{ "metadata": { "name": "", "signature": "sha256:ca8839cd8008ad44590694ea2ad13ce425811997673bf9c8b6a013454026c154" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "One-dimensional, Steady State Conduction" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3.1 Page 104" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "import math\n", "A=1.8; \t\t\t\t\t# [m^2] Area for Heat transfer i.e. both surfaces\n", "Ti = 35+273.; \t\t\t\t#[K] - Inside Surface Temperature of Body\n", "Tsurr = 10+273.; \t\t\t#[K] - Temperature of surrounding\n", "Tf = 283.; \t\t\t\t\t#[K] - Temperature of Fluid Flow\n", "e=.95; \t\t\t\t\t\t# Emissivity of Surface\n", "Lst=.003; \t\t\t\t#[m] - Thickness of Skin\n", "kst=.3; \t\t \t\t\t# [W/m.K] Effective Thermal Conductivity of Body\n", "kins = .014; \t\t\t\t# [W/m.K] Effective Thermal Conductivity of Aerogel Insulation\n", "hr = 5.9; \t\t\t\t#[W/m^2.k] - Natural Thermal Convectivity from body to air\n", "stfncnstt=5.67*math.pow(10,(-8)); # [W/m^2.K^4] - Stefan Boltzmann Constant \n", "q = 100; \t\t\t#[W] Given Heat rate\n", "#calculations\n", "\n", "#Using Conducion Basic Eq 3.19\n", "Rtot = (Ti-Tsurr)/q;\n", "#Also\n", "#Rtot=Lst/(kst*A) + Lins/(kins*A)+(h*A + hr*A)^-1\n", "#Rtot = 1/A*(Lst/kst + Lins/kins +(1/(h+hr)))\n", "\n", "#Thus\n", "#For Air,\n", "h=2.; \t\t\t\t\t#[W/m^2.k] - Natural Thermal Convectivity from body to air\n", "Lins1 = kins * (A*Rtot - Lst/kst - 1/(h+hr));\n", "\n", "#For Water,\n", "h=200.; \t\t\t\t\t#[W/m^2.k] - Natural Thermal Convectivity from body to air\n", "Lins2 = kins * (A*Rtot - Lst/kst - 1/(h+hr));\n", "\n", "Tsa=305.; \t\t#[K] Body Temperature Assumed\n", "\n", "#Temperature of Skin is same in both cases as Heat Rate is same\n", "#q=(kst*A*(Ti-Ts))/Lst\n", "Ts = Ti - q*Lst/(kst*A);\n", "#results\n", "\n", "#Also from eqn of effective resistance Rtot F\n", "print '%s %.1f %s' %(\"\\n\\n (I) In presence of Air, Insulation Thickness = \",Lins1*1000,\" mm\")\n", "print '%s %.1f %s' %(\"\\n (II) In presence of Water, Insulation Thickness =\",Lins2*1000.,\" mm\");\n", "print '%s %.2f %s' %(\"\\n\\n Temperature of Skin =\",Ts-273,\" degC\");\n", "#END" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "\n", " (I) In presence of Air, Insulation Thickness = 4.4 mm\n", "\n", " (II) In presence of Water, Insulation Thickness = 6.1 mm\n", "\n", "\n", " Temperature of Skin = 34.44 degC\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3.2 Page 107" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "Tf = 25+273.; \t\t\t#[K] - Temperature of Fluid Flow\n", "L=.008; \t\t\t\t#[m] - Thickness of Aluminium \n", "k=239; \t\t\t\t# [W/m.K] Effective Thermal Conductivity of Aluminium\n", "Rc=.9*math.pow(10,-4); #[K.m^2/W] Maximum permeasible Resistane of Epoxy Joint\n", "q=10000.; \t\t\t#[W/m^2] Heat dissipated by Chip\n", "h=100.; \t\t\t\t#[W/m^2.k] - Thermal Convectivity from chip to air\n", "#calculations\n", "\n", "#Temperature of Chip\n", "\n", "Tc = Tf + q/(h+1/(Rc+(L/k)+(1/h)));\n", "q=(Tc-Tf)/(1/h)+(Tc-Tf)/(Rc+(L/k)+(1/h))\n", "#results\n", "\n", "print '%s %.2f %s' %(\"\\n\\n Temperature of Chip =\",Tc-273,\"degC\");\n", "print '%s' %(\"\\n Chip will Work well below its maximum allowable Temperature ie 85 degC\")\n", "#END" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "\n", " Temperature of Chip = 75.31 degC\n", "\n", " Chip will Work well below its maximum allowable Temperature ie 85 degC\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3.3 Page 109" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "import math\n", "D = 14 * math.pow(10,-9); \t\t\t# [m]Dia of Nanotube\n", "s = 5*math.pow(10,-6); \t\t\t# [m]Distance between the islands\n", "Ts = 308.4; \t\t\t\t\t\t#[K] Temp of sensing island\n", "Tsurr = 300; \t\t\t\t\t\t#[K] Temp of surrounding\n", "q = 11.3*math.pow(10,-6); \t\t\t#[W] Total Rate of Heat flow\n", "\n", "#Dimension of platinum line\n", "wpt =math.pow(10,-6); \t\t\t#[m]\n", "tpt = 0.2*math.pow(10,-6); \t\t\t#[m] \n", "Lpt = 250*math.pow(10,-6); \t\t\t#[m] \n", "#Dimension of Silicon nitride line\n", "wsn = 3*math.pow(10,-6); \t\t\t#[m]\n", "tsn = 0.5*math.pow(10,-6); \t \t\t#[m] \n", "Lsn = 250*math.pow(10,-6); \t\t\t#[m] \n", "#From Table A.1 Platinum Temp Assumed = 325K\n", "kpt = 71.6; \t\t\t\t\t\t\t#[W/m.K]\n", "#From Table A.2, Silicon Nitride Temp Assumed = 325K\n", "ksn = 15.5; \t \t\t\t\t\t\t#[W/m.K]\n", "#calculations\n", "\n", "Apt = wpt*tpt; \t\t\t\t\t#Cross sectional area of platinum support beam\n", "Asn = wsn*tsn-Apt; \t\t\t\t\t#Cross sectional area of Silicon Nitride support beam\n", "Acn = math.pi*D*D/4.; \t\t\t#Cross sectional Area of Carbon nanotube\n", "\n", "Rtsupp = 1/(kpt*Apt/Lpt + ksn*Asn/Lsn); #[K/W] Thermal Resistance of each support\n", "\n", "qs = 2*(Ts-Tsurr)/Rtsupp; \t\t\t#[W] Heat loss through sensing island support\n", "qh = q - qs; \t\t\t\t\t\t#[W] Heat loss through heating island support\n", "\n", "Th = Tsurr + qh*Rtsupp/2.; \t\t\t#[K] Temp of Heating island\n", "\n", "#For portion Through Carbon Nanotube\n", "\n", "\n", "kcn = qs*s/(Acn*(Th-Ts));\n", "qs = (Th-Ts)/(s/(kcn*Acn));\n", "#results\n", "\n", "print '%s %.2f %s' %(\"\\n\\n Thermal Conductivity of Carbon nanotube =\",kcn,\"W/m.K\");\n", "#END" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "\n", " Thermal Conductivity of Carbon nanotube = 3111.86 W/m.K\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3.4 Page 113" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "import math\n", "import numpy\n", "from numpy import linspace\n", "import matplotlib\n", "from matplotlib import pyplot\n", "a = 0.25;\n", "x1 = .05; #[m] Distance of smaller end\n", "x2 = .25; #[m] Distance of larger end\n", "T1 = 400; #[K] Temperature of smaller end\n", "T2 = 600; #[K] Temperature of larger end\n", "k = 3.46; #[W/m.K] From Table A.2, Pyroceram at Temp 285K\n", "T=numpy.zeros(100)\n", "#calculations\n", "\n", "x = numpy.linspace(0.05,100,num=100);\n", "i=1;\n", "for i in range (0,99):\n", " z=float(x[i]);\n", " T[i]=(T1 + (T1-T2)*((1/z - 1/x1)/(1/x1 - 1/x2)));\t\n", "\n", "pyplot.plot(x,T);\n", "pyplot.xlabel(\"x (m)\");\n", "pyplot.ylabel(\"T (K)\");\n", "pyplot.show()\n", "qx = math.pi*a*a*k*(T1-T2)/(4*(1/x1 - 1/x2)); #[W]\n", "#results\n", "\n", "print '%s %.2f %s' %(\"\\n\\n Heat Transfer rate =\",qx,\" W\");\n", "#END" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "\n", " Heat Transfer rate = -2.12 W\n" ] } ], "prompt_number": 10 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3.5 Page 119 " ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "%matplotlib inline\n", "import math\n", "import numpy\n", "from numpy import linspace\n", "import matplotlib\n", "from matplotlib import