s0/x+bXSkmj6jDO0fnf+hxJv8gLoOsqxhzneTnGJySdl8tKj1PStZKWSZpT\nKGv1gvQNafMJhVYusixLRPwfcEREvB84EDgidx3WVZwF5wFPsa5Lsx7jDKAxIgZGxOBcVo9xTiB1\n5+5H+m8/lzqLMyKeyT/HgcAg4G/Ar6mjOPMShc8DB0fEAcC2pEk6dRMjgKT3AZ8DPggcBHxS0l7U\nR5zX8dZ1e61ZkL7xnFHtaH69vkgTAT5O+kfbK5ftSp5xVg8vYAfgAWD/eowT6Av8DjgCuDOX1WOc\nzwE9W5TVVZxAN+B/K5TXVZwtYhsGzKi3OIEewDPAzqSZn3eSJuXUTYw5hhOAnxbe/xvwlXqJE9gT\nmFN4XzEu0rj4RYXr1s683dCrPbRQ1nqbiyxLI2kbSY/meO6LiCepwzhJW918GVhTKKvHOAP4naQH\nJX0+l9VbnP2BP0m6TtLDkn4iaUfqL86i4cDkfFw3cUbEK8CVwB+BJcCKiJhOHcWYPQEclruSdgA+\nQfojrd7ibNbaBekb1G4SSltYZBkRayJ1efUFPirpiBbnS49T0ieBlyLiEdK07LeohzizD0fqojmG\n1NV5WPFkncTZCTgYuDoiDgb+SouujjqJEwBJnYFPAb9qea7sOHO30fmkv7B3A3aSdGrxmrJjzDHM\nJS2dmAb8FngUeLPFNaXHWcnbiGujMbeLhCJpO1IymRQRzWtflknaNZ/vDbxUVnwtRcRK4Dekvup6\ni/NDwLGSniP9lfoxSZOovziJiBfz1z+R+vsHU39xLgIWRcQD+f3NpASztM7ibHYM8FD+mUJ9/Tw/\nAPwhIpZH2o7pVuBQ6vBnGRHXRsQHIuJw4FVgHvX1syzaUFyLgX6F6/rmsg1q8wlF2uQiS1h/kWUp\nJO3SPHtC0vakvt9HqLM4I2JMRPSLiP6kro97I+I06ixOSTtI6pqPdyT1+8+hzuKMiKXAC5L2yUUf\nB54k9f/XTZwFp7Cuuwvq6+c5FzhE0vb53/3HSRNH6u5nKend+evuwKeBX1BfP8uiDcV1BzBcUmdJ\n/ckL0jdaUxmDQjUeYPoIqa//UdIv6EdIMxJ6kAaW55Gant1LjvMA4OEc5+PAl3N5XcXZIubDgTvq\nMU7S2MSj+fUEMLoe48wxHUSahPEY6a/qbnUa547Ay6QdwJvL6ipO0uD2k6Q/HiaStoCqqxhznP+d\n43yUNLuzLn6WpD8WlgBvkDbfPXNjcZEWkC8gJfOjNlW/FzaamVlNtPkuLzMzqw9OKGZmVhNOKGZm\nVhNOKGZmVhNOKGZmVhNOKGZmVhNOKGZmVhNOKGZmVhP/Hwz5z370O+0BAAAAAElFTkSuQmCC\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "load factor\n", "[ 20 40 60 80 100]\n", "load MW\n", "\n", "20MW\t40MW\t60MW\t80MW\t100MW\n", "fixed cost\n", "Rs300000000\tRS300000000\tRs300000000\tRs300000000\tRs300000000\n", "number of KW hrs of energy generated in paise per unit of energy\n", "175200000kWh\t350400000kWh\t525600000kWh\t700800000kWh\t876000000kWh\n", "fixed cost in paise per unit of energy\n", "Rs1712328.767\tRS856164.384\tRs570776.256\tRs428082.192\tRs342465.753\n", "operating cost in paise per unit of energy\n", "Rs90.000\tRS90.000\tRs90.000\tRs90.000\tRs90.000\n", "total generation cost in paise per unit of energy\n", "Rs1712418.767\tRS856254.384\tRs570866.256\tRs428172.192\tRs342555.753\n" ] } ], "source": [ "from __future__ import division\n", "import numpy as np\n", "%matplotlib inline\n", "from matplotlib.pyplot import plot,show\n", "\n", "p=100 #ratring of steam station\n", "fc=3000 #fixed cost of plant per year\n", "rg=0.9 #90 paise per kv generation\n", "uf=1 #utilization factor 1\n", "lf=np.arange(20,101,20) #let load factor be 5 discreate units\n", "lm=uf*lf #lwt load MW is as same as lf as utilisation factor is 1\n", "n=len(lm)\n", "fc=[fc*1e5]*n\n", "op=[rg*100]*n\n", "negp = range(0,n)\n", "fcgp = range(0,n)\n", "tgc = range(0,n)\n", "for i in range(0,n):\n", " negp[i]=lm[i]*8760 * 1e3 # kW-hrs/year\n", " fcgp[i]=fc[i]*10000/negp[i]* 1e2 # Paisa/unit\n", " tgc[i]=fcgp[i]+op[i]\n", "\n", "print \"negp : \",tgc\n", " \n", " \n", "plot(lf,tgc)\n", "show()\n", "print \"load factor\"\n", "print lf\n", "print \"load MW\\n\"\n", "#fcgp=fcgp/100 ;op=op/100; tgc=tgc/100\n", "print \"%dMW\\t%dMW\\t%dMW\\t%dMW\\t%dMW\"%(lm[0],lm[1],lm[2],lm[3],lm[4])\n", "print \"fixed cost\"\n", "print \"Rs%d\\tRS%d\\tRs%d\\tRs%d\\tRs%d\"%(fc[0],fc[1],fc[2],fc[3],fc[4])\n", "print \"number of KW hrs of energy generated in paise per unit of energy\"\n", "print \"%dkWh\\t%dkWh\\t%dkWh\\t%dkWh\\t%dkWh\"%(negp[0],negp[1],negp[2],negp[3],negp[4])\n", "print \"fixed cost in paise per unit of energy\"\n", "print \"Rs%.3f\\tRS%.3f\\tRs%.3f\\tRs%.3f\\tRs%.3f\"%(fcgp[0],fcgp[1],fcgp[2],fcgp[3],fcgp[4])\n", "print \"operating cost in paise per unit of energy\"\n", "print \"Rs%.3f\\tRS%.3f\\tRs%.3f\\tRs%.3f\\tRs%.3f\"%(op[0],op[1],op[2],op[3],op[4])\n", "print \"total generation cost in paise per unit of energy\"\n", "print \"Rs%.3f\\tRS%.3f\\tRs%.3f\\tRs%.3f\\tRs%.3f\"%(tgc[0],tgc[1],tgc[2],tgc[3],tgc[4])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## example 3.5 page 47" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "average load 60MW\n", "energy generated =5.256000e+08kWhr\n", "total investement Rs.4.800000e+06\n", "investement amd depression is Rs.7.200000e+08\n", "fuel consumtion is 3.363840e+08kgper year\n", "fuel cost Rs.5.045760e+08per year \n", "annual plant cost Rs1.279376e+09per year \n", "generation cost Rs2.434125per year\n" ] } ], "source": [ "ic=120 #installed capacity\n", "ccppkw=40000 #/capital cost of plant\n", "iand=0.15 #interest and depreciation\n", "fco=0.64 #fuel consumption\n", "fc=1.5#fuel cost\n", "oc=50*10**6 #operating cost\n", "pl=100#peak load\n", "lf=0.6 #load factor\n", "al=lf*pl#avarrage load\n", "print \"average load %dMW\"%(al)\n", "eg=al*8760*10**3#energy generated\n", "print \"energy generated =%ekWhr\"%(eg)\n", "ti=ic*ccppkw #total investiment\n", "print \"total investement Rs.%e\"%(ti)\n", "ind=ti*iand*10**3#interest and depreciation\n", "print \"investement amd depression is Rs.%e\"%(ind)\n", "fcons=eg*fco #fual consumption\n", "print \"fuel consumtion is %ekgper year\"%(fcons)\n", "fcost=fcons*fc#fuel cost\n", "aco=ti+fcost+ind+oc#annual cost\n", "print \"fuel cost Rs.%eper year \\nannual plant cost Rs%eper year \\ngeneration cost Rs%fper year\"%(fcost,aco,aco/eg)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## example 3.6 page 47" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "solution of (a)\n", " average load = 25000kW \n", " energy consumton =219000000kWh\n", " annual expenditure is Rs30000000peryear\n", "\n", "(b) private steam plant\n", " installed capacity is Rs70000 \n", " capital investiment is Rs2100000000 \n", " interest and depreciation is Rs.315000000 \n", " fuel consumption is Rs.131400000.000000 \n", " fuel cost is Rs.183960000.000000 per year \n", " wage,repair and other expenses are Rs175200000.000000 per year \n", " total expenditure is Rs6.741600e+08 per year\n" ] } ], "source": [ "md=50*10**3 #maximum demand in kW\n", "ecy=0\n", "pst=600*md+2.5*ecy#public supply tariff equation\n", "lfr=0.5 #load factor\n", "rc=20*10**3 #reserve capacity\n", "cik=30000 #capital investiment\n", "inad=0.15 #/interest and depreciation\n", "fuc=0.6 ;fuco=1.4; oct=0.8#fuel consumption#fuel cost#other cost\n", "avl=md*lfr #average load\n", "ecy=avl*8760 #energy cosumption per year\n", "print \"solution of (a)\"\n", "print \" average load = %dkW \\n energy consumton =%dkWh\\n annual expenditure is Rs%dperyear\\n\"%(avl,ecy,pst)\n", "print \"(b) private steam plant\"\n", "ict=md+rc #installed capacity\n", "caint=cik*ict #capital investiment\n", "iande=inad*caint #interest and depreciation\n", "fuelcon=ecy*fuc #fuel consumption\n", "fucost=fuelcon*fuco #fuel cost\n", "opwe=oct*ecy #other expenditure\n", "totex=iande+fucost+opwe#total expenditure\n", "print \" installed capacity is Rs%d \\n capital investiment is Rs%d \\n interest and depreciation is Rs.%d \\n fuel consumption is Rs.%f \\n fuel cost is Rs.