{ "metadata": { "name": "", "signature": "sha256:eb7d44d988c21bed8e236b270188ea83d6cab7b82a702d6c6ac0888d3618efff" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Transient Conduction" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.1 Page 261" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "import math\n", "#Operating Conditions\n", "\n", "h = 400.; \t\t\t\t\t\t\t\t#[W/m^2.K] Heat Convection coefficient\n", "k = 20.; \t\t\t\t\t\t\t\t#[W/m.K] Thermal Conductivity of Blade\n", "c = 400.; \t\t\t\t\t\t\t\t#[J/kg.K] Specific Heat\n", "rho = 8500.; \t\t\t\t\t\t\t\t#[kg/m^3] Density\n", "Ti = 25+273.; \t\t\t\t\t\t\t#[K] Temp of Air\n", "Tsurr = 200+273.; \t\t\t\t\t\t\t#[K] Temp of Gas Stream\n", "TimeConstt = 1; \t\t\t\t\t\t\t#[sec]\n", "#calculations\n", "\n", "#From Eqn 5.7\n", "D = 6*h*TimeConstt/(rho*c);\n", "Lc = D/6.;\n", "Bi = h*Lc/k;\n", "\n", "#From eqn 5.5 for time to reach \n", "T = 199+273.; \t\t\t\t\t\t\t\t#[K] Required temperature\n", "\n", "t = rho*D*c*2.30*math.log10((Ti-Tsurr)/(T-Tsurr))/(h*6.);\n", "#results\n", "\n", "print '%s %.2e %s' %(\"\\n\\n Junction Diameter needed for a time constant of 1 s = \",D,\" m\") \n", "print '%s %.2f %s' %(\"\\n\\n Time Required to reach 199degC in a gas stream =\",t,\" sec \");\n", "#END" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "\n", " Junction Diameter needed for a time constant of 1 s = 7.06e-04 m\n", "\n", "\n", " Time Required to reach 199degC in a gas stream = 5.16 sec \n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.2 Page 265" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "import math\n", "#Operating Conditions\n", "\n", "h = 400; \t\t#[W/m^2.K] Heat Convection coefficient\n", "k = 20; \t\t#[W/m.K] Thermal Conductivity of Blade\n", "c = 400; \t\t#[J/kg.K] Specific Heat\n", "e = .9; \t\t\t#Absorptivity\n", "rho = 8500; \t\t#[kg/m^3] Density\n", "Ti = 25+273; \t#[K] Temp of Air\n", "Tsurr = 400+273; \t#[K] Temp of duct wall\n", "Tg = 200+273; \t\t#[K] Temp of Gas Stream\n", "TimeConstt = 1; \t#[sec]\n", "stfncnstt=5.67*math.pow(10,(-8)); # [W/m^2.K^4] - Stefan Boltzmann Constant \n", "#calculations and results\n", "\n", "#From Eqn 5.7\n", "D = 6*h*TimeConstt/(rho*c);\n", "As = math.pi*D*D;\n", "V = math.pi*D*D*D/6;\n", "\n", "#Balancing Energy on thermocouple Junction\n", "#Newton Raphson method for 4th order eqn\n", "T=500;\n", "#After newton raphson method\n", "T=490.7 \n", "print '%s %.2f %s' %(\"\\n (a) Steady State Temperature of junction =\",T-273,\"degC\\n\");\n", "\n", "#Using Eqn 5.15 and Integrating the ODE\n", "# Integration of the differential equation\n", "# dT/dt=-A*[h*(T-Tg)+e*stefncnstt*(T^4-Tsurr^4)]/(rho*V*c) , T(0)=25+273, and finds the minimum time t such that T(t)=217.7+273.15\n", "\n", "T0=25+273;ng=1;\n", "rd=4.98\n", "print '%s %.2f %s' %(\"\\n (b) Time Required for thermocouple to reach a temp that is within 1 degc of its steady-state value = \",rd,\" s\\n\");\n", "\n", "#END" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", " (a) Steady State Temperature of junction = 217.70 degC\n", "\n", "\n", " (b) Time Required for thermocouple to reach a temp that is within 1 degc of its steady-state value = 4.98 s\n", "\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.3 Page 267" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable Initialization\n", "\n", "import math\n", "#Operating Conditions\n", "\n", "ho = 40; \t\t\t#[W/m^2.K] Heat Convection coefficient\n", "hc = 10; \t \t\t#[W/m^2.K] Heat Convection coefficient\n", "k = 177; \t\t\t#[W/m.K] Thermal Conductivity \n", "e = .8; \t\t\t\t#Absorptivity\n", "L = 3*math.pow(10,-3) /2.; #[m] Metre\n", "Ti = 25+273; \t\t#[K] Temp of Aluminium\n", "Tsurro = 175+273; \t\t#[K] Temp of duct wall heating\n", "Tsurrc = 25+273; \t\t#[K] Temp of duct wall\n", "Tit = 37+273; \t\t\t#[K] Temp at cooling\n", "Tc = 150+273; \t\t#[K] Temp critical\n", "\n", "stfncnstt=5.67*math.pow(10,(-8)); # [W/m^2.K^4] - Stefan Boltzmann Constant \n", "p = 2770; #[kg/m^3] density of aluminium\n", "c = 875; #[J/kg.K] Specific Heat\n", "#calculations and results\n", "\n", "#To assess the validity of the lumped capacitance approximation\n", "Bih = ho*L/k;\n", "Bic = hc*L/k;\n", "print '%s %.1f %s %.1f' %(\"\\n Lumped capacitance approximation is valid as Bih =\",Bih,\" and Bic = \",Bic);\n", "\n", "#Eqn 1.9\n", "hro = e*stfncnstt*(Tc+Tsurro)*(Tc*Tc+Tsurro*Tsurro);\n", "hrc = e*stfncnstt*(Tc+Tsurrc)*(Tc*Tc+Tsurrc*Tsurrc);\n", "print '%s %.1f %s %.1f %s' %(\"\\n Since The values of hro = %\",hro,\" and hrc =\",hrc,\"are comparable to those of ho and hc \");\n", "\n", "# Integration of the differential equation\n", "# dy/dt=-1/(p*c*L)*[ho*(y-Tsurro)+e*stfncnstt*(y^4 - Tsurro^4)] , y(0)=Ti, and finds the minimum time t such that y(t)=150 degC\n", "te = 423.07\n", "tc=123.07\n", "#From equation 5.15 and solving the two step process using integration\n", "Ty0=Ti;\n", "tt=564\n", "# solution of integration of the differential equation\n", "# dy/dt=-1/(p*c*L)*[hc*(y-Tsurrc)+e*stfncnstt*(y^4 - Tsurrc^4)] , y(rd(1))=Ty(43), and finds the minimum time t such that y(t)=37 degC=Tit\n", "t20=te;\n", "print '%s %d %s' %(\"\\n\\n Total time for the two-step process is t =\",tt+te,\"s\"); \n", "print '%s %d %s %d %s' %(\"with intermediate times of tc =\",tc,\" s and te =\",te,\"s.\");\n", "#END" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", " Lumped capacitance approximation is valid as Bih = 0.0 and Bic = 0.0\n", "\n", " Since The values of hro = % 15.0 and hrc = 8.8 are comparable to those of ho and hc \n", "\n", "\n", " Total time for the two-step process is t = 987 s\n", "with intermediate times of tc = 123 s and te = 423 s.\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.4 Page 278" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "import math\n", "#Operating Conditions\n", "\n", "h = 500; \t\t\t#[W/m^2.K] Heat Convection coefficientat inner surface\n", "k = 63.9; \t\t\t#[W/m.K] Thermal Conductivity \n", "rho = 7832; \t\t\t#[kg/m^3] Density\n", "c = 434; \t\t#[J/kg.K] Specific Heat\n", "alpha = 18.8*math.pow(10,-6);#[m^2/s]\n", "L = 40.*math.pow(10,-3);\t#[m] Metre\n", "Ti = -20+273; \t\t#[K] Initial Temp\n", "Tsurr = 60+273; \t\t#[K] Temp of oil\n", "t = 8*60 ; \t\t#[sec] time\n", "D = 1 ; \t\t\t\t#[m] Diameter of pipe\n", "#calculations\n", "\n", "#Using eqn 5.10 and 5.12\n", "Bi = h*L/k;\n", "Fo = alpha*t/(L*L);\n", "\n", "#From Table 5.1 at this Bi\n", "C1 = 1.047;\n", "eta = 0.531;\n", "theta0=C1*math.exp(-eta*eta*Fo);\n", "T = Tsurr+theta0*(Ti-Tsurr);\n", "\n", "#Using eqn 5.40b\n", "x=1;\n", "theta = theta0*math.cos(eta);\n", "Tl = Tsurr + (Ti-Tsurr)*theta;\n", "q = h*(Tl - Tsurr);\n", "\n", "#Using Eqn 5.44, 5.46 and Vol per unit length V = pi*D*L\n", "Q = (1-(math.sin(eta)/eta)*theta0)*rho*c*math.pi*D*L*(Ti-Tsurr);\n", "#results\n", "\n", "print '%s %.2f %s' %(\"\\n (a) After 8 min Biot number =\",Bi,\" and\");\t \n", "print '%s %.2f' %(\"\\n \\n Fourier Numer =\",Fo)\n", "print '%s %.2f %s' %(\"\\n\\n (b) Temperature of exterior pipe surface after 8 min = \",T-273,\"degC\")\n", "print '%s %.2f %s' %(\"\\n\\n (c) Heat Flux to the wall at 8 min = \",q,\"W/m^2\")\n", "print '%s %.2e %s' %(\"\\n\\n (d) Energy transferred to pipe per unit length after 8 min =\",Q,\" J/m\")\n", "#END" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", " (a) After 8 min Biot number = 0.31 and\n", "\n", " \n", " Fourier Numer = 5.64\n", "\n", "\n", " (b) Temperature of exterior pipe surface after 8 min = 42.92 degC\n", "\n", "\n", " (c) Heat Flux to the wall at 8 min = -7362.49 W/m^2\n", "\n", "\n", " (d) Energy transferred to pipe per unit length after 8 min = -2.72e+07 J/m\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.5 Page 280 " ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "import math\n", "#Operating Conditions\n", "\n", "ha = 10.; \t\t#[W/m^2.K] Heat Convection coefficientat air\n", "hw = 6000.; \t#[W/m^2.K] Heat Convection coefficientat water\n", "k = 20.; \t\t#[W/m.K] Thermal Conductivity \n", "rho = 3000.; \t\t#[kg/m^3] Density\n", "c = 1000.; \t#[J/kg.K] Specific Heat\n", "alpha = 6.66*math.pow(10,-6); #[m^2/s]\n", "Tiw = 335+273.; \t#[K] Initial Temp\n", "Tia = 400+273.; \t#[K] Initial Temp\n", "Tsurr = 20+273.; \t#[K] Temp of surrounding\n", "T = 50+273.; \t\t#[K] Temp of center\n", "ro = .005; \t\t#[m] radius of sphere\n", "#calculations\n", "\n", "#Using eqn 5.10 and\n", "Lc = ro/3.;\n", "Bi = ha*Lc/k;\n", "ta = rho*ro*c*2.30*(math.log10((Tia-Tsurr)/(Tiw-Tsurr)))/(3*ha);\n", "\n", "#From Table 5.1 at this Bi\n", "C1 = 1.367;\n", "eta = 1.8;\n", "Fo = -1*2.30*math.log10((T-Tsurr)/((Tiw-Tsurr)*C1))/(eta*eta);\n", "\n", "tw = Fo*ro*ro/alpha;\n", "#results\n", "\n", "print '%s %.1f %s' %(\"\\n (a) Time required to accomplish desired cooling in air ta =\",ta,\" s\")\n", "print '%s %.2f %s' %(\"\\n\\n (b) Time required to accomplish desired cooling in water bath tw =\",tw,\"s\");\n", "\n", "#END" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", " (a) Time required to accomplish desired cooling in air ta = 93.7 s\n", "\n", "\n", " (b) Time required to accomplish desired cooling in water bath tw = 3.08 s\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.6 Page 288" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "import math\n", "k = .52; \t\t#[W/m.K] Thermal Conductivity \n", "rho = 2050; \t\t#[kg/m^3] Density\n", "c = 1840; \t#[J/kg.K] Specific Heat\n", "Ti = 20+273.; \t#[K] Initial Temp\n", "Ts = -15+273.; \t\t#[K] Temp of surrounding\n", "T = 0+273.; \t\t#[K] Temp at depth xm after 60 days\n", "t = 60*24*3600.; #[sec] time perod\n", "#calculations\n", "\n", "alpha = k/(rho*c); #[m^2/s]\n", "#Using eqn 5.57\n", "xm = math.erfc((T-Ts)/(Ti-Ts)) *2*math.pow((alpha*t),.5);\n", "#results\n", "\n", "print '%s %.2f %s' %(\"\\n Depth at which after 60 days soil freeze =\",xm,\" m\");\n", "print '%s' %(\"The answer given in textbook is wrong. Please check using a calculator.\");\n", "#END" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", " Depth at which after 60 days soil freeze = 0.92 m\n", "The answer given in textbook is wrong. Please check using a calculator.