pyplot\n", "k = .055; \t\t\t\t#[W/m.K] From Table A.3, Cellular glass at Temp 285K\n", "h = 5; \t\t\t\t#[W/m^2.K]\n", "ri = 5*math.pow(10,-3); #[m] radius of tube\n", "#calculations\n", "\n", "rct = k/h; \t\t\t\t# [m] Critical Thickness of Insulation for maximum Heat loss or minimum resistance\n", "\n", "x = numpy.linspace(0,100,num=99);\n", "ycond= numpy.zeros(99);\n", "yconv= numpy.zeros(99);\n", "ytot= numpy.zeros(99);\n", "for i in range (0,99):\n", " z=float(x[i]);\n", " ycond[i]=(2.30*math.log10((z+ri)/ri)/(2*math.pi*k));\n", " yconv[i]=1/(2*math.pi*(z+ri)*h);\n", " ytot[i]=yconv[i]+ycond[i];\n", "\n", " \n", "pyplot.plot(x,ytot);\n", "pyplot.xlabel(\"r-ri (m)\");\n", "pyplot.ylabel(\"R (m.K/W)\");\n", "pyplot.show();\n", "#results\n", "\n", "print '%s %.3f %s' %(\"\\n\\n Critical Radius is =\",rct,\" m \")\n", "print '%s %.3f %s' %(\"\\n Heat transfer will increase with the addition of insulation up to a thickness of\",rct-ri,\" m\");\n", "#END" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Populating the interactive namespace from numpy and matplotlib\n" ] }, { "metadata": {}, "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAEPCAYAAABCyrPIAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XtUVWXeB/DvES+RQipwEMUbF5GrIujr3aNJ3LTXScq8\n5KTWW6vGRq2mtzVNwDTpqqYxbKY1s1KnXslSy8qkmLTCa+YNxEvjBcEBRDhHROUmCM/7xwMHSUA8\nsC9wvp+1nnUOx3PO/u29XM/37P3s/WyDEEKAiIjsXhetCyAiIn1gIBAREQAGAhER1WEgEBERAAYC\nERHVYSAQEREABQOhsrISo0ePRmhoKIYNG4bly5cDAIqLixEREYGQkBBERkaipKREqRKIiOguGJS8\nDqGiogKOjo64efMmJk6ciFWrVmHr1q3w9vbGsmXL8M477yA7OxtJSUlKlUBERK2k6CEjR0dHAEBV\nVRVqampgNBrx9ddf47HHHgMALFiwACkpKUqWQEREraRoINTW1mLkyJFwd3fH1KlTERgYCLPZDBcX\nFwCAq6srioqKlCyBiIhaqauSX96lSxdkZGTg6tWriIyMxA8//KDk4oiIqA0UDYR69913H2JjY/HT\nTz/Bzc0NFosFrq6uMJvNMBqNt73fx8cHWVlZapRGRNRpeHt749y5czZ/XrFDRpcvX8b169cByMHl\nHTt2IDg4GDExMUhOTgYAJCcnIyYm5rbPZmVlQQjBJgTi4+M1r0EvjduC24LbouXW1h/Siu0hXLx4\nEQsXLoQQApWVlZg3bx5iY2Mxbtw4zJkzB+vXr0e/fv2wefNmpUogIqK7oFggBAcHIz09/bbX+/bt\nix07dii1WCIishGvVNY5k8mkdQm6wW3RgNuiAbdF+1H0wjRbGQwG6LAsIiJda2vfyT0EIiICwEAg\nIqI6DAQiIgLAQCAiojoMBCIiAqDS1BVERNR2FRWAxdJ8aysGAhGRBmprgZISwGyWnbnZ3LjVd/K3\nPq+uBlxdATc3+eji0vB8+PC218TrEIiI2oEQsoMvKpLNbL79+a0d/uXLQM+eskO/tdV3+Lc+r3/s\n2RMwGJqvoa19JwOBiKgZN240dOqFhY0ff9nMZuDee2XH7e7e0KkbjbI11fF3796+9TIQiIjuQkWF\n7NQLC4FLlxqeN9XKyxs6eKNRPtZ39vWv1Xf2RiPQo4e268ZAICK7V1Mjf6EXFMhOvqVWWSk78379\nGjr45lqfPi0fotEbBgIRdVo3bshOvKBAtosXG/9d3ywW2Xl7eMiOvl+/xs/rA6BfP6B3747Vyd8N\nBgIRdTg3b8qO/eJFID9fPl682NDp17dr12Rn7uHRuPXv3/C8Xz95uKZbN63XSnsMBCLSlWvXZCef\nlycfb31eHwAWizzu3r8/MGCA7NgHDGjo6Otfc3UFuvDy2VZjIBCRKoQArlyRnXteHpCb2/C8vtPP\ny5Pn13t6yk69uebuDnTlVVDtjoFARO2itFR28v/5T+PH+o4/N1celvH0BAYOlI+/bAMGAPfd13mP\n0esdA4GI7qi2Vp5GeeGC7OjrH29tFRWyo69vgwY1/nvgQMDJSes1oZYwEIgINTXy+HxOTkO7cKHh\neV6e/OU+aBAweHDTjy4u/GXf0TEQiOyAEPIXfnY2cP68fMzJaXjMy5MDsEOGyA5+6FD5WP/3oEGA\no6O260DKYyAQdRIVFbKDz8qSnf6tLTtbzmMzdOjtrb7T1/oqWdIeA4GoAykpAc6dky0rq+ExK0tO\ndjZkCODtDXh5yTZ0aMMjj9/TnTAQiHTm6lXg7NnGrT4EKisBHx/Z6fv4NDz39pZn6Dg4aF09dWQM\nBCINVFXJX/WnTwNnzjQ8njkDlJXJjt7X9/ZmNHLglpTDQCBSkMUC/Pwz8O9/y07/3/+WLS9PDtQO\nGwb4+cnm6ysfPTzY6ZM2GAhEbSSE7OBPnZKdf/3jzz/LOXeGDwf8/eWjn5989PJq/7nsidqKgUDU\nSkLIKRZOnmzcTp2SNzYJDJQdf0CAfPT3l1Ms8Nc+dRQMBKImlJQAx483tBMnZOvRQ3b8t7aAAKBv\nX60rJmo7BgLZtZoaeRbPsWNAZmbD45UrQFAQEBwsW1CQbG5uWldMpBwGAtmNsjL5az89HcjIkO3E\nCTkf/ogRDS0kRJ7Pz2mTyd4wEKhTunZNdvxHjgBHj8qWkyOP64eGAiNHyhYSAjg7a10tkT4wEKjD\nKyuTHf7hww0tP18e6gkLA0aNki0ggGf2ELWEgUAdys2b8jDPwYOy/fSTvMArKAgYPVq2sDC5J8Ab\nqBDdHQYC6VphIfDjj8CBA7IdOSKnaPiv/5JtzBh52Ie//InajoFAulFbK8/r37dPtv37geJi2fGP\nHw+MHSv3APr00bpSos5Jt4GQm5uL+fPn48qVK6iqqsKSJUvwu9/9DgkJCVi7di3c6s7/W7VqFaKi\nohoXxUDoEKqq5PH+3buBPXtkALi6AhMnygCYMEFe1cuzfYjUodtAKCwshNlsRlBQEEpLSzFq1Chs\n2bIFX3zxBZycnLBixYrmi2Ig6FJlpTzss2uXbIcOybl8Jk2SbeJEeWUvEWmjrX2nYsN27u7ucK/r\nHXr16oWQkBDk5+cDADv7DqK6Wg78fv+9bIcOySt7TSbghRdkAPCUT6LOQ5UxhJycHEyZMgUnTpzA\nX/7yF3z44Yfo0aMHwsLCsGbNGvT9xbwB3EPQhhByXp8dO4CdO+VhIC8v4P77galT5V4AA4BIv3R7\nyKheaWkppk6dit///veYNWsWLBYLXFxcAAAJCQnIyspCcnJy46IMBsTHx1v/NplMMJlMSpZpt4qL\nZQD861/At9/KUz0jImSbNk2OCRCRPqWlpSEtLc36d2Jion4Dobq6GjNmzEBUVBSWL19+279fvHgR\nU6dOxenTpxsXxT0ExQghrwBOSQG++UZeEzBlChAVBTzwgLyxC2f3JOqYdDuGIITAkiVLEBAQ0CgM\nioqKYDQaAQCfffYZAgMDlSqB6pSXy0NA27fLIOjVC4iNBRIT5WGge+7RukIi0gPF9hD27t2LyZMn\nIyQkBIa6n5wrV67Exo0bkZmZiaqqKgwePBjr1q3DgAEDGhfFPYQ2s1iAr74CvvxSDgiHhQEzZwIz\nZsgzg4io89H9GIItGAi2uXgR+PxzYOtWeX1ARATw3/8t9wY43z9R58dAsHMFBcBnnwGbN8vxgBkz\ngNmz5XiAo6PW1RGRmhgIdqikRO4FbNwo5waaORN45BG5R9Cjh9bVEZFWGAh2orpanhX0f/8nTxO9\n/35g3jx5OIh7AkQEMBA6vePHgXXr5N6Anx+wcCHw8MNA795aV0ZEeqPb007JdteuAR9/LIOgoAB4\n/HE5hbS3t9aVEVFnxj0EHcnIAP7+d2DTJnmV8BNPyMFhBwetKyOijoB7CB1cdbUcIF6zBvjPf4D/\n+R95T4H+/bWujIjsDQNBI8XFcm/gvffkdBHPPw88+CBvG0lE2mH3o7LsbGD1aiA5WV40lpICjBih\ndVVERADvZaWSU6eABQuA8HB5mujx48A//8kwICL9YCAoLDNTniY6daq8ucz588Abb8gbzRMR6QkD\nQSGnTwNz5gCRkcC4cTIIXn4ZuO8+rSsjImoaA6Gd5eYCixfLaaVDQ4Fz54AVK4CePbWujIioZQyE\ndnL9OvDKK8DIkYCHB3DmDPC//8sgIKKOg4HQRrW1wNq18h4DubnAsWPA669zagki6nh42mkbHDkC\nPPOMvJJ4+3Z5Exoioo6Kewg2uHoVePZZOdPo008De/cyDIio42Mg3KVvvgGCg4GqKnltwaJFQBdu\nRSLqBHjIqJWKi4Hly4E9e+QFZfffr3VFRETti79tWyEtTZ495OwsLzRjGBBRZ8Q9hBZUVwMJCXKP\nYP16ICpK64qIiJTDQGhGXp6ccqJPHyA9HXB317oiIiJl8ZBRE3bvBsaMaZiNlGFARPaAewi3EAJ4\n9115YdmGDfJuZURE9oKBUOfmTXltwYED8v7FXl5aV0REpC4GAoCyMuDRR+W1BXv3Ak5OWldERKQ+\nux9DMJvlaaR9+wJffcUwICL7ZdeBcOkSMHkyMG0a8MEHQPfuWldERKQduw2ES5fkXczmzwdWrgQM\nBq0rIiLSll0GQmGh3CuYN0/ew4CIiOwwEC5flmEwZw7whz9oXQ0RkX4YhBBC6yJ+yWAwQImyKiuB\niAh5j+M332z3ryci0lRb+067CQQh5HhBdTWwaROnrCaizqetfafdXIcQHw+cPw/88APDgIioKXYR\nCMnJsh04ADg6al0NEZE+KfZbOTc3F5MnT0ZwcDD8/PzwZt1B++LiYkRERCAkJASRkZEoKSlRqgQA\nwOnT8sY2X34JGI2KLoqIqENTbAyhsLAQZrMZQUFBKC0txahRo7BlyxasXbsW3t7eWLZsGd555x1k\nZ2cjKSmpcVHtNIZw4wYwdqy87/FTT7X564iIdK3DDCrHxcVh8eLFWLp0KQ4ePAgXFxdYLBaMHTsW\n586da1xUOwXCsmVAbi7w6ae88IyIOr8OEQg5OTmYMmUKjh8/Dk9PT1y7ds36b87Ozo3+BtonELZv\nl7OXpqfLeYqIiDo7xc8yOnnyJHbv3o2cnBwYDAYMGTIEkyZNQmBgYKsWUFpairi4OCQlJcHZ2dnm\nQu9GcTHw5JPAli0MAyKi1mo2EDZs2IB3330XLi4uGDNmDLy8vCCEQEFBAV544QVYLBb89re/xYIF\nC5r98urqasyePRvz58/HrFmzAABubm6wWCxwdXWF2WyGsZmR3oSEBOtzk8kEk8nU6pV65RVg9mxg\n4sRWf4SIqMNJS0tDWlpau31fs4eM1qxZg0WLFsGpmfmgr127hg8++ADPPfdck/8uhMCvf/1ruLi4\nYPXq1dbXly5dah1UXr16NbKzs7FmzZrGRbVht+foUSAmBvj5Z3k/ZCIie6HYGEJxcTH6tuF4y969\nezF58mSEhITAUDeiu2rVKowZMwZz5sxBYWEh+vXrh82bN6N3796Ni7JxpWpr5V7BkiWyERHZE8UC\nwWg0wsXFBRMnTsT48eMxYcIEDBs2zOYF3VVRNq7Uhx8C770nb4HJq5GJyN4oepbR6dOnsX//fuzf\nvx8//vgjioqKMG7cOIwfPx4vvfSSzQu9Y1E2rFRJCeDvD2zbBowerVBhREQ6ptppp1lZWUhJSUFS\nUhLy8/NRWVlp80LvWJQNK/WHPwD5+cD69QoVRUSkc4oFwr59+6x7Brm5ufDy8sLYsWMxbtw4hIaG\nokePHjYv9I5F3eVKlZYCQ4cC+/cDvr6KlUVEpGuKBUKXLl0QGhqK5cuX41e/+hV69uxp80Luuqi7\nXKmkJGDvXnndARGRvVIsEAoKCqx7CAcPHkR1dTXCwsIwbtw4jBs3Dl5eXjYv9I5F3cVKVVcDPj5y\negqOHRCRPVNtDKG8vBzr16+3TkhXU1