{ "metadata": { "name": "", "signature": "sha256:4c9f19718c00e3bd942cd652731d5120db18676ef29029938745f62980f5cff9" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Introduction to Convection" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 6.2 Page 356 " ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#Operating Conditions\n", "\n", "h = .05; \t\t\t#[W/m^2.K] Heat Convection coefficient\n", "D = .02; \t\t\t#[m] Diameter of cylinder\n", "Cas = 5*math.pow(10,-6); #[kmol/m^3] Surface molar Conc\n", "Casurr = 0; \t\t\t#[kmol/m^3] Surrounding molar Conc\n", "Ma = 128; \t\t\t#[Kg/kmol] Molecular weight\n", "#calculations\n", "#From Eqn 6.15\n", "Na = h*(math.pi*D)*(Cas-Casurr);\n", "na = Ma*Na;\n", "#results\n", "print '%s %.2e %s' %(\"\\n\\n Mass sublimation Rate is =\",na,\" kg/s.m \");\n", "#END" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "\n", " Mass sublimation Rate is = 2.01e-06 kg/s.m \n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 6.3 Page 357" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "import math\n", "#Operating Conditions\n", "\n", "Dab = .288*math.pow(10,-4); \t#[m^2/s] Table A.8 water vapor-air (319K)\n", "pas = .1; \t\t\t\t#[atm] Partial pressure at surface\n", "pasurr = .02; \t\t\t#[atm] Partial pressure at infinity\n", "y0 = .003; \t\t\t\t#[m] Tangent at y = 0 intercepts y axis at 3 mm\n", "#calculations\n", "#From Measured Vapor Pressure Distribution\n", "delp = (0 - pas)/(y0 - 0); #[atm/m]\n", "hmx = -Dab*delp/(pas - pasurr); #[m/s] \n", "#results\n", "print '%s %.4f %s' %(\"\\n\\n Convection Mass Transfer coefficient at prescribed location =\",hmx,\" m/s\");\n", "#END" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "\n", " Convection Mass Transfer coefficient at prescribed location = 0.0120 m/s\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 6.4 Page 362 " ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "import math\n", "#Operating Conditions\n", "v = 1; \t\t\t\t#[m/s] Velocity of water\n", "L = 0.6; \t\t\t\t#[m] Plate length\n", "Tw1 = 300.; \t\t\t\t#[K]\n", "Tw2 = 350.; \t\t\t\t#[K]\n", "#Coefficients [W/m^1.5 . K]\n", "Clam1 = 395;\n", "Cturb1 = 2330;\n", "Clam2 = 477;\n", "Cturb2 = 3600;\n", "\n", "#Water Properties at T = 300K\n", "p1 = 997; \t\t\t\t#[kg/m^3] Density\n", "u1 = 855*math.pow(10,-6); #[N.s/m^2] Viscosity\n", "#Water Properties at T = 350K\n", "p2 = 974; \t\t\t\t#[kg/m^3] Density\n", "u2 = 365*math.pow(10,-6); #[N.s/m^2] Viscosity\n", "\n", "\n", "Rec = 5*math.pow(10,5); #Transititon Reynolds Number\n", "xc1 = Rec*u1/(p1*v); \t\t#[m]Transition length at 300K\n", "xc2 = Rec*u2/(p2*v); \t\t#[m]Transition length at 350K\n", "#calculations\n", "#Integrating eqn 6.14\n", "#At 300 K\n", "h1 = (Clam1*math.pow(xc1,.5) /.5 + Cturb1*(math.pow(L,.8)-math.pow(xc1,.8))/.8)/L;\n", "\n", "#At 350 K\n", "h2 = (Clam2*math.pow(xc2,.5) /.5 + Cturb2*(math.pow(L,.8)-math.pow(xc2,.8))/.8)/L;\n", "#results\n", "print '%s %.2f %s %.2f %s' %(\"\\n\\n Average Convection Coefficient over the entire plate for the two temperatures at 300K =\",h1,\" W/m^2.K and at 350K =\",h2,\" W/m^2.K\");\n", "#END" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "\n", " Average Convection Coefficient over the entire plate for the two temperatures at 300K = 1622.45 W/m^2.K and at 350K = 3707.93 W/m^2.K\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 6.5 Page 372" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "#Operating Conditions\n", "v = 160; \t\t\t\t#[m/s] Velocity of air\n", "L = 0.04; \t\t\t\t\t#[m] Blade length\n", "Tsurr = 