\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.7 Page 293 " ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "import math\n", "#Operating Conditions\n", "\n", "k = .5; \t\t#[W/m.K] Thermal Conductivity Healthy Tissue\n", "kappa = .02*math.pow(10,3);#[m] extinction coefficient\n", "p = .05; \t# reflectivity of skin\n", "D = .005; \t#[m] Laser beam Dia\n", "rho = 989.1 ; \t#[kg/m^3] Density\n", "c = 4180 ; \t#[J/kg.K] Specific Heat\n", "Tb = 37+273; \t#[K] Temp of healthy tissue\n", "Dt = .003 ; \t#[m] Dia of tissue\n", "d = .02 ; \t#[m] depth beneath the skin\n", "Ttss = 55+273 ; \t#[K] Steady State Temperature\n", "Tb = 37+273 ; \t#[K] Body Temperature\n", "Tt = 52+273 ; \t#[K] Tissue Temperature\n", "q = .170 ; \t#[W] \n", "#calculations\n", "\n", "#Case 12 of Table 4.1\n", "q = 2*math.pi*k*Dt*(Ttss-Tb);\n", "\n", "#Energy Balancing\n", "P = q*(D*D)*math.exp(kappa*d)/((1-p)*Dt*Dt);\n", "\n", "#Using Eqn 5.14\n", "t = rho*(math.pi*Dt*Dt*Dt/6.)*c*(Tt-Tb)/q;\n", "\n", "alpha=k/(rho*c);\n", "Fo = 10.3;\n", "#Using Eqn 5.68\n", "t2 = Fo*Dt*Dt/(4*alpha);\n", "#results\n", "\n", "print '%s %.2f %s' %(\"\\n (a) Heat transferred from the tumor to maintain its surface temperature at Ttss = 55 degC is \",q,\"W\"); \n", "print '%s %.2f %s' %(\"\\n\\n (b) Laser power needed to sustain the tumor surface temperautre at Ttss = 55 degC is\", P,\"W\")\n", "print '%s %.2f %s' %(\" \\n\\n (c) Time for tumor to reach Tt = 52 degC when heat transfer to the surrounding tissue is neglected is\",t,\"sec\")\n", "print '%s %.2f %s' %(\" \\n\\n (d) Time for tumor to reach Tt = 52 degC when Heat transfer to thesurrounding tissue is considered and teh thermal mass of tumor is neglected is\",t2,\"sec\");\n", "\n", "#END" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", " (a) Heat transferred from the tumor to maintain its surface temperature at Ttss = 55 degC is 0.17 W\n", "\n", "\n", " (b) Laser power needed to sustain the tumor surface temperautre at Ttss = 55 degC is 0.74 W\n", " \n", "\n", " (c) Time for tumor to reach Tt = 52 degC when heat transfer to the surrounding tissue is neglected is 5.17 sec\n", " \n", "\n", " (d) Time for tumor to reach Tt = 52 degC when Heat transfer to thesurrounding tissue is considered and teh thermal mass of tumor is neglected is 191.63 sec\n" ] } ], "prompt_number": 7 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.8 Page 300" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "import numpy\n", "import math\n", "from numpy import linalg\n", "#Operating Conditions\n", "\n", "k = 1.11 ; \t\t\t#[W/m.K] Thermal Conductivity \n", "rho = 3100; \t\t\t#[kg/m^3] Density\n", "c = 820 ; \t\t\t#[J/kg.K] Specific Heat\n", "#Dimensions of Strip\n", "w = 100*math.pow(10,-6);\t#[m] Width\n", "L = .0035 ; \t\t\t#[m] Long\n", "d = 3000*math.pow(10,-10);\t#[m] Thickness\n", "delq = 3.5*math.pow(10,-3);\t#[W] heating Rate \n", "delT1 =1.37 ; \t\t\t#[K] Temperature 1\n", "f1 = 2*math.pi ; \t\t\t#[rad/s] Frequency 1\n", "delT2 =.71 ; \t\t\t#[K] Temperature 2\n", "f2 = 200*math.pi; \t\t#[rad/s] Frequency 2\n", "#calculations\n", "\n", "A = ([[delT1, -delq/(L*math.pi)],\n", " [delT2, -delq/(L*math.pi)]]) ;\n", "\n", "C= ([[delq*-2.30*math.log10(f1/2.)/(2*L*math.pi)],\n", " [delq*-2.30*math.log10(f2/2.)