Nj80LvWNRdrFRyMrBunbzPARGRPVNs6oqSkhL8+OOP1rOM\n0tPT4evri5kzZ2LChAk2L7A9CSFvhcnbYRIRtV2zewhubm4YO3as9RqE8PBw3HvvveoU1cqUS00F\nXnoJyMjgbKZERIrtISxbtgzR0dEYNWqUzV+utLffBl58kWFARNQemt1D+OSTT5CamoqMjAyMGDEC\nMTExeOCBB9BHhQmCWpNyhYWAnx9w6RJwzz2Kl0REpHuKDyoLIZCeno7U1FTs2LEDN2/eREREBKKi\nojBmzBibF9xiUa1Yqb//Hdi9G9i4UZESiIg6HMUCobq6Gt26dbvt9atXr+If//gHzp49i/fff9/m\nBbdYVCtWavp04JlngIceUqQEIqIOR7FAiI6OxhdffHHbFcnHjh3Dgw8+iAsXLti80DsWdYeVMpvl\ntQcFBYBK49xERLrX1kBodk7QsLAwxMTEoLy83PpaWloaYmNjsXbtWpsX2B6+/BKIimIYEBG1p2YD\n4U9/+hOmTp2KyMhIlJaWYuvWrVi4cCG++OILREREqFnjbT79FIiL07QEIqJOp8V7Kr/yyitwdHS0\nnnr63XffwVfj2eOKi+X9Dj79VNMyiIg6nWYDYebMmdbnZrMZvr6+WLFiBQB5nGrbtm3KV9eEbdvk\ngHKvXposnoio02p2ULn+xs31gxS3DlYYDAZMmTJFuaJaGBiZMQOYPx+YO1exxRMRdUiqTW6npuZW\n6upVYNAgIDcXcHbWoDAiIh1T7CyjlsTHx9u8wLbYt09Occ0wICJqfzYFQnh4eHvX0SpHjwJhYZos\nmoio07MpEG4dcFZTejqg47n2iIg6tDuOIZw9exZJSUnIzc1FbW2t/JDCZxk1dxxs6FDgX/8Chg1T\nbNFERB2W4oPKfn5+ePbZZxEUFIQuXbpYF6r2WUZXrgCDBwMlJUAXm/ZriIg6N8Xuh1Cvb9++eO65\n52xeQHtJTwdGjGAYEBEp5Y6B8Mwzz+C1117D9OnTG010p/aNc9LTgdBQVRdJRGRX7hgIJ0+exIYN\nG7Bz507rISMA+EHlu9ofPQpoPIUSEVGndscxBB8fH5w6dQrdu3dXq6Ymj4MFBAAffywPGxER0e0U\nvzBtxIgRuHbtms0LaA9lZUBOjgwFIiJSxh0PGVksFvj6+mL06NHWMQS1J7fLzJRh0MQN3IiIqJ3c\nMRASExNve81gMChSTHN4QRoRkfKaDYT6GU5NJlOzH65/j9I4ZQURkfKaHUMwmUx46623cObMmdv+\n7fTp03jjjTcUvTjtVjzllIhIec2eZXTjxg189NFH+Pjjj3HixAk4OTlBCIHS0lIEBQVh/vz5mDdv\nniJnH906Ul5VBfTuDVgsvIcyEVFLVLkfQk1NDSwWCwDA1dUVDg4ONi+wVUXdslIZGfKGOCdPKrpI\nIqIOT/GpKwDAwcEB7u7uNi+kLY4e5YAyEZEaFJ0ZaPHixXB3d0dwcLD1tYSEBHh6eiI0NBShoaFI\nTU1t8TsyMoCRI5WskoiIAIUDYdGiRbd1+AaDAStWrEB6ejrS09MRFRXV4neYzYCHh5JVEhERYEMg\nCCGwadOmVr130qRJ6NOnT5Pf0VplZUDPnq1+OxER2ajZQLh69SpWrVqFp59+Gu+99x5qa2vx+eef\nIzAwEB999FGbFvq3v/0N/v7+WLBgAYqLi1t8LwOBiEgdzQbCvHnzcPr0aYSGhuK7777D2LFjkZSU\nhI0bN7Zp2opnn30WWVlZOHXqFLy9ve94r4XycgYCEZEamj3LKCsrCykpKQCAJ554Ah4eHrhw4QIc\nHR3btEBXV1fr86eeegpTp05t8n0JCQkAgPPngZMnTRg3ztSm5RIRdTZpaWlIS0trt+9rNhBu7fgd\nHBwwYMCANocBABQVFcFoNAIAPvvsMwQGBjb5vvpA2LABaGH2DCIiu2UymRpNL9TU3HN3o9lAyMzM\nhJOTk/XviooK698Gg6FVU2LPnTsXu3btgsViwcCBA5GYmIgffvgBmZmZqKqqwuDBg7Fu3boWv4Nj\nCERE6mjVlcpqu/VqOycnID8fcHbWuCgiIp1TZeoKtdWvlBBA165yPiOFZ8sgIurwFL9jmpZu3JA3\nxWEYEBEpT9eBUFbGGU6JiNSi+0DggDIRkToYCEREBICBQEREdXQdCJy2gohIPboOBA4qExGpR/eB\nwD0EIiJ1MBCIiAgAA4GIiOowEIiICIDOA6G8nIPKRERq0XUgcA+BiEg9DAQiIgLAQCAiojoMBCIi\nAqDzQODUFURE6tF1IHDqCiIi9eg+ELiHQESkDgYCEREBYCAQEVEdBgIREQHQeSBw6goiIvXoNhBq\na4HKSsDRUetKiIjsg24DobxchkEX3VZIRNS56La75fgBEZG6GAhERASAgUBERHV0Gwg8w4iISF26\nDQTuIRARqYuBQEREABgIRERUh4FAREQAdBwIHFQmIlKXbgOBewhEROpSNBAWL14Md3d3BAcHW18r\nLi5GREQEQkJCEBkZiZKSkiY/y0AgIlKXooGwaNEipKamNnotPj4esbGxyMzMRHR0NOLj45v8LAOB\niEhdigbCpEmT0KdPn0avff3113jssccAAAsWLEBKSkqTn2UgEBGpS/UxBLPZDBcXFwCAq6srioqK\nmnxfWRkHlYmI1NRV6wKac+RIAqqqgPPnAZPJBJPJpHVJRES6kpaWhrS0tHb7PtUDwc3NDRaLBa6u\nrjCbzTAajU2+b9CgBCxeDERFqVwgEVEH8csfy4mJiW36PtUPGcXExCA5ORkAkJycjJiYmCbfxzEE\nIiJ1KbqHMHfuXOzatQsWiwUDBw7EH//4RyQmJmLOnDlYv349+vXrh82bNzf5WQYCEZG6DEIIoXUR\nv2QwGODrK/DVV4Cfn9bVEBF1DAaDAW3p0nV9pTLPMiIiUo9uA6G8nIeMiIjUpNtA4BgCEZG6dBsI\ntbVA9+5aV0FEZD90Gwg9ewIGg9ZVEBHZD90GAgeUiYjUpdtA4PgBEZG6GAhERASAgUBERHUYCERE\nBEDHgcBBZSIidek2ELiHQESkLgYCEREBYCAQEVEdBgIREQFgIBARUR3dBgLPMiIiUpduA4F7CERE\n6mIgEBERAAYCERHVYSAQEREAHQcCB5WJiNSl20DgHgIRkboYCEREBICBQEREdRgIREQEQMeBwEFl\nIiJ16TYQunbVugIiIvui20AgIiJ1MRCIiAgAA4GIiOowEIiICAADgYiI6jAQiIgIAAOBiIjqaHa2\n/5AhQ+Ds7AwHBwd069YNBw8e1KoUIiKChnsIBoMBaWlpSE9PZxi0IC0tTesSdIPbogG3RQNui/aj\n6SEjIYSWi+8Q+J+9AbdFA26LBtwW7UfTPYSIiAiEhITgr3/9q1ZlEBFRHc3GEA4cOACj0Qiz2Yyo\nqCgMHz4c06dP16ocIiK7ZxA6OG6zatUqAMDLL78MAPDx8UFWVpaWJRERdTje3t44d+6czZ/XZA+h\nvLwcAHDvvfeirKwMqampeP75563/3pYVIiIi22gSCIWFhZg1axYMBgPKy8vx6KOP4sEHH9SiFCIi\nqqOLQ0ZERKQ93V2pnJqaiuDgYAQEBOCNN97QuhxV5ebmYvLkyQgODoafnx/efPNNAEBxcbH1jKzI\nyEiUlJRoXKl6ampqEBoaipkzZwKw321RUlKChx9+GCNGjIC/vz8OHDhgt9siPj4ew4YNw/DhwxEX\nF4fy8nK72RaLFy+Gu7s7goODra+1tO6rVq1CQEAAgoOD8e233955AUJHKisrxZAhQ0ReXp6orq4W\n4eHh4ujRo1qXpZpLly6J48ePCyGEuH79uvD19RUZGRniN7/5jVi9erUQQojVq1eL5557TssyVfX2\n22+LefPmiZkzZwohhN1ui7i4OLFx40YhhBA1NTXi6tWrdrktzp49K4YOHSpu3LghhBDikUceEWvX\nrrWbbbF7925x9OhRERQUZH2tuXU/fPiwCA8PFzdv3hR5eXliyJAh1u3WHF0Fwq5du0RsbKz177fe\neku89tprGlakrdmzZ4uUlBTh5eUlLBaLEEIIs9ksvL29Na5MHbm5ueL+++8X33//vZgxY4YQQtjl\ntrBYLMLHx+e21+1xW1y+fFkMGzZMFBcXi+rqajFjxgzx7bff2tW2yM7ObhQIza17YmKi+POf/2x9\nX2xsrNizZ0+L362rQ0Z5eXkYOHCg9W9PT0/k5eVpWJF2cnJycOjQIUycOBFmsxkuLi4AAFdXVxQV\nFWlcnTqWL1+Ot956C126NPw3tcdtcfbsWbi5ueGRRx5BUFAQFi5ciOvXr9vltujbty+ef/55DBo0\nCP3790fv3r0RERFhl9uiXnPrnp+fD09PT+v7WtOf6ioQDAaD1iXoQmlpKeLi4pCUlARnZ2ety9HE\n9u3bYTQaERoaavdTnNTW1uLQoUN48cUXceLECfTt2xevvfaa1mVpIisrC++88w5ycnJw8eJFlJaW\nIjk5WeuyOg1dBYKnpydyc3Otf+fm5jbaY7AH1dXVmD17NubPn49Zs2YBANzc3GCxWADIXwNGo1HL\nElWxf/9+bNu2DUOHDsXcuXPx/fff47HHHrPLbTFw4EAMGDAAo0ePBgDExcUhIyMDRqPR7rbFwYMH\nMX78eLi4uKBr16546KGHsG/fPrv8f1GvuXX/ZX/6yyMwTdFVIIwePRonTpxAfn4+qqursXnzZkRH\nR2tdlmqEEFiyZAkCAgKwfPly6+sxMTHWX0HJycmIiYnRqkTVrFy5Erm5ucjOzsYnn3yCadOmYcOG\nDXa5LQYOHAhXV1ecOXMGALBz5074+/sjOjra7raFj48PDhw4gIqKCgghsHPnTnh7e9vl/4t6za17\nTEwMNm3ahJs3byIvLw8nTpzAmDFjWv6y9h7waKuvv/5aBAYGCn9/f7Fy5Uqty1HVnj17hMFgECNG\njBAjR44UI0eOFN988424fPmymD59uggODhYRERHiypUrWpeqqrS0NOtZRva6LTIyMkR4eLgICAgQ\n0dHRori42G63RXx8vPDx8RHDhg0Tc+bMERUVFXazLR599FHh4eEhunXrJjw9PcX69etbXPfXX39d\n+Pv7i8DAQJGamnrH7+eFaUREBEBnh4yIiEg7DAQiIgLAQCAiojoMBCIiAsBAICKiOgwEIiICwEAg\natGTTz6Jn3/+ucl/mzNnzl3d6jUzMxNLlixpr9KI2p0md0wj0oP6S3Cam0OrtrYW77//fpP/du7c\nOZSVlcHb27vVywsJCUFWVhaKiorsamoF6ji4h0B2JScnB35+fnj88ccxcuRI5OfnN/r3Xr164YUX\nXkB4eDgOHDgAk8mEI0eO3PY9n3zySaPbvvbq1QsvvfQSQkJCEBERgZ9++gnTpk3DoEGDsHXrVuv7\noqOjsWXLFuVWkKgNGAhkd86dO4elS5fi2LFjjaYHBoDy8nJMmDABhw8fxvjx42EwGJrcg9i3bx/C\nw8MbfW769OnIzMyEk5MTXn31VXz33XfYvn07Xn31Vev7xowZg927dyu3ckRtwENGZHcGDx6MsLCw\nJv/NwcHBOstsSy5cuAAPDw/r3927d0dERAQAIDg4GPfccw8MBgOCgoIazTjp4eGBnJyctq0AkUK4\nh0B2p2fLuyVLAAAA3UlEQVTPngAa7tccGhqKhIQEALB25K1x6zRg3bp1sz7v0qULunfvbn1eW1vb\n6DO87wfpFfcQyG45ODggPT3dps8OHjwYBQUF6N+//119rqCgAIMHD7ZpmURK4x4C2Z2WfqG39tf7\nxIkTcfjw4WY/d+vftz4/ePAgJk+e3NpSiVTF6a+JbHD+/HksXboUKSkpd/U5k8mEzZs387RT0iXu\nIRDZwMvLC05OTnd9YZqPjw/DgHSLewhERASAewhERFSHgUBERAAYCEREVIeBQEREABgIRERUh4FA\nREQAgP8HciaKFosIw6gAAAAASUVORK5CYII=\n", "text": [ "<matplotlib.figure.Figure at 0x42e6390>" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n", "\n", " Critical Radius is = 0.011 m \n", "\n", " Heat transfer will increase with the addition of insulation up to a thickness of 0.006 m\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3.6 Page 122" ] }, { "cell_type": "code", "collapsed": false, "input": [ " \n", "import math\n", "k = .0017; \t\t\t\t\t\t#[W/m.K] From Table A.3, Silica Powder at Temp 300K\n", "h = 5; \t\t\t\t\t\t#[W/m^2.K]\n", "r1 = 25./100.; \t\t\t\t#[m] Radius of sphere\n", "r2 = .275; \t\t\t\t#[m] Radius