1150+273.; \t\t\t#[K]\n", "Ts = 800+273.; \t\t\t\t#[K] Surface Temp\n", "q = 95000; \t\t\t\t#[W/m^2] Original heat flux\n", "#calculations\n", "#Case 1\n", "Ts1 = 700+273.; \t \t\t\t#[K] Surface Temp\n", "q1 = q*(Tsurr-Ts1)/(Tsurr-Ts);\n", "\n", "#Case 2\n", "L2 = .08; \t\t\t#[m] Length\n", "q2 = q*L/L2; \t\t\t#[W/m^2] Heat flux\n", "#results\n", "\n", "print '%s %d %s' %(\"\\n\\n (a) Heat Flux to blade when surface temp is reduced =\",q1/1000. ,\" KW/m^2\") \n", "print '%s %.2f %s' %(\"\\n (b) Heat flux to a larger turbine blade = \",q2/1000. ,\"KW/m^2\");\n", "#END" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "\n", " (a) Heat Flux to blade when surface temp is reduced = 122 KW/m^2\n", "\n", " (b) Heat flux to a larger turbine blade = 47.50 KW/m^2\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 6.6 Page 379" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "import math\n", "#Operating Conditions\n", "v = 100; \t\t\t#[m/s] Velocity of air\n", "Tsurr = 20+273.; \t\t#[K] Surrounding Air Temperature\n", "L1 = 1; \t\t\t\t#[m] solid length\n", "Ts = 80+273.; \t\t\t#[K] Surface Temp\n", "qx = 10000; \t\t\t#[W/m^2] heat flux at a point x\n", "Txy = 60+273.; \t\t#[K] Temp in boundary layer above the point\n", "\n", "#Table A.4 Air Properties at T = 323K\n", "v = 18.2*math.pow(10,-6); #[m^2/s] Viscosity\n", "k = 28*math.pow(10,-3); \t#[W/m.K] Conductivity\n", "Pr = 0.7; \t\t\t#Prandttl Number\n", "#Table A.6 Saturated Water Vapor at T = 323K\n", "pasat = 0.082; \t\t\t#[kg/m^3]\n", "Ma = 18; \t\t\t#[kg/kmol] Molecular mass of water vapor\n", "#Table A.8 Water Vapor-air at T = 323K\n", "Dab = .26*math.pow(10,-4);\t#[m^2/s]\n", "#calculations\n", "#Case 1\n", "Casurr = 0;\n", "Cas = pasat/Ma; \t\t#[kmol/m^3] Molar conc of saturated water vapor at surface\n", "Caxy = Cas + (Casurr - Cas)*(Txy - Ts)/(Tsurr - Ts);\n", "\n", "#Case 2\n", "L2 = 2.;\n", "hm = L1/L2 * Dab/k * qx/(Ts-Tsurr);\n", "Na = hm*(Cas - Casurr);\n", "#results\n", "\n", "print '%s %.4f %s' %(\"\\n (a) Water vapor Concentration above the point =\",Caxy,\"Kmol/m^3 \\n\") \n", "print '%s %.2e %s' %(\"(b) Molar flux to a larger surface = \",Na,\"Kmol/s.m^2\");\n", "#END" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", " (a) Water vapor Concentration above the point = 0.0030 Kmol/m^3 \n", "\n", "(b) Molar flux to a larger surface = 3.53e-04 Kmol/s.m^2\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 6.7 Page 383 " ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "import math\n", "#Operating Conditions\n", "Tsurr = 40+273.; \t\t#[K] Surrounding Air Temperature\n", "#Volatile Wetting Agent A\n", "hfg = 100; \t\t\t#[kJ/kg]\n", "Ma = 200; \t\t\t#[kg/kmol] Molecular mass\n", "pasat = 5000; \t\t\t#[N/m^2] Saturate pressure\n", "Dab = .2*math.pow(10,-4); #[m^2/s] Diffusion coefficient\n", "\n", "#Table A.4 Air Properties at T = 300K\n", "p = 1.16; \t#[kg/m^3] Density\n", "cp = 1.007; \t#[kJ/kg.K] Specific Heat\n", "alpha = 22.5*math.pow(10,-6)#[m^2/s] \n", "R = 8.314; \t#[kJ/kmol] Universal Gas Constt\n", "#calculations\n", "#Applying Eqn 6.65 and setting pasurr = 0\n", "# Ts^2 - Tsurr*Ts + B = 0 , where the coefficient B is\n", "B = Ma*hfg*pasat*math.pow(10,-3) /(R*p*cp*math.pow((alpha/Dab),(2./3.)));\n", "Ts = (Tsurr + math.sqrt(Tsurr*Tsurr - 4*B))/2. ;\n", "#results\n", "print '%s %.1f %s' %(\"\\n Steady State Surface Temperature of Beverage =\",Ts-273.,\"degC\");\n", "#END" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", " Steady State Surface Temperature of Beverage = 5.9 degC\n" ] } ], "prompt_number": 6 } ], "metadata": {} } ] }