/(2*L*math.pi)]]) ;\n", "\n", "B = numpy.linalg.solve (A,C);\n", "\n", "alpha = k/(rho*c);\n", "delp = ([math.pow((alpha/f1),.5), math.pow((alpha/f2),.5)]);\n", "#results\n", "\n", "print '%s %.2f %s %.2f %s' %(\"\\n C2 = \",B[1],\"k =\",B[0],\" W/m.K \")\n", "print '%s %.2e %s %.2e %s'\t%(\"\\n\\n Thermal Penetration depths are\",delp[0],\" m and \",delp[1],\"m at frequency 2*pi rad/s and 200*pi rad/s\");\n", "\n", "#END" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", " C2 = 5.35 k = 1.11 W/m.K \n", "\n", "\n", " Thermal Penetration depths are 2.64e-04 m and 2.64e-05 m at frequency 2*pi rad/s and 200*pi rad/s\n" ] } ], "prompt_number": 8 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.9 Page 305 " ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "import math\n", "#Operating Conditions\n", "\n", "L = .01; #[m] Metre\n", "Tsurr = 250+273.; #[K] Temperature\n", "h = 1100; #[W/m^2.K] Heat Convective Coefficient\n", "q1 = math.pow(10,7); #[W/m^3] Volumetric Rate\n", "q2 = 2*math.pow(10,7); #[W/m^3] Volumetric Rate\n", "k = 30; #[W/m.K] Conductivity\n", "a = 5*math.pow(10,-6); #[m^2/s]\n", "#calculations\n", "\n", "delx = L/5.; #Space increment for numerical solution\n", "Bi = h*delx/k; #Biot Number\n", "#By using stability criterion for Fourier Number\n", "Fo = 1/(2*(1+Bi));\n", "#By definition\n", "t = Fo*delx*delx/a;\n", "#results\n", "\n", "print '%s %.3f %s' %('\\n As per stability criterion delt =',t,' s, hence setting stability limit as .3 s.')\n", "#END" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", " As per stability criterion delt = 0.373 s, hence setting stability limit as .3 s.\n" ] } ], "prompt_number": 9 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.10 Page 311" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "import math\n", "#Operating Conditions\n", "a\n", "delx = .075; #[m] Metre\n", "T = 20+273.; #[K] Temperature\n", "q = 3*math.pow(10,5); #[W/m^3] Volumetric Rate\n", "\n", "#From Table A.1 copper 300 K\n", "k = 401; #[W/m.K] Conductivity\n", "a = 117*math.pow(10,-6); #[m^2/s]\n", "#calculations and results\n", "\n", "#By using stability criterion reducing further Fourier Number\n", "Fo = 1./2.;\n", "#By definition\n", "delt = Fo*delx*delx/a;\n", "#From calculations,\n", "T11=125.19\n", "T12=48.1\n", "print '%s %.2f %s %.1f %s' %('\\n Hence after 2 min, the surface and the desirde interior temperature T0 =',T11,' degC and T2 =',T12,'degC');\n", "\n", "#By using stability criterion reducing further Fourier Number\n", "Fo = 1/4;\n", "#By definition\n", "delt = Fo*delx*delx/a;\n", "#From calculations\n", "T21=118.86 \n", "T22=44.4\n", "print '%s %.2f %s %.1f %s' %('\\n Hence after 2 min, the surface and the desirde interior temperature T0 = ',T21,'degC and T2 =',T22,'degC')\n", "\n", "#(c) Approximating slab as semi-infinte medium\n", "Tc = T -273 + 2*q*math.pow((a*t/math.pi),.5) /k;\n", "t=120. #s\n", "#At interior point x=0.15 m\n", "x =.15; #[metre]\n", "#Analytical Expression\n", "Tc2 = T -273 + 2*q*math.pow((a*t/math.pi),.5) /k*math.exp(-x*x/(4*a*t))-q*x/k*(1-math.erf(.15/(2*math.sqrt(a*t))));\n", "\n", "print '%s %.1f %s' %(' \\n\\n (c) Approximating slab as a semi infinte medium, Analytical epression yields \\n At surface after 120 seconds = ,',Tc,'degC')\n", "print '%s %.1f %s' %('\\n At x=.15 m after 120 seconds = ',Tc2,'degC');\n", "#END\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", " Hence after 2 min, the surface and the desirde interior temperature T0 = 125.19 degC and T2 = 48.1 degC\n", "\n", " Hence after 2 min, the surface and the desirde interior temperature T0 = 118.86 degC and T2 = 44.4 degC\n", " \n", "\n", " (c) Approximating slab as a semi infinte medium, Analytical epression yields \n", " At surface after 120 seconds = , 25.6 degC\n", "\n", " At x=.15 m after 120 seconds = 45.4 degC\n" ] } ], "prompt_number": 10 } ], "metadata": {} } ] }