including Insulation thickness\n", "\n", "#Liquid Nitrogen Properties\n", "T = 77; \t\t\t\t\t\t#[K] Temperature\n", "rho = 804; \t\t\t\t\t\t#[kg/m^3] Density\n", "hfg = 2*100000.; \t\t\t\t\t#[J/kg] latent heat of vaporisation\n", "\n", "#Air Properties\n", "Tsurr = 300; \t\t\t\t\t\t#[K] Temperature\n", "h = 20 \t\t\t\t\t\t;#[W/m^2.K] convection coefficient\n", "#calculations\n", "\n", "Rcond = (1/r1-1/r2)/(4*math.pi*k); #Using Eq 3.36\n", "Rconv = 1/(h*4*math.pi*r2*r2);\n", "q = (Tsurr-T)/(Rcond+Rconv);\n", "\n", "print '%s %.2f %s' %(\"\\n\\n (a)Rate of Heat transfer to Liquid Nitrogen\",q,\" W\");\n", "\n", "#Using Energy Balance q - m*hfg = 0\n", "m=q/hfg; \t\t\t\t\t\t#[kg/s] mass of nirtogen lost per second\n", "mc = m/rho*3600*24*1000.;\n", "#results\n", "\n", "print '%s %.2f %s' %(\"\\n\\n (b)Mass rate of nitrogen boil off \",mc,\"Litres/day\");\n", "#END" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "\n", " (a)Rate of Heat transfer to Liquid Nitrogen 13.06 W\n", "\n", "\n", " (b)Mass rate of nitrogen boil off 7.02 Litres/day\n" ] } ], "prompt_number": 18 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3.7 Page 129" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "import math\n", "\n", "Tsurr = 30+273.; \t\t\t\t\t\t#[K] Temperature of surrounding Water\n", "h = 1000.; \t\t\t\t\t\t\t#[W/m^2.K] Heat Convection Coeff of Water\n", "kb = 150.; \t\t\t\t\t\t\t#[W/m.K] Material B\n", "Lb = .02; \t\t\t\t\t\t\t#[m] Thickness Material B\n", "ka = 75.; \t\t\t\t\t\t\t#[W/m.K] Material A\n", "La = .05; \t\t\t\t\t\t\t#[m] Thickness Material A\n", "qa = 1.5*math.pow(10,6);\t\t\t\t#[W/m^3] Heat generation at wall A\n", "qb = 0; \t\t\t\t\t\t\t\t#[W/m^3] Heat generation at wall B\n", "#calculations\n", "T2 = Tsurr + qa*La/h;\n", "To = 100+273.15; \t\t\t\t #[K] Temp of opposite end of rod\n", "Rcondb = Lb/kb;\n", "Rconv = 1/h;\n", "T1 = Tsurr +(Rcondb + Rconv)*(qa*La);\n", "#From Eqn 3.43\n", "T0 = qa*La*La/(2*ka) + T1;\n", "\n", "#results\n", "\n", "print '%s %d %s' %(\"\\n\\n (a) Inner Temperature of Composite To = \",T0-273,\" degC\") \n", "print '%s %d %s' %(\"\\n (b) Outer Temperature of the Composite T2 =\",T2-273,\" degC\");\n", "#END" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "\n", " (a) Inner Temperature of Composite To = 140 degC\n", "\n", " (b) Outer Temperature of the Composite T2 = 105 degC\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3.9 Page 145 " ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable Initialization\n", "%matplotlib inline\n", "\n", "import math\n", "import numpy\n", "from numpy import linalg\n", "import matplotlib\n", "from matplotlib import pyplot\n", "%matplotlib inline\n", "kc = 398.; \t\t\t\t\t\t#[W/m.K] From Table A.1, Copper at Temp 335K\n", "kal = 180.; \t \t\t\t\t\t#[W/m.K] From Table A.1, Aluminium at Temp 335K\n", "kst = 14.; \t\t\t\t\t\t#[W/m.K] From Table A.1, Stainless Steel at Temp 335K\n", "h = 100.; \t\t\t\t\t\t#[W/m^2.K] Heat Convection Coeff of Air\n", "Tsurr = 25+273.; \t\t\t\t#[K] Temperature of surrounding Air\n", "D = 5/1000.; \t\t\t\t\t#[m] Dia of rod\n", "To = 100+273.15; \t\t\t\t#[K] Temp of opposite end of rod\n", "#calculations\n", "\n", "#For infintely long fin m = h*P/(k*A)\n", "mc = math.pow((4*h/(kc*D)),.5);\n", "mal = math.pow((4*h/(kal*D)),.5);\n", "mst = math.pow((4*h/(kst*D)),.5);\n", "x = numpy.linspace(0,0.3,100);\n", "Tc= numpy.zeros(100);\n", "Tal= numpy.zeros(100);\n", "Tst= numpy.zeros(100);\n", "for i in range (0,100):\n", " z=x[i];\n", " Tc[i] =Tsurr + (To - Tsurr)*math.pow(2.73,(-mc*z)) - 273;\n", " Tal[i] = Tsurr + (To - Tsurr)*math.pow(2.73,(-mal*z)) -273;\n", " Tst[i] = Tsurr + (To - Tsurr)*math.pow(2.73,(-mst*z)) -273;\n", "\n", "\n", "pyplot.plot(x,Tc,label=\"Cu\");\n", "pyplot.plot(x,Tal,label=\"2024 Al\");\n", "pyplot.plot(x,Tst,label=\"316 SS\");\n", "pyplot.legend();\n", "pyplot.xlabel(\"x (m)\");\n", "pyplot.ylabel(\"T (C)\");\n", "pyplot.show();\n", "\n", "#Using eqn 3.80\n", "qfc = math.pow((h*math.pi*D*kc*math.pi/4*D*D),.5)*(To-Tsurr);\n", "qfal = math.pow((h*math.pi*D*kal*math.pi/4*D*D),.5)*(To-Tsurr);\n", "qfst = math.pow((h*math.pi*D*kst*math.pi/4*D*D),.5)*(To-Tsurr);\n", "\n", "print '%s %.2f %s %.2f %s %.2f %s' %(\"\\n\\n (a) Heat rate \\n For Copper = \",qfc,\"W \\n For Aluminium =\",qfal,\" W \\n For Stainless steel = \",qfst,\" W\");\n", "\n", "#Using eqn 3.76 for satisfactory approx\n", "Linfc = 2.65/mc;\n", "Linfal = 2.65/mal;\n", "Linfst = 2.65/mst;\n", "\n", "print '%s %.2f %s %.2f %s %.2f %s' %(\"\\n\\n (a) Rods may be assumed to be infinite Long if it is greater than equal to \\n For Copper =\",Linfc,\"m \\n For Aluminium = \",Linfal,\" m \\n For Stainless steel =\",Linfst,\"m\");\n", "#END" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Populating the interactive namespace from numpy and matplotlib\n", "Populating the interactive namespace from numpy and matplotlib\n" ] }, { "metadata": {}, "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAEPCAYAAACzwehFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XdclXX7wPHPAUERkSlggpqoKUvJkTgpIxUyZzkSy8on\nR5laPfb007Bp+VSOxlM2LMVMLbUMNDPFvcIS9woHDjiAKHvevz/uQBCQdQbncL1fr/t1zrnndXOU\ni+/9XRpFURSEEEKIO7AwdgBCCCHqPkkWQgghKiXJQgghRKUkWQghhKiUJAshhBCVkmQhhBCiUnpL\nFk899RRubm74+fkVr1uzZg0+Pj5YWlpy6NChUvvPmzcPb29v/Pz82Lx5s77CEkIIUQN6SxYTJkxg\n06ZNpdb5+fmxbt06+vbtW2p9TEwMa9eu5ciRI2zatIlnn32W3NxcfYUmhBCimvSWLPr06YOjo2Op\ndR06dKB9+/Zl9o2MjGT06NFYWlrSokULfHx8OHDggL5CE0IIUU11os7i8uXLeHh4FH/28PAgPj7e\niBEJIYQoqU4kCyGEEHVbA2MHAGpJ4tKlS8Wf4+Pj8fT0LLNf27ZtOXfunCFDE0IIk+fl5cXZs2dr\ndQ6jlSxKjl8YEhLCqlWryM/PJz4+nqNHj9K9e/cyx5w7dw5FUcx2CQ8PN3oMcn9yf/Xx/sz53hRF\n0ckf2XorWYwZM4bt27eTlJSEp6cnr7/+Ok5OTjz//PMkJSURGhpKQEAAGzdupEuXLgwbNgx/f38s\nLCz4/PPPsbKy0ldoQgghqklvyWLlypXlrh86dGi561999VVeffVVfYUjhBCiFqSCuw4JCgoydgh6\nJfdn2sz5/sz53nRFoyiKyUx+pNFoMKFwhRCiTtDF78460RpKCFE/ODk5cf36dWOHYbYcHR1JSUnR\ny7mlZCGEMBj5P6xfFf18dfFzlzoLIYQQlZJkIYQQolKSLIQQQlRKkoUQQohKSbIQQogSvvvuO7p2\n7UrTpk1xdHTkwQcfZNu2bcYOy+gkWQghxD8+/PBDXnrpJd555x1u3LhBUlISM2bMKDORW30kTWeF\nEAZTl/8P37hxAw8PD9asWcPAgQPLbH/yySfx9PTkzTffBCA6OpqwsLBSI2YbmzSdFUIIPdu7dy+K\nopSbKED9havRaAwcVd0hPbiFEHWKLn4f1+SP6OTkZJycnCo5b90sFRmCJAshRJ1irN/Hzs7Oehsq\nwxzIYyghhAACAwMBKqzMtra2JjMzs/hzcnKyQeKqKyRZCCEEYG9vzxtvvMEzzzzDb7/9RmFhIXl5\neWzcuJFZs2bRqVMnoqKiuH79OsnJySxcuNDYIRuU3pLFU089hZubG35+fsXrUlJSCA4Oxt/fnwED\nBpCamlq8bd68eXh7e+Pn58fmzZv1FZYQQlRo5syZzJ8/n1dffRUHBwdcXV1ZsGABoaGhPPXUU7Rv\n354WLVoQHBzMiBEj6lWFt96azu7cuZMmTZowfvx4jhw5AsDzzz+Pl5cX06dPZ+HChcTFxbFo0SJi\nYmKYNGkS+/bt49q1a/Tu3ZtTp05hbW1dOtg63OxOCFE5+T+sXybZdLZPnz44OjqWWhcVFUVYWBgA\n48aNIzIyEoDIyEhGjx6NpaUlLVq0wMfHhwMHDugrNCGEENVk0DoLrVaLs7MzAC4uLiQmJgJw+fJl\nPDw8ivfz8PAgPj7ekKEJIYS4A5NrOjt2wnTat3IA1HlzZe5cIYQoLTo6mujoaJ2e06DJolmzZiQl\nJeHi4oJWq8XV1RVQSxIlu8zHx8fj6elZ7jmuW7Zk7tyZBolXCCFM0e1/SL/++uu1PqdBH0OFhIQQ\nEREBQEREBCEhIcXrV61aRX5+PvHx8Rw9epTu3buXe44riRv45+mVEEIIA9FbshgzZgw9e/bk1KlT\neHp6snTpUl5//XUiIyPx9/dn48aNvPHGGwB06dKFYcOG4e/vz8CBA/n888+xsrIq97xuDvv55PNs\nfYUthBCiHCY36uysJ9rzxfGPuLb7ISrIJ0KIOkqazuqXSTad1Zf+TdvRuFMkP/5o7EiEEKL+MLlk\n4a9xJ79NJIsWy18nQoj6KTo6usJGQPpicsnCNV3BsmE2F9NPc/CgsaMRQpiL3NxcnnjiCTw8PLC1\ntcXHx4f169eX2uf333+nQ4cO2NnZ8cADD3Dx4sXibUVDFtna2tKiRQveeuutcq+zfft2LCwsmDNn\nTqUxffPNN1hYWLB69era3ZwOmFyy0CQmEtIuhK5joliwwNjRCCHMRX5+Pt7e3vzxxx9kZGTw/vvv\n8/jjj3P27FkAkpKSGDlyJAsWLCAtLY3evXszatSo4uMbN27MmjVryMjIYNu2bSxdupRvvvmm1DXy\n8vJ44YUX6NGjR5XGlfr222/x8/Nj2bJlOr3XmjC5ZEFiIqHtQrnhFsmvv0KJxC6EEDXWuHFjZs2a\nhbu7OwCDBg3C29ubmJgYANauXUtAQACDBg0CYPbs2Rw9epTTp08D8MILL+Dj4wNA+/btGT58OPv2\n7St1jQ8++ICBAwdyzz33VFrhfOHCBXbv3s3SpUv57bffSEhI0On9VpfpJYuEBPq36U9Mwn7GPpnG\n4sXGDkgIYY4SEhI4ceIEvr6+ABw7doxOnToVb7e2tqZ9+/YcPXq0zLGKohAdHY2/v3/xugsXLrB0\n6VLmzJlTpZZJy5Yto1+/ftx777107dqVFStW6OCuas7khvsgMZEmVrYEegTi03Mz/zd8BK+9Bk2b\nGjswIYQuaF6v/bDfSnjtGsDk5eXx+OOPExYWVlxayMjIwM3NrdR+TZo0IT09vczxc+fOJT8/n4kT\nJxavmzZtGm+99Ra2trZVms972bJlvPzyywA8+uijfPPNN8ycabzRK0wvWVhYQHo6Q+4Zwt4rPxMc\nPIIvvwQj/gyFEDpU21/0tVVYWEhYWBiNGjXi448/Ll7fpEkTMjIySu2bnp6OnZ1dqXWffPIJERER\n7Ny5s7hz8YYNG0hPT+fRRx8F1JLHnUoXu3fv5vz58wwfPhyAkSNH8uKLL3L48OFSpRtDMr1k4eYG\nCQk8cs8jvBb9Gr/MyGf0Yw2YNg0amN7dCCHqEEVRePrpp9FqtWzcuBFLS8vibT4+PqxcubL4c05O\nDqdOnSoueQB8/fXXvPfee+zYsYO77rqreP3WrVv5448/aN68OQA3btzA0tKSo0ePsm7dujJxfPvt\ntyiKUmryuKL1H374oc7ut1oUEwIoSo8eirJ7t6IoitLl8y7K1r+3Kn36KMr33xs5OCFEper6r5xn\nn31WCQwMVNLT08ts02q1ioODg7Jx40aloKBAmT17thIYGFi8PSIiQnF3d1dOnDhR5ti0tDQlISFB\nSUhIUK5du6aMGjVKmTlzpnL9+vUy+2ZlZSn29vbK119/XXxMQkKC8sknnyhubm5Kfn6+sm3bNsXD\nw6PMsRX9fHXxcze9Cu5/ShYAQzsMZf3J9bz4Ivz3vyCjCAghaurChQssWbKEv/76C3d3d+zs7LCz\nsysuTbi4uPDDDz8wY8YM7O3t2b17N99//33x8XPmzCElJYVu3boVHztlyhRAfYTl6uqKq6srbm5u\n2NjYYGtri4ODQ5k41q9fj62tLePHjy8+xtXVlQkTJpCfn8+vv/5apToPXTO5saGUiROhSxd49lmO\nJh7l4e8e5tzzcfj6avj4Y+jf39hRCiEqImND6ZeMDVVSiZKFTzMfGlg04Ij2MLNmwbvvGjk2IYQw\nUyadLDQaDUPuGcL6k+sZOxZOnoQ//jByfEIIYYZML1m4ulJy9qOiegtra3jxRXjvPSPGJoQQZsr0\nkkWJkgVAT8+eXEm7wvnU8zzzDERHwz+974UQQuiIUZLFu+++S/v27fH19WXRokUApKSkEBwcjL+/\nPwMGDCA1NbX8g28rWVhaWDK4/WB+OvkTTZrA1KlqyyghhBC6Y/BkERMTQ0REBLGxsRw+fJhffvmF\nI0eOEB4eTmhoKLGxsQwaNIjw8PDyT3BbyQLUR1FrT64F4Lnn4Mcf4fJlfd+JEELUHwZPFqdOnaJH\njx40atQIS0tL+vXrx88//0xUVBRhYWEAjBs3jsjIyPJP4OgIGRmQk1O8KtgrmNiEWK6lX8PFBSZM\nkNKFEELoksGThZ+fH9u3byclJYXMzEyioqK4dOkSWq0WZ2dnQO38kljiUVMpGg00awZabfGqRg0a\nEdIuhLUn1NLFSy/BsmVw7Zreb0cIIeoFg4+m5Ofnx8yZMwkKCsLGxobOnTtXqyfi3LlzobAQ3niD\noLFjCQoKAuBR70dZtH8RU7pNoXlzePxx+OADKWEIIeqf6OhooqOjdXvSWg8YUktz585VFi5cqLRp\n00bRarWKoihKYmKi4uXlVWbf4nAHDlSUqKhS2zJzMxX7efbKtbRriqIoyqVLiuLkpCj/nFIIUQfU\ngV85dzRmzBjFzc1NsbW1VTw8PJTZs2crhYWFiqIoSm5urjJixAildevWikajUaKjo8scHxMTo/Tp\n00dp2rSp4urqqixYsKDCay1evFhp06aN0rhxY6VZs2bKgAEDlLS0NEVRFCUuLk4JDQ1V7OzsFDs7\nO6Vjx47K119/XWn8Ff18dfFzN0prqKSkJACuXbvGqlWrGDVqFCEhIURERAAQERFBSEhIxSdwdS1T\nyW1jZVPqUZSHBzz6KDL1qhCiyubMmcPFixdJT09ny5YtfPHFF2zYsKF4e9++fYmIiMDd3b3ME5FL\nly4REhLCjBkzuHHjBufPnyc0NLTc62zatIl3332XdevWkZGRwblz55gwYULx9tGjR9OxY0cSEhK4\nefMma9aswcPDQz83XVW1Tjc10Lt3b8Xf31/p0qWLsnXrVkVRFCU5OVl58MEHFT8/PyU4OLjc0RiL\nw335ZUV5990y29ceX6vc/839xZ/j4tTSRXKyXm5DCFFNRvqVUyMnT55UWrRoocTExJTZ5uHhoWzf\nvr3UuhkzZigTJ06s0rnffvttZfjw4RVut7a2Vo4cOVK9gBUzLFns3LmTw4cP88cff3D//fcD4OTk\nxG+//UZsbCybN28udzTGYrf1tSgysO1ADl09RGKGuq11axg6FBYu1MddCCHM0ZQpU7C1tcXHx4fZ\ns2dz7733Vum4Xbt20ahRIwIDA3F2diY4OJi4uLhy9+3RowdRUVG8+eab7Nmzh6ysrDLbp0yZwpo1\na7hw4UKt70kXTK8HN5Tb1wLUR1GD2g0qfhQF8H//B59+CikphgxQCFFjGk3tl1r49NNPycjIYPv2\n7YSHh3PgwIEqHZecnMzy5ctZsmQJiYmJ+Pn5Fc+Md7sHHniA1atXs3fvXkJDQ3F2dmbatGkUFBQA\nsHbtWrp37054eDht2rTB19eXvXv31uq+asuskgWoraLWHF9T/LlNGxg+HN5/31DBCSFqRVFqv+hA\nr169eOyxx0rNjncndnZ2DB8+HD8/PywtLZk9ezaHDh1CW6KZf0mDBw8mKiqK69evs3HjRlasWMGn\nn34KgLOzM++//z7Hjx8nKSmJ++67j6FDh1JYWKiTe6sJ00wWFTyGAhjUdhAxV2JISL+VTGbPhs8/\nL9U1QwghKpWfn1/lpv3+/v41vk6/fv0IDg7m+PHjZbY5Ojry0ksvodVqK0w8hmCayeIOJQsbKxse\nbv8wq4+tLl7XsiWMHg3z5xsqQCGEqdFqtaxbt46cnBwURWHbtm18//33DBs2rHifnJwcsrOzy7wH\nmDBhAuvWreP48eMUFBQwb948unbtSrNmzcpc65dffmH9+vVkZGSgKAoHDx5k+/btdO3aFYDXXnuN\n0/+MiJqWlsb//vc/WrZsiZubmz5/BHdW6ypyAyoONzdXURo0UJSCgnL3izwdqfT4skepdfHxiuLo\nqChXr+o7SiFEReryrxytVqv07t1badq0qdKkSRPF399f+f7770vt06pVK0Wj0SgWFhbFrxcuXCje\n/r///U/x8PBQ7OzslIceeqjUtpK2b9+u9OvXT3FwcFBsbGyUu+++W3njjTeKt0+aNElp06aNYmtr\nq9jZ2SnBwcFVah1V0c9XFz9305tWtShcFxc4cUId+uM2eQV5tPiwBXuf3ouXk1fx+unT1ceZ/wx0\nK4QwMJlWVb9kWtXy3OFRlJWlFY/5PMbKo6Urpl55BSIi4OJFQwQohBDmw3STxR0quQHG+o1lxZEV\npbKpuztMngwVjX4uhBCifKabLNzd4erVCjcHegSSk5/DX9f+KrX+5ZchMhKOHdN3gEIIYT5MN1l4\neNxxhiONRlNcuijJ3h5mzVI76wkhhKga000Wnp5w6dIddxnrN5aVR1dSUFhQav3UqXDoEBi5Q6QQ\nQpgM000WHh4QH3/HXbybeeNq68qOCztKrW/UCObOVSu8pWGGEEJUznSTRRVKFgDj/MaxPHZ5mfXj\nx6s9uiuavVUIoXuOjo5oNBpZ9LQ4Ojrq7bsz3X4WV69CQEClc6deS79Gx086cmnGJZpYNym1bcMG\ntf4iNhYaGHzOQCGEMIz63c/C1RWuX4ecnDvu5t7End4te/Pj8R/LbHv4YbVR1Zdf6itIIYQwD6ab\nLCwtoXlzuHKl0l0ndJ7A0r+Wllmv0aij0c6dCzdv6iFGIYQwE0ZJFuHh4bRv354OHTowcuRIMjMz\nSUlJITg4GH9/fwYMGEBqamrlJ/LwqFK9xcPtH+aY9hh/X/+7zLZ774UBA+C992pyJ0IIUT8YPFmc\nPXuW5cuXc/ToUU6ePImlpSUrV64kPDyc0NBQYmNjGTRoEOFV6Wbt6VlpiygAa0trxvqO5du/vi13\n+1tvwWefVSnvCCFEvWTwZOHk5ISVlRUZGRnk5+eTmZlJy5YtiYqKIiwsDIBx48YRWZVmSlUsWQBM\nCJjAt4e/pVApO3mIp6c6DMh//lOtWxFCiHrDKMnixRdfpGXLltx11104ODgQHByMVqvF2dkZABcX\nFxLvMO5TsSqWLAA6u3fG0caRbXHbyt0+axZs2yYd9YQQojwGbzB67tw5Fi5cyPnz57G3t+fRRx8l\nIiKiysfPnTu3+H2QhQVB1Xh29GSnJ1n611L6t+lfZpudHbz7LkybBvv3g4XpVv0LIeq56OhooqOj\ndXpOg/ezWLlyJb///jtf/tNedfny5ezZs4fNmzezf/9+XFxc0Gq1BAYGcvbs2dLB3t5W+OBB9fnR\nH39U6dpJmUm0+6gdf0/7G0ebsp1XCguhVy/4179gwoSa36MQQtQlJtnPom3btuzbt4+srCwURWHL\nli14eXkREhJSXMKIiIggJCSk8pNVo84CwKWxC4PaDiq3RzeopYnFi9VBBqUprRBC3GKUHtxz585l\nxYoVWFhYEBAQwDfffENmZiajRo0iISEBd3d3Vq9ejYODQ+lgb8+OBQXQuLH6m71hwypde/v57UyJ\nmsLRyUcrnIh9wgR1Aj6Zs1sIYQ50UbIw3eE+irRuDVu3Qps2VTqHoih4f+rNF4O/oHfL3uXuc+0a\n+PrCrl3QoUMtgxZCCCMzycdQOleF0WdL0mg0/Ovef/F5zOcV7uPuDrNnq0OZm04qFUII/TH9ZFGN\n5rNFxncaz4ZTG0jOTK5wn+eeg6QkWLWqtgEKIYTpM/1kUc1KbgDnxs483P5hvj1cfo9uUEeh/d//\n4MUXpbJbCCFMP1nUoGQB8GyXZ1kSs+SOz/F69lTHjarKyCNCCGHOTD9Z1KBkAdC7ZW8sLSyJPh99\nx/3eew9WrIDDh2sYnxBCmAHTTxY1LFloNBqe6/YcHx346I77NWsGb78Nzz6rttQVQoj6yPSTRQ1L\nFgBhncLYfmE7F1Iv3HG/p58Ga2v49NMaXUYIIUye6fezqEHHvJJm/joTKwsr3gu+84QWJ09C797w\n559qYUYIIUyF9LOAWzPmXb5co8OndpvKV39+RWZe5h3369BBHWRQ+l4IIeoj008WUO2OeSV5OXnR\n07MnK2JXVLrvrFlw9iysXVujSwkhhMkyj2Th6Vmrae6m3TeNxQcWV1pMa9gQliyB55+HlJQaX04I\nIUyOeSSLWpQsAPrf3Z+CwgK2X9he6b69e8PIkTB9eo0vJ4QQJsc8kkUtSxYajYZp901jwb4FVdp/\n3jzYvRuqMvOrEEKYA/NIFrVoPltkfKfx7L20l5NJJyvd19YWvvoKJk2C1NRaXVYIIUyCeSSLNm0g\nLq5Wp2hs1Zip3abywZ4PqrR/UBAMHgwzZ9bqskIIYRIMnixOnTpFQEBA8WJvb8/ixYtJSUkhODgY\nf39/BgwYQGp1/mT38oJz52rdpnVq