{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Ch-12, Parallel Operation of alternators" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## example 12.1 Page 243" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "a\n", " load on 1 alternator 2666.67kW \n", " load on 2 alternator 3333.33kW\n", "b\n", " load supplied by machine 1 with full load on machine2 3200kW \n", " total load is 2666kW\n" ] } ], "source": [ "p=4000 #given kva of alternator\n", "fnl1=50 #frequency on no load\n", "fl1=47.5 #frequency on load\n", "fnl2=50 #frequency on no load on second alternator\n", "fl2=48 #frequency on load on second alternator\n", "l=6000 #load given two to alternator\n", "df1=fnl1-fl1 #change in 1 alternator frequency\n", "df2=fnl2-fl2 #change in 2 alternator frequency\n", "l1=df2*(l)/(df2+df1) #load on 1 alternator\n", "print 'a'\n", "l2=l-l1\n", "print \" load on 1 alternator %.2fkW \\n load on 2 alternator %.2fkW\"%(l1,l2)\n", "ml1=df2*p/df1 #load on 1 machine when machine 2 on full load\n", "ll=ml1+p \n", "print 'b'\n", "print \" load supplied by machine 1 with full load on machine2 %dkW \\n total load is %dkW\"%(ml1,l1) " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## example 12.2 page 243" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "induced emf of a machine a 5.35+1.52i =5.565708kV per phase\n", "\n", "induced emf of a machine b 4.60+1.28i =4.776461kV per phase\n" ] } ], "source": [ "from math import sqrt, atan, acos, pi, sin\n", "l1=3000 #load on 1 machine\n", "pf1=0.8 #pf on 1 machine\n", "i2=150 #current on 2 machine\n", "z1=0.4+12*1J #synchronour impedence\n", "z2=0.5+10*1J\n", "vt=6.6 #terminal voltage\n", "al=l1/2 #active load on each machine\n", "cosdb=al/(vt*i2*sqrt(3)) #cos db\n", "db=acos(cosdb)*180/pi #angle in digree\n", "ib=i2*complex(cosdb,-sin(db*pi/180)) #current in complex number\n", "it=l1/(vt*pf1*sqrt(3)) #total current\n", "itc=complex(it*pf1,-it*sin(acos(pf1))) #total current in complex\n", "ia=itc-ib \n", "pfa=atan(ia.imag/ia.real) #pf of current a\n", "ea=(vt/sqrt(3))+ia*(z1)/1000 #voltage a\n", "pha=atan(ea.imag/ea.real)*180/pi #phase angle of unit a\n", "print \"induced emf of a machine a %.2f+%.2fi =%fkV per phase\"%(ea.real,ea.imag,abs(ea))\n", "eb=(vt/sqrt(3))+ib*(z2)/1000 #voltage b\n", "phb=atan(eb.imag/eb.real)*180/pi #phase angle of unit b\n", "print \"\\ninduced emf of a machine b %.2f+%.2fi =%fkV per phase\"%(eb.real,eb.imag,abs(eb))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## example 12.3 Page 244" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "current is 10.37-4.56iA =11.33A\n" ] } ], "source": [ "from math import cos,pi\n", "e1=3000 ;ph1=20 ;e2=2900; ph2=0 #given induced emf of two machines\n", "z1=2+20*1J ;z2=2.5+30*1J #impedence of two synchronous machine\n", "zl=10+4*1J #load impedence\n", "e11=e1*(cos(ph1*pi/180)+sin(ph1*pi/180)*1J)\n", "e22=e2*(cos(ph2*pi/180)+sin(ph2*pi/180)*1J)\n", "Is=(e11-e22)*zl/(z1*z2+(z1+z2)*zl)\n", "print \"current is %.2f%.2fiA =%.2fA\"%((Is).real,(Is).imag,abs(Is))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## example 12.4 Page 244" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "terminal voltage 239.68V \n", "current supplied by each 10.72A \n", "power factor of each 0.894 lagging \n", "power delivered by each 2297.7941KW\n" ] } ], "source": [ "from math import sqrt, atan, acos, pi, sin\n", "z=10+5*1J #load\n", "e1=250 ;e2=250 #emf of generator\n", "z1=2*1J; z2=2*1J #synchronous impedence\n", "v=(e1*z2+z1*e2)/((z1*z2/z)+z1+z2) \n", "vph=atan(v.imag/v.real)*180/pi #substitution the value in equation 12.10\n", "i1=(z2*e1+(e1-e2)*z)/(z1*z2+(z1+z2)*z); iph=atan((i1).imag/(i1).real)*180/pi #substitution the value in equation 