%f per year \\n wage,repair and other expenses are Rs%f per year \\n total expenditure is Rs%e per year\"%(ict,caint,iande,fuelcon,fucost,opwe,totex)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## example 3.7 page 48" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "total energy generated per year 2.19e+09W\n", "capacity of hydro plant is 328MW \n", " capacity of thermal plant 171MW\n", " energy generatede by hydro plant 1933150684kWh\n", " energy generated by thermal plant 256849315kWh\n", " over all generation cost is 1.863/kWh\n" ] } ], "source": [ "md=500 #given maximum demand\n", "lf=0.5 #load factor\n", "hp=7200 ;he=0.36#operating cost of hydro plant\n", "tp=3600; te=1.56 #operating cost of thermal plant\n", "teg=md*1000*lf*8760 #total energy generated\n", "print \"total energy generated per year %2.2eW\"%(teg)\n", "t=(hp-tp)/(te-he) #time of operating useing (de/dp)\n", "ph=md*(1-t/8760) #from triangle adf\n", "pt=md-ph\n", "et=pt*t*1000/2\n", "eh=teg-et\n", "co=hp*ph*1000+he*eh+tp*pt*1000+te*et\n", "ogc=co/teg\n", "print \"capacity of hydro plant is %dMW \\n capacity of thermal plant %dMW\\n energy generatede by hydro plant %dkWh\\n energy generated by thermal plant %dkWh\\n over all generation cost is %.3f/kWh\"%(ph,pt,eh,et,ogc)\n", "\n", "\n", " " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Data 3.16 page 52" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "cost calculation \n", "using sinking fund depreciation\n", "annual depretion reserve is 0.401262persent \n", " annual fixed cost Rs11088529841.947702 \n", " annual fixed cost per Rs11088kWh\n", "fuel cost Rs.0.595238/kWh \n", "energy generated per kW of plant capacity Rs.6044.400000kWh \n", "energy available bus bar 5591.070000kWh \n", " generation cost Rs2.578495 perkWh\n" ] } ], "source": [ "pu=500*10**3 ; pc=2*pu #plant unit,plant capacity\n", "land=11.865*10**9\n", "cicost=30.135*10**9\n", "ccost=land+cicost #capital cost =land cost+civil cost\n", "plife=25 #plant life\n", "ir=0.16 #interest rate\n", "ond=1.5*10**-2 # o and mof capital cost\n", "gr=0.5*10**-2 #grneral reserve of capital cost\n", "calv=4158 #calorific value kj per kg\n", "coalcost=990 #caol cost per ton\n", "heat=2500#heat rate kcal/kWh\n", "retur=0.08 #return\n", "salvage=0\n", "plf=0.69 ;auxcons=0.075 #auxiliary consumption\n", "print \"cost calculation \"\n", "print \"using sinking fund depreciation\"\n", "ande=(ir/((ir+1)**(plife)-1))*100\n", "afixcost=ccost*(ir+ond+retur+gr+(ande/100))\n", "afcppc=afixcost/pc\n", "print \"annual depretion reserve is %fpersent \\n annual fixed cost Rs%f \\n annual fixed cost per Rs%dkWh\"%(ande,afixcost,afcppc)\n", "fo=(heat*coalcost)/(calv*1000)\n", "engepc=24*365*plf\n", "enavil=engepc*(1-auxcons)\n", "gencost=(afcppc/enavil)+fo\n", "print \"fuel cost Rs.%f/kWh \\nenergy generated per kW of plant capacity Rs.%fkWh \\nenergy available bus bar %fkWh \\n generation cost Rs%f perkWh\"%(fo,engepc,enavil,gencost)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## data 3.17 page 53" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " total annual costs is Rs1.394000e+09 per year \n", " energy generated per year =6.307200e+08kWh/year \n", " energy available at bus bar 6.275664e+08kWh/year \n", " generation cost is Rs.2.221279per kWh\n" ] } ], "source": [ "pco=120*10**3 #3 units of 40MW\n", "caco=68*10**8 #6 year of consumption\n", "inr=0.16 #intrest rate\n", "de=2.5*10**-2 #depreciation\n", "oanm=1.5*10**-2#OandM\n", "ger=0.5*10**-2#general reserve\n", "pllf=0.6 #plant load facot\n", "aucon=0.5*10**-2 #auxiliary consumption\n", "tac=caco*(inr+de+oanm+aucon) #/total cost\n", "engpy=pco*pllf*24*365 #energy generatedper year\n", "eabb=engpy*(1-ger) #energy available at bus bar\n", "geco=tac/eabb #generation cost\n", "print \" total annual costs is Rs%e per year \\n energy generated per year =%ekWh/year \\n energy available at bus bar %ekWh/year \\n generation cost is Rs.%fper kWh\"%(tac,engpy,eabb,geco)" ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.9" } }, "nbformat": 4, "nbformat_minor": 0 }