12.7\n", "pf1=cos(pi/180*(vph-iph))\n", "pd=v*i1*pf1\n", "z=10+5*1J #load\n", "e1=250 ;e2=250 #emf of generator\n", "z1=2*1J; z2=2*1J #synchronous impedence\n", "v=(e1*z2+z1*e2)/((z1*z2/z)+z1+z2) \n", "vph=atan(v.imag/v.real)*180/pi #substitution the value in equation 12.10\n", "i1=(z2*e1+(e1-e2)*z)/(z1*z2+(z1+z2)*z) \n", "iph=atan(i1.imag/i1.real)*180/pi #substitution the value in equation 12.7\n", "pf1=cos(pi/180*(vph-iph))\n", "pd=v*i1*pf1\n", "print \"terminal voltage %.2fV \\ncurrent supplied by each %.2fA \\npower factor of each %.3f lagging \\npower delivered by each %.4fKW\"%(abs(v),abs(i1),abs(pf1),abs(pd))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## example 12.5 Page 247" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "(a)\n", " synchronous power 872kW \n", " synchronous torque for 0.5 displacement 2777N-M\n", "(b) full load\n", " synchronous power 977kW \n", " synchronous torque for 0.5 displacement 3111N-M\n" ] } ], "source": [ "from math import sqrt, atan, acos, pi, sin\n", "po=5 #mva rating\n", "v=10 #voltage in kv\n", "n=1500 ;ns=n/60 #speed\n", "f=50 #freaquency\n", "pfb=0.8#power factor in b\n", "x=0.2*1J #reactance of machine\n", "md=0.5 #machanical displacement\n", "#no load\n", "v=1 ;e=1 \n", "p=4\n", "spu=v*e/abs(x); sp=spu*po*1000 ;mt=(pi*p)/(180*2)\n", "spm=sp*mt #synchronous power in per mech.deree\n", "st=spm*md*1000/(2*ns*pi)\n", "print '(a)'\n", "print \" synchronous power %dkW \\n synchronous torque for %.1f displacement %dN-M\"%(spm,md,st)\n", "print '(b) full load'\n", "ee=e+x*(pfb-sin(acos(pfb))*1J)\n", "spb=v*abs(ee)*cos(atan(ee.imag/ee.real))/abs(x) #synchronous power \n", "sppm=spb*po*1000*mt #synchronous power per mech.degree\n", "stp=sppm*md*1000/(2*pi*ns)#synchrounous torque under load\n", "print \" synchronous power %dkW \\n synchronous torque for %.1f displacement %dN-M\"%(sppm,md,stp)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## example 12.6 page 248" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " synchronous power 502.7kW per mech.degree \n", " synchrounous torque 6666N-m\n" ] } ], "source": [ "from math import sqrt, atan, acos, pi, sin\n", "po=2*10**6 ;p=8 ;n=750; v=6000 ;x=6*1J ;pf=0.8 #given \n", "i=po/(v*sqrt(3))\n", "e=(v/sqrt(3))+i*x*(pf-sin(acos(pf))*1J)\n", "mt=p*pi/(2*180)\n", "cs=cos(atan(e.imag/e.real))\n", "ps=abs(e)*v*sqrt(3)*cs*mt/(1000*abs(x))\n", "ns=n/60\n", "ts=ps*1000/(2*pi*ns)\n", "print \" synchronous power %.1fkW per mech.degree \\n synchrounous torque %dN-m\"%(ps,ts)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## example 12.7 page 248" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "a\n", " open circuit emf 6598volts per phase and -2.78 degree\n", "b.\n", " current 365.6A \n", " power factor 0.998\n", "c.\n", "current 456.25A\n", "current 456.25A\n" ] } ], "source": [ "from math import sqrt, atan, acos, pi, sin\n", "i=100 ;pf=-0.8 ;v=11*1000 ;x=4*1J ;ds=10; pfc=-0.8 #given,currents,power factor,voltage,reactance,delta w.r.t steem supply,pf of alternator\n", "e=(v/sqrt(3))+(i*x*(pf-sin(acos(pf))*1J))\n", "print 'a'\n", "ph=atan(e.imag/e.real)*180/pi\n", "print \" open circuit emf %dvolts per phase and %.2f degree\"%(abs(e),ph)\n", "d=ds-ph\n", "eee=round(abs(e)/100)*100\n", "ic=round(abs(eee)*sin(d*pi/180)/abs(x))\n", "iis=(eee**2-(abs(x)*ic)**2)**(0.5)\n", "Is=(iis-v/sqrt(3))/abs(x)\n", "tad=Is/ic\n", "d=atan(tad)*180/pi\n", "ii=ic/cos(d*pi/180)\n", "pff=cos(d*pi/180)\n", "print 'b.'\n", "print \" current %.1fA \\n power factor %.3f\"%(ii,pff)\n", "print 'c.'\n", "ia=ii*pff/abs(pfc)\n", "print \"current %.2fA\"%(ia)\n", "\n", "ia=ii*pff/abs(pfc)\n", "print \"current %.2fA\"%(ia)" ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.9" } }, "nbformat": 4, "nbformat_minor": 0 }