96n8eOJHrqVfq9L+770H27ZBVFStLiuEEHWeUTvlFRYW0qJF\nCw4cOMD8+fPx8vJi+vTpLFy4kLi4OBYtWlRq/zt2LHFzU3vM3XVXrWKaGjkVh0YOvN3/7SrtHx0N\njz+ujh3l4lKrSwshhF6YfKe8LVu20LZtWzw9PYmKiiIsLAyAcePGEVnd2uO2bdVOELU0M3AmSw4t\nIT03vUr7BwXB6NEwebJ01hNCmC+jJovvv/+eMWPGAKDVanF2dgbAxcWFxMTE6p1MR8nCy8mLoNZB\nfHnoyyof8/bbcOKEOjqtEEKYI6Mli9zcXDZs2MCjjz6qmxO2bavWW+jAyz1fZsG+BeQV5FVp/0aN\nYPlytbK7lo2yhBCiTmpgrAtv3LiRLl260KxZMwCaNWtGUlISLi4uaLVaXF1dyz1u7ty5xe+DgoII\nCgpSP7RtC+vX6yS27i2609apLRGxEUwImFClYwICYMYMCAuD339Xh6wSQghjiI6OJjo6WqfnNFoF\n9+jRoxk0aBBPPPEEAM8//3xxBfeCBQuIi4tj8eLFpYO9UyXNgQNqxUFMjE7iiz4fzcQNEzk59SSW\nFlX7zV9QAA8+CMHB8OqrOglDCCFqTRcV3HdMFocOHWLlypXs2LGD8+fPo9FoaNWqFX379mXs2LEE\nBATU6KIZGRm0atWKuLg47OzsAEhJSWHUqFEkJCTg7u7O6tWrcXBwKB3snW44JQXuvlvtJafR1Ciu\nkhRFoe83fZncdTJj/cZW+bj4eOjSBX76CXr0qHUYQghRa3pNFiEhITg6OvLII4/QvXt3mjdvjqIo\nXL16lQMHDrBhwwZSU1Or32qpNsFWdsNOTnDqlDq9nQ5sPreZGb/O4MjkI1hoql69s24dvPSS2pK3\naVOdhCKEEDWm12SRkJCAm5vbHQ9OTEyssG5BHyq94e7dYfFinf1JrygKPb7qwcs9X2ak98hqHTtp\nEqSlQUSETgo6QghRY3rtZ5GamsquXbvKrN+1axdnzpwBMGiiqBIdNZ8totFomNN3Dm/teKvaP+gP\nP1Q76n39tc7CEUIIo6kwWUydOpWm5TxDsbe357nnntNrUDXm5aXTZAEQ2i4UC40FP5/6uVrHNW4M\nq1fDK69AbKxOQxJCCIOrMFkkJibi7+9fZr2fnx/XrlVt7CSD03HJAtTSxdygubwW/RqFSmG1jvX2\nVksYjz2mPpISQghTVWGyKCys+BdjQUGBXoKpNT0kC4DB7QfTqEEj1hxbU+1jw8LUCZMmTZLhQIQQ\npqvCZOHr60tERESZ9StWrMDHx0evQdWYDntxl6TRaHj7gbd5Lfo18gvzq3384sVw5Ah8/rnOQxNC\nCIOosDXUtWvXGDhwIK6urnTp0gVQ+11cu3aNTZs20bx5c4MGClWo0VcUta3qpUtwWx+N2lIUhQeW\nPUCYfxhPBTxV7ePPnIFeveDnn6X/hRDCsPTeKa+goIDNmzcTGxuLRqPBz8+Phx56CEsjjWVRpRvu\n3Fmdxu6fBKdLey7tYeyPYzn13CkaNmhY7eM3bIApU+CPP9QR1YUQwhD0mizS0tKKe1dXpCr76FKV\nbnjkSHj0URg1Si8xhH4XyqC2g3iue81ahM2ZAzt3wpYt0MBoI3MJIeoTvfazGDZsGFOnTmXz5s2k\npKQUr09OTubXX39l8uTJDBs2rFYX1ws9VXIXefuBt3l759uk5dSsedPcuWBjA//+t27jEkIIfaow\nWWzZsoURI0awevVqevXqhb29Pfb29vTu3ZsffviBUaNGsWXLFkPGWjV6quQu0tm9Mw95PcT83fNr\ndLylpTrvxYYN8O23Og5OCCH0xKjTqlZXlYpS27ZBeDjs2KG3OC7duETnzztzeNJhPJp61Ogcx4+r\ns+z99BMEBuo2PiGEKMnkp1XVCz0/hgLwtPfk2S7PMmfbnBqfw9sbli5Vq1ji43UYnBBC6EGFJYu8\nvDysrKwMHc8dVSk7FhaCrS1otdCkid5iuZlzk/YftWfTuE10du9c4/PMn68OC7JjhzpEiBBC6Jpe\nSxb33XdfrU5sNBYW0L49nDyp18s0bdiU1/q9xkubX6rVl/Dyy+DjA+PGqXlOCCHqogqThQlVZZTl\n56d2mdazifdO5HLaZX45/UuNz6HRwJIlkJwMs2bpMDghhNChClv6a7VaPvzww3KThkajYebMmTW+\naGpqKhMnTuT06dPk5uaydOlS2rdvXzxTXvPmzVm1alWZmfKqzEDJwsrSikUDFzE5cjLBXsE0atCo\nRudp2FCdMCkwENq1g3/9S8eBCiFELVVYsigoKCAtLY309PQyS1oth1CdOHEiw4cP5/Dhwxw7dgxv\nb2/Cw8MJDQ0lNjaWQYMGER4eXvMLGChZADzk9RCd3DrxwZ4PanUeJyeIjITXXoNff9VRcEIIoSMV\nVnAHBATw559/6vyCycnJ9OjRo3gCpSJeXl4cOHAAZ2dnkpKS6NGjB2dva9VU5UqaS5egWzcw0FDq\n51PP03VJVw49e4iW9i1rda7du2HYMNi4US8jlggh6iGTbDp75swZmjVrxmOPPYavry/jx48nLS0N\nrVaLs7MzAC4uLiQmJtb8Ih4ekJ2ttogygNYOrXm++/O8tPmlWp+rVy+1DmPwYL32LRRCiGq5Yw9u\nfSgsLOTgwYO8/PLLHD16FCcnJ958803dXkSjAX9/gz2KAvh3r39z8MpBtsZtrfW5hg5VH0cNHAi1\nyZlCCKErFVZwF/2Vr2uenp60aNGCbt26ATBy5EjeeOMNXF1dSUpKwsXFBa1WW+H83nPnzi1+HxQU\nRFBQUPmJ29pLAAAgAElEQVQXKqq3eOABHd9B+WysbFg0cBFTIqfw16S/alzZXWTSJLh8GUJDYetW\nMOB4jUIIExcdHU10dLROz2mU4T66du3Kd999R/v27Zk7dy7Xr1+nsLAQLy8vpk+fzoIFC4iLi2Px\n4sWlg63Oc7fPPlPHAv/ySz3cQcWGrxqOn6sfr9//eq3PpSgweTKcPg1RUdCodvlHCFFP6X0+C305\nfPgwzzzzDJmZmbRq1YoVK1agKEpx01l3d3dWr15dpulstW54926YMQMOHNDDHVTs8s3LdP68Mzue\n3EHHZh1rfb6CAnj8ccjKgh9+gDrWqV4IYQJMNlnUVLVu+MYNaNECbt5Ue3Ub0CcHPuH7Y9+z/cnt\nWGhqf+3cXLUew9lZHanWwLcjhDBxJtkaymDs7dXfrn//bfBLT+o6ifzCfL469JVOzmdtrZYqLl5U\nH0uZTnoXQpgL800WYNDOeSVZWliy5OEl/N/W/+Pyzcs6OWfjxvDLL+rtTJsmCUMIYViSLPR1aTc/\nnuv+HBM3TNTZOFt2dmpnvX374KWXJGEIIQxHkoUe/af3f7iWfo2lfy3V2Tnt7dXhQLZuhf/8RxKG\nEMIwJFnokZWlFd8O/ZZZW2Zx8cZFnZ3XyQl++01NGi+/LAlDCKF/5tsaCtRmRPb2kJICNjb6C6wS\n7+x8h23nt7F53GY0Go3OzpuSAg89BL17w4IFasd1IYS4nbSGqoy1tTrN6okTRg3j373+zY3sG3x6\n8FOdntfJCbZsgb174bnnZPIkIYT+mHeyAIOPEVWeBhYNiBgewdztczmWeEyn53ZwgM2b4a+/4Kmn\nID9fp6cXQgigPiSLzp0hJsbYUdDeuT3v9n+XMT+OITs/W6fntrdXE8bVqzBqFOTk6PT0QghRD5JF\njx5qW9M64KmAp7jH5R5m/ab7+VNtbeHnn9X3gwdDRobOLyGEqMfMP1l07QrHjqmDKxmZRqNhycNL\nWHdyHVFnonR+/oYNYdUqdZST/v0hKUnnlxBC1FPmnyxsbMDbu048igJwtHEkYngET//8NPE343V+\n/gYN4Ouv4f771VZS58/r/BJCiHrI/JMFQGBgnXkUBdC3VV9euO8FHlvzGHkFeTo/v0YD8+bBlClq\nwjh8WOeXEELUM/UjWfToobYvrUP+3evfODd2ZtYW3ddfFJk2DT78EIKD1QpwIYSoqfqRLAID1WRR\nh/ofWmgs+Hbot6w7uY4fj/+ot+s89hisXQvjx8MXX+jtMkIIM1c/kkXr1mqPtYu6G3JDF5xsnFjz\n6BomRU7iZNJJvV2nd2/YuRPmz4dXXpHOe0KI6jNKsmjdujX+/v4EBATQvXt3AFJSUggODsbf358B\nAwaQmpqquwtqNHWu3qJI17u68t6D7zHk+yGkZuvwnm/Trp1auNq9G0aMgPR0vV1KCGGGjJIsNBoN\n0dHR/Pnnnxz4Z9rT8PBwQkNDiY2NZdCgQYSHh+v2onWw3qLIUwFPMdBrIGN+HENBYYHeruPiog4P\n4uQEvXrBhQt6u5QQwswY7THU7YNaRUVFERYWBsC4ceOIjIzU7QWL6i3qqPcfep/cglz+8/t/9Hqd\nhg3hyy9hwgQ1f+7cqdfLCSHMhNFKFkWPnD7++GMAtFotzs7OALi4uJCYmKjbi3btCkePQrZuh9rQ\nFStLK1aPXM2PJ35k2eFler2WRgPTp8PSpTByJHz8cZ2q+xdC1EENjHHRffv24erqilarZeDAgXTo\n0KHKx86dO7f4fVBQEEFBQVU7sHFj6NgRDh2Cnj2rF7CBODd2ZsOYDQR9E4RnU0/uv/t+vV5v4EDY\nsweGDYMDB+Czz9QfkxDCtEVHRxMdHa3Tcxp9Pot58+YB8OWXX7J//35cXFzQarUEBgZy9uzZUvvW\nekz2556Du++GF1+sTch6tzVuK2N+HMO2J7bh3cxb79fLyICJE9WR3H/4Aby89H5JIYQBmeR8FpmZ\nmWRmZgKQkZHBpk2b8PHxISQkhIiICAAiIiIICQnR/cXreL1FkQfufoD/Bv+X0O9CuZZ+Te/Xs7WF\nFSvUIc4DA9V+GUIIUZLBSxZxcXEMHToUjUZDZmYmo0eP5o033iAlJYVRo0aRkJCAu7s7q1evxsHB\noXSwtc2O58+rtbpXr5rEtHKvR7/OhtMb2PbENuwa2hnkmgcOqMOcDxmi9suwtjbIZYUQeqSLkoXR\nH0NVhy5umHbt1GctnTrpJig9UhSFyZGTOZ18mqjHo2jUoJFBrpuSoraWunwZVq5Uf2RCCNNlko+h\njG7AAPj1V2NHUSUajYZPQj6hmW0zxvw4hvxCw0yD5+QE69fDk0+qbQGWLzfIZYUQdVj9SxYDB8Km\nTcaOososLSxZPmw5mXmZTNwwkULFMGN1aDRqe4AtW+Cdd+Dxx0GXneqFEKal/iWLoCA4eNCkxruw\ntrRm7WNrOZ18muejnq/9o7hq6NRJnQrE0VGdznzrVoNdWghRh9S/ZNGkCXTvDtu2GTuSarG1tmXj\n4xuJuRrDC5teMGjCaNxY7bi3ZIk6eu2MGXVi4kEhhAHVv2QBJlVvUVLThk35ddyv7Ivfx8xfZxo0\nYYD6BO/wYbUxWefOaoc+IUT9IMnCxNg3smdz2GZ2XtxplITh7Azff6/WY4wYAS+9JKUMIeqD+pks\n/P3VOotz54wdSY04NHLgt7Df2Bu/l0m/TNLrSLUVGTECjhxRm9dKXYYQ5q9+JguNxqRLFwCONo78\nFvYbp1NOM379eL3M5V0ZFxe1H8aCBWoz26eeUvtoCCHMT/1MFmByTWjLY9fQjqixUaRmp/LomkfJ\nzjfOiLoPPwzHjqnDhvj4wLJlMoqtEOam/vXgLpKcDG3agFZr8mNa5Bbk8sT6J7h88zLrR6/HycbJ\naLEcPAiTJ6uJ49NP1eQhhDAu6cFdG87O0KED7Nhh7EhqzdrSmhXDV3Bfi/vo/XVvLt4w3lzj3brB\n/v3w2GNql5aXXoIbN4wWjhBCR+pvsgD1N9r33xs7Cp2w0Fjw34f+y7NdnqXX173469pfRovF0hKm\nTlXnmrp+Xc3JS5dCoWE6nwsh9KD+PoYCiI9Xm/JcvarON2omfjj+A1Mip7Bk8BKGdhhq7HA4eBCm\nTYP8fPjwQ+jTx9gRCVG/yGOo2vLwUMez2LjR2JHo1EjvkUQ9HsXzG59n3s55Bu+Lcbtu3WD3bpg5\nE8aNg+HD4cwZo4YkhKim+p0sAMaOhe++M3YUOtf1rq7se3ofP574kbB1YWTmZRo1HgsLGDMGTp5U\nk0dgoDpQYUKCUcMSQlSRJIsRI9T+FjdvGjsSnWvRtAU7JuxAo9EQ+FUg51KM3wnRxgb+8x91Clcr\nK/D2hvBws/zxC2FWjJYsCgoKCAgIYPDgwQCkpKQQHByMv78/AwYMINVQ42E7OUG/fuoEDmaosVVj\nlg1dxr/u/ReBXwXyy+lfjB0SAM2aqZ35YmIgLg7atlVn5svIMHZkQojyGC1ZLFq0CG9vbzT/TG8a\nHh5OaGgosbGxDBo0iPDwcMMFY6aPoopoNBqmdp/K+tHrmRw5mVe2vGKUHt/lad1a7cQXHQ1//KEm\njYULIdO4T82EELcxSrKIj48nKiqKZ555prjyNSoqirCwMADGjRtHZGSk4QIaPBj27TP7B+g9PXty\n6F+HOJJ4hL7f9CXuepyxQyrm7Q2rV6ttDXbsAC8v+OADKWkIUVcYJVnMmDGD//73v1hY3Lq8VqvF\n2dkZABcXFxITEw0XkK2tOmbF6tWGu6aRNLNtxoYxG3jM+zHu+/I+Vh1dZeyQSuncGdauVauR9u9X\nO9m/9ZbaX0MIYTwNDH3BX375BVdXVwICAoiOjq728XPnzi1+HxQURFBQkG4CGz9e7W783HPqQINm\nzEJjwYzAGfRt1Zdx68bx06mf+DjkY6MOE3I7f381dx8/Du+9pz6eevppmD4d7rrL2NEJUbdFR0fX\n6PfrnRi8U96rr77K8uXLadCgAdnZ2dy8eZPhw4ezZ88e9u/fj4uLC1qtlsDAQM6ePVs6WF13yitJ\nUcDXFxYvhv799XONOigrL4tXtrzCjyd+5KtHvmJA2wHGDqlcFy6oj6UiImDIEHjxRfXrEkJUThe/\nO43ag3v79u28//77bNiwgeeffx4vLy+mT5/OggULiIuLY/HixaX212uyAPjiC/jpJ/ilbrQYMqTf\n//6dp35+igfufoAPHvqgTpUySkpJgc8+g48+UvtTvvCCOtq8hTQCF6JCZtGDu6g11Ouvv05kZCT+\n/v5s3LiRN954w/DBjBsHBw7AqVOGv7aR9W/Tn6OTj9LEqgm+n/ryw/EfjN7zuzxOTvDqq3D+PIwe\nrb7v2FGdI1z6agihP/V7bKjyzJkDSUnwv//p9zp12J5Le3jm52do49iGxYMW08axjbFDqpCiwK5d\nsGgR/P672kt8yhR5RCVESWZRsqhzpkxRR6JNTjZ2JEbT07Mnf036i94te9P9i+68sf0No02sVBmN\nRh2Y8Icf1FFuXV3hoYfUdcuXy/zgQuiKlCzK8+STcM896rgU9dzFGxeZvmk6hxMOM//B+QzvOLz4\n0WFdlZenVjstWaKOeDt2rDrla+fOxo5MCOMw+Qru6jJYsjh8GEJC4Nw5aNRI/9czAVv+3sLMX2fi\naOPIhw99SJe7uhg7pCo5fx6+/hq+/Vat75gwQU0eLi7GjkwIw5FkoU9DhkDv3vDyy4a5ngkoKCzg\nqz+/4rVtr9G/TX/evP/NOl2fUVJhIWzdqk7CFBmpDgc2frzaF9OMpjIRolySLPTp1Cno1UsdU1v+\nDC0lLSeNBfsWsGj/Isb4jmF239m4N3E3dlhVdvOm2kt82TL46y8YNkytGL//fnWWPyHMjSQLfXvu\nObUB/239PYRKm6HlnZ3v8O3hb3my85P8u9e/TSppgDpZ4qpVsHKl+n7kSHW23V69JHEI8yHJQt+0\nWrUR/5490L694a5rYq6kXWH+7vksO7yM8Z3G82Lgi3jaexo7rGo7cwbWrFGHGUlIUKc6GT4c+vaF\nBgYfGEcI3ZFkYQjvvaeOSLtunWGva4KupF3hgz0fsPSvpQzpMIR/9/w3HZt1NHZYNXL6tPqoau1a\n+PtvtW5jyBC1Wa6trbGjE6J6JFkYQnY2dOig1ozef79hr22iUrJS+PTgp3x04CO6t+jO9Pum88Dd\nD9T5JrcVuXRJnRvr55/VkXD79lWTR2goeJpeAUrUQ5IsDGXDBnUQor/+gqZNDX99E5WVl0VEbAQL\n9y/EUmPJtPumMcZ3DLbWpvuneWqqOudGZCRs2qSOgBsaCgMHQs+e6lSxQtQ1kiwM6V//Unt7LV1q\nnOubMEVR2HxuM58c/ITdl3Yzzm8ck7tNpoNLB2OHVisFBWpJIypKnX/jzBm18BkcrC5t25r9aPfC\nREiyMKT0dAgIUOswhg83Tgxm4ELqBZbELOGrP7+irVNbng54mkd9HqWJdRNjh1ZriYnw22+3Fisr\nePBBeOABNYk0b27sCEV9JcnC0Pbtg6FD4c8/5X9+LeUV5BF5JpKv/vyKXRd3MazDMMb5jyOodRAW\nGtMfskxR4MQJtSPg1q3qHOPu7mpnwKJF/gkJQ5FkYQzh4bB7t/rgWh5Q68TVtKt8d+Q7lscuJzkr\nmbG+YxntO5rO7p1NtlL8dgUF6igy27ery44d6vAjffqoAwX07q22zjaT2xV1jCQLY8jPV0sXrq7w\n1Vfyv1vHjiQc4bsj37Hq2CoaWDRglM8oRniPoJNbJ7NJHKAOP3L8OOzcqS579qhPOgMD1YryHj2g\na1ewszN2pMIcSLIwlvR09SH0ww+rJQ2hc4qi8MeVP1h9bDVrT66lUClkeIfhDOkwhJ6ePWlgYX69\n5C5fhr171cSxf7/a+M7LC7p3h27d1MXPTwq0ovpMMllkZ2fTp08f8vPzycjIIDQ0lAULFpCSksKo\nUaNISEigefPmrFq1CgcHh9LB1pVkAWoX38BAmD1bHf9a6I2iKMQmxLL2xFp+Pv0zF29cZFDbQTzc\n/mGC2wTj3NjZ2CHqRW6u+ujq4MFbS1wc+PjAvfdCly7qq6+vDIYo7swkkwVAVlYWNjY25Ofn07t3\nb+bNm8fatWuL5+BeuHAhcXFxLFq0qHSwdSlZgDrYYL9+8OGH6rjXwiDib8bzy+lf+OX0L+y4sAPv\nZt4MbDuQ4DbBdG/RHStL8/3TOz1dLXHExKjLn3/C2bPQrp06X0enTreWZs2MHa2oK0w2WRTJzMyk\nX79+fPPNNzzyyCMcOHAAZ2dnkpKS6NGjB2fPni21f51LFqBOzxYSAtOnw8yZxo6m3snJz2HXxV38\neu5Xtvy9hXPXz9G7ZW8eaP0AQa2D6OzeGUsL8x4RMDtb/Wd4+PCtJTYWrK3Vx1Z+fmppxMcHvL3B\n3t7YEQtDM9lkUVhYyL333su5c+eYPHky8+fPp2nTpty8ebN4n9s/Qx1NFgAXL6pdeEND1X4YFqbf\n9NNUJWUmsS1uG9vOb2P7he1cvnmZXi170cuzF71b9qbbXd2wsbIxdph6pyhqHcjRo3DkCBw7pi7H\nj4Ojozo+pre3+nrPPerSvLm01zBXJpssity4cYMBAwYwb948hgwZUqVkEV6iQjkoKIigoCBDhXtn\nyckweLD6P+6LL9R2kcLotBladlzYwe5Lu9l9aTdHE4/i6+rLfS3uo4dHD+5rcR9tHNuYVUurOyks\nhAsX1GlaTpxQl1On1M/Z2Wrz3aKlXTu1F3rbtuo/53ryIzIL0dHRREdHF39+/fXXTTtZALz55ptY\nWVnxxRdfsH//flxcXNBqtQQGBprGY6iSsrPhlVfUoUqXL1frM0SdkpmXScyVGPZf3s+++H3sv7yf\njNwMutzVha7Nu3Jv83sJaB5AG8c2ZtE5sDpSUtTRds+cufV69qy6aDTQpo3aOqtNm1vL3XdDy5bS\nQquuM8mSRXJyMtbW1tjZ2ZGVlcWAAQOYNWsWmzZtKq7gXrBgAXFxcSy+bdKhOp8simzcCE8/DU88\nAXPmQOPGxo5I3EFCegJ/XPmDP678wZ/X/uTPa39yPes6/m7+xYufqx8+rj44NHKo/IRmRlHUgvO5\nc+pw7UWvcXHqcuWK2ju9VSto3Vp9bdny1qunJzQx/dFcTJpJJosjR44wfvx4FEUhOzubsWPH8tpr\nr5VqOuvu7s7q1avrdtPZyiQkqCPV7tkD8+ap83ZKXYbJSMlKITYhttRyXHsc+0b2+Lr60tGlIx1c\nOtDRpSP3uNyDm61bvXmUdbu8PLV+5Px5dbl4UV0uXFBfL11Sm/Z6eoKHx62lRQt11N6iV2dnedSl\nLyaZLGrDpJJFkV27YMYMNVG8+aY6HKn8jzBJhUohF29c5FjiMU4mneRE0glOJp3kZNJJcgtyaefc\njvbO7Wnr2BYvJy/aOrWljWMb3Ju417tHWiUpivqI69IlNanEx6vvr1xRPxctmZlqCeWuu9SqP3f3\nW69ubrdeXV3BxvzbKOiUJAtTUVioTvL87rtqonjpJRg9Wm3bKMxCSlYKZ5LPcDr5NOeun+NsylnO\nppwlLjWOmzk3aWXfirsd76a1fWtaObSilX0rWtq3pKV9S5rbNTfLHunVlZUF166pSeTaNbh6VV2u\nXVML6gkJ6vvERLWk4upaemnWDFxcbr2WXGxt6/ffaJIsTI2iwObN8N//qu0ZR42CcePUcRzq879k\nM5eRm8H51PPEpcZxIfUC51PPc+HGBS7dvMTFGxfRZmhxtXXFo6kHLZq2oIVdC+6yu6t4cW/iTvMm\nzXGycaq3j7pKUhS4eVNNHomJoNXeek1KUl+1WrWeJSlJXfLz1cdcRYuT063F0fHW4uQEDg7qewcH\ndTGH+dclWZiys2dhxQqIiFATxeDBMGiQOgypjN1Qr+QV5HEl7QqX0y5z+eZl4m/GczX9KlfSrnAl\n7QrX0q9xLf0a6bnpuDVxw9XWFTdb9dXV1pVmjZvRzLYZzRo3w6WxCy6NXXBu7Ix9Q3tJLv/IzlaT\nR9Fy/br6aKzk+6LX1FR1uX4dbtxQ26c4OKidGe3tb71v2rTsq53drdei902aqIulEfuGSrIwB4qi\njtsQFaW2ojp+/NbQoz17qqPIyVSuAsjOzyYhPYHEjEQSMxJJyEhAm6FFm6klMSORpMwkkjKTSM5K\nJikzicy8TBwaOeBs44yTjROONo7qayNHHBo54NjIEUcbR+wb2mPfyB6HRg7YN7SnacOm2Deyx9pS\nHpMWFqpDrKSmqonjxo1b72/eVJeS74uWtLRbr2lpkJGh1rM0aaImkZKvtra3Xku+b9z41rrGjW99\nLnpvY3PrtbLSjyQLc5ScrM6XsWeP+nrokFqz5++vLvfco/aWatdO/RNHiArkFeRxPfs6yZnJpGSl\ncD37OilZKaRkpZCanUpqdirXs69zI/sGN3JukJqdys2cm8WfLTWW2DW0o2nDpthZ22HX0I4m1k3U\n99bq+6LF1toWWytbbK1taWzVuNT7osWmgQ2NrRpjbWld70o8hYVqBX5ampp80tNvJZGizxkZFS+Z\nmeqSkaHW7RR9zsxUP1taqkmjaGncGBo1uvV5yxZJFuavoEDtHRUbqy6nT6uPsM6cUf+c8PS8tRQ1\nF3FzU2v5Sj6YlUdbohoURSE7P5u03DTSctK4mXOz+H16bjppuWlk5GaQnptOem46GXkZxa8ZuRlk\n5mUWv8/KzyIrL4uMvAyy8rLIL8zHxsoGmwY2NGrQqNT7os8NLRvSsEFDGjVoREPLW68NGzSkoWVD\nrC2tadjgn9d/Pt++WFlaqa8WVmXe3/7awKIBDSwaYGVhZXKJTFHUEYqzsm4lkqws9dFb0boBAyRZ\n1F9FPaUuXbq1lGwyUvRwNiVFXSwsbj10LXqIWlTGLfknScOG6p8kDRuqrbWKFisrdWnQ4NarpeWt\n15KLhcWt16JFoyn7evv7ov+kJT+Xt76kqmy73Z1+GVT1F4WJ/UKpSwoKC8jOzy6z5OTnkFOQQ3Z+\nNrkFueQU5JCTn0NuQa76OT+H3MJccvPVbbkFueQV5KmvSh65+bnkFeaRV5hHTn4O+YX56vbCXPIL\n8skrzFPXFeaV+pxfmE9BYcE/nwuw0GiwsrDC0sKyOIlYatT3lhaWxestNZbqYtEASwuL4s8WGgt1\nP40lFkXrLSyxoMR6jUXxNguN+qpBo+6nsSi1FK3ToCmzTaO5ta5ou0ajwYLS254Z/JokC1EFiqL+\nmVH0gLWo7JuWduvPkKIlJ0fdNydH/XMlN1ftdZWbqzYpyctTl4IC9XN+vvq+5FJYqC4FBeq1iz4X\nFqqfi9bd/r4o1tuXkutvv6/KtpX3s7jTz6mqP09hlpQS75R/VijFa8tbV+L9betL7l/Bln8+lN52\n+75F/97K/qu7fb9y1v3DISVDkoUQQog708XvzvrbrVQIIUSVSbIQQghRKUkWQgghKiXJQgghRKUk\nWQghhKiUJAshhBCVMniyuHTpEn379sXPz4977rmH+fPnA5CSkkJwcDD+/v4MGDCA1NRUQ4cmhBCi\nAgZPFtbW1nz66accOXKEmJgYvvzySw4fPkx4eDihoaHExsYyaNAgwsPDDR2a0ZWcYN0cyf2ZNnO+\nP3O+N10xeLJwc3PD19cXgCZNmuDv78/ly5eJiooiLCwMgHHjxhEZGWno0IzO3P/Byv2ZNnO+P3O+\nN10xap3F+fPnOXjwIL1790ar1eLs7AyAi4sLiYmJxgxNCCFECUZLFunp6YwcOZJFixbRVOZrEEKI\nuk0xgtzcXOWhhx5SPvzww+J1bdq0UbRaraIoipKYmKh4eXmVOc7Ly0tBHS5LFllkkUWWKi7l/T6t\nLoPPLqsoCk8//TTe3t7MmDGjeH1ISAgRERFMnz6diIgIQkJCyhx79uxZQ4YqhBDiHwYfdXbXrl30\n7dsXf3//4klG5s2bR/fu3Rk1ahQJCQm4u7uzevVqHGQmOCGEqBNMaohyIYQQxlFnenBv2rQJPz8/\nvL29ee+998rdZ9q0afj4+HDvvffy559/VutYY6vN/bVu3Rp/f38CAgLo3r27oUKulsru7+TJkwQG\nBtKoUSM++OCDah1rbLW5N3P47pYvX46/vz9+fn507dqVmJiYKh9bF9Tm/szh+/vpp5/w9/enU6dO\n+Pn5sWnTpiofW0qtaz10IDs7W2ndurUSHx+v5OXlKV27dlUOHTpUap8ffvhBGTJkiKIoinLo0CGl\nU6dOVT7W2Gpzf4qiKK1bt1aSk5MNGnN1VOX+EhMTlYMHDyr/93//p7z//vvVOtaYanNvimIe393+\n/fuVmzdvKoqiKBs3blQ6d+5c5WONrTb3pyjm8f2lp6cXv4+NjVVatmxZ5WNLqhMli/379+Pj40OL\nFi1o0KABo0aNKtMpr2SnvYCAAPLz84mPj6/SscZW0/u7fPly8XalDj8trMr9NWvWjK5du2JlZVXt\nY42pNvdWxNS/u+7du2NnZwdAr169iv9d1vXvDmp3f0VM/fuztbUtfp+enk7z5s2rfGxJdSJZxMfH\n4+npWfzZw8OD+Pj4Ku1z+fLlSo81ttrcH6hTIhaNm/Xxxx8bJuhqqMr96eNYQ6htfOb23X3++ecM\nGTKkRscaQ23uD8zn+1u/fj0dO3Zk0KBBLF68uFrHFjF409nyFLWKqkxdzvB3Utv727t3L25ubmi1\nWgYOHEiHDh148MEHdRlirVT1/nR9rCHUNr59+/bh6upqFt9ddHQ0X3/9Nbt37672scZSm/sD8/n+\nhg4dytChQ9m5cydhYWGcPHmy2teqEyULDw8PLl26VPz50qVLpTJeefsUZcWqHGtsNb0/Dw8PQB1P\nC9THHSNHjuTgwYMGiLrqavMd1PXvr7bxubq6Aqb/3cXGxvLMM8/w888/4+joWK1jjak29wfm8/0V\n6dOnD/n5+SQmJuLp6Vm970/nNS41kJWVpbRq1UqJj49XcnNzla5duyoxMTGl9vnhhx+UoUOHKoqi\nKKOfl4IAAAN3SURBVDExMYq/v3+VjzW22txfRkaGkpGRoSiKWlHVt29f5aeffjLsDVSiOt9BeHh4\nqUrguv791ebezOW7u3DhguLl5aXs3bu32scaW23uz1y+v7i4uOL3MTExioeHh1JYWFjt769OJAtF\nUZSoqCjFx8dH6dixo/LOO+8oiqIon332mfLZZ58V7zN16lTF29tbCQgIKHVT5R1b19T0/s6dO6f4\n+/srnTp1Utq1a6fMmTPHKPFXprL7u3r1quLh4aE0bdpUcXBwUDw9PZW0tLQKj61Lanpv5vLdPf30\n04qTk5PSuXNnpXPnzkq3bt3ueGxdU9P7M5fvb968eYqvr6/i6+urdOvWTdm1a9cdj62IdMoTQghR\nqTpRZyGEEKJuk2QhhBCiUpIshBBCVEqShRBCiEpJshBCCFEpSRZCCCEqJclCiFrIycmhX79+1RqK\nZvHixSxfvlyPUQmhe9LPQoha+Prrr0lOTubll1+u8jFpaWn079+fAwcO6DEyIXRLShZClOPgwYN0\n6tSJnJwcMjIy8PX15fjx42X2W7lyZfEopdHR0fTr148RI0bQtm1bXnnlFZYvX05gYCD33HMPZ86c\nAcDOzg5nZ2eOHTtm0HsSojbqxKizQtQ13bp145FHHmH27NlkZWURFhaGt7d3qX0KCgo4evQo7du3\nL14XGxvLmTNnaNq0KXfffTeTJk1i7969LF68mEWLFhUPc929e3d27NiBj4+PQe9LiJqSZCFEBV57\n7TW6du2KjY0NH330UZntSUlJxZPmFOnWrRsuLi4AtG3btng4a19fX37//ffi/e666y7+/vtvPUYv\nhG7JYyghKpCUlERGRgbp6elkZWWVu8/tVX4NGzYsfm9hYVH82cLCgsLCwlLHmcJ8EEIUkWQhRAWe\nffZZ3nrrLcaOHcusWbPKbHdxcSE9Pb1G57569SqtW7euZYRCGI4kCyHKsWzZMho2bMjo0aN55ZVX\nOHjwINHR0aX2sbS0xNfXl1OnTgHqrGUVlRZu33bgwAH69Omjt/iF0DVpOitELXzzzTckJCSUW/Ko\nyM2bN+nfv3+dm3VNiDuRZCFELeTm5vLggw+yffv2KtdBLF68GCcnJ8aNG6fn6ITQHUkWQgghKiV1\nFkIIISolyUIIIUSlJFkIIYSolCQLIYQQlZJkIYQQolKSLIQQQlTq/wHpPf5jfDuLugAAAABJRU5E\nrkJggg==\n", "text": [ "<matplotlib.figure.Figure at 0x43e7f50>" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n", "\n", " (a) Heat rate \n", " For Copper = 8.33 W \n", " For Aluminium = 5.60 W \n", " For Stainless steel = 1.56 W\n", "\n", "\n", " (a) Rods may be assumed to be infinite Long if it is greater than equal to \n", " For Copper = 0.19 m \n", " For Aluminium = 0.13 m \n", " For Stainless steel = 0.04 m\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3.10 Page 156" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "import math\n", "H = .15; \t\t\t\t\t\t#[m] height\n", "k = 186; \t\t\t\t\t#[W/m.K] alumunium at 400K\n", "h = 50; \t\t\t\t\t#[W/m^2.K] Heat convection coefficient\n", "Tsurr = 300; \t\t\t\t#[K] Temperature of surrounding air\n", "To = 500; \t\t\t\t\t#[K] Temp inside\n", "\n", "#Dimensions of Fin\n", "N = 5;\n", "t = .006; \t\t\t\t\t#[m] Thickness\n", "L = .020; \t\t\t\t\t#[m] Length\n", "r2c = .048; \t\t\t\t#[m]\n", "r1 = .025; \t\t\t#[m]\n", "#calculations\n", "\n", "Af = 2*math.pi*(r2c*r2c-r1*r1);\n", "At = N*Af + 2*math.pi*r1*(H-N*t);\n", "\n", "#Using fig 3.19 \n", "nf = .95;\n", "\n", "qt = h*At*(1-N*Af*(1-nf)/At)*(To-Tsurr);\n", "qwo = h*(2*math.pi*r1*H)*(To-Tsurr);\n", "#results\n", "\n", "print '%s %.2f %s' %(\"\\n\\n Heat Transfer Rate with the fins =\",qt,\"W \")\n", "print '%s %.2f %s' %(\" \\n Heat Transfer Rate without the fins =\",qwo,\"W\")\n", "print '%s %.2f %s' %(\"\\n Thus Increase in Heat transfer rate of\",qt-qwo,\" W is observed with fins\");\n", "#END" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "\n", " Heat Transfer Rate with the fins = 689.60 W \n", " \n", " Heat Transfer Rate without the fins = 235.62 W\n", "\n", " Thus Increase in Heat transfer rate of 453.98 W is observed with fins\n" ] } ], "prompt_number": 21 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3.11 Page 158" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "import math\n", "Wc =.05; \t\t\t\t#[m] width\n", "H = .026; \t \t\t\t\t#[m] height\n", "tc = .006; \t\t\t\t#[m] thickness of cell\n", "V = 9.4; \t\t\t\t#[m/sec] vel of cooling air\n", "P = 9; \t\t\t\t#[W] Power generated\n", "C = 1000; \t\t\t\t#[W/(m^3/s)] Ratio of fan power consumption to vol flow rate\n", "k = 200; \t\t\t\t#[W/m.K] alumunium\n", "Tsurr = 25+273.15; \t\t#[K] Temperature of surrounding air\n", "Tc = 56.4+273.15; \t\t#[K] Temp of fuel cell\n", "Rtcy = math.pow(10,-3); #[K/W] Contact thermal resistance\n", "tb = .002; \t\t#[m] thickness of base of heat sink\n", "Lc = .05; \t\t\t#[m] length of fuel cell\n", "#Dimensions of Fin\n", "tf = .001; \t\t\t\t#[m] Thickness\n", "Lf = .008; \t\t\t\t#[m] Length\n", "#calculations\n", "\n", "Vf = V*(Wc*(H-tc)); \t\t#[m^3/sec] Volumetric flow rate\n", "Pnet = P - C*Vf;\n", "\n", "\n", "P = 2*(Lc+tf);\n", "Ac = Lc*tf;\n", "N = 22;\n", "a=(2*Wc - N*tf)/N;\n", "h = 19.1; \t\t#/[W/m^2.K]\n", "q = 11.25; \t\t#[W]\n", "m = math.pow((h*P/(k*Ac)),.5);\n", "Rtf = math.pow((h*P*k*Ac),(-.5))/ math.tanh(m*Lf);\n", "Rtc = Rtcy/(2*Lc*Wc);\n", "Rtbase = tb/(2*k*Lc*Wc);\n", "Rtb = 1/(h*(2*Wc-N*tf)*Lc);\n", "Rtfn = Rtf/N;\n", "Requiv = 1/(1/Rtb + 1/Rtfn);\n", "Rtot = Rtc + Rtbase + Requiv;\n", "\n", "Tc2 = Tsurr +q*(Rtot);\n", "#results\n", "\n", "print '%s %.2f %s' %(\"\\n\\n (a) Power consumed by fan is more than the generated power of fuel cell, and hence system cannot produce net power = \",Pnet ,\"W \")\n", "print '%s %.2f %s %.2f %s' %(\"\\n\\n (b) Actual fuel cell Temp is close enough to \",Tc2-273.,\" degC for reducing the fan power consumption by half ie Pnet =\",C*Vf/2.,\" W, we require 22 fins, 11 on top and 11 on bottom.\");\n", "\n", "#END" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "\n", " (a) Power consumed by fan is more than the generated power of fuel cell, and hence system cannot produce net power = -0.40 W \n", "\n", "\n", " (b) Actual fuel cell Temp is close enough to 54.47 degC for reducing the fan power consumption by half ie Pnet = 4.70 W, we require 22 fins, 11 on top and 11 on bottom.\n" ] } ], "prompt_number": 22 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3.12 Page 163" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "import math\n", "hair = 2.; \t\t\t#[W/m^2.K] Heat convection coefficient air\n", "hwater = 200.; \t\t#[W/m^2.K] Heat convection coefficient water\n", "hr = 5.9 ; \t\t\t#[W/m^2.K] Heat radiation coefficient\n", "Tsurr = 297.; \t\t#[K] Temperature of surrounding air\n", "Tc = 37+273.; \t\t#[K] Temp inside\n", "e = .95;\n", "A = 1.8 ; \t\t#[m^2] area\n", "#Prop of blood\n", "w = .0005 ; \t\t#[s^-1] perfusion rate\n", "pb = 1000.; \t\t#[kg/m^3] blood density\n", "cb = 3600.; \t\t#[J/kg] specific heat\n", "#Dimensions & properties of muscle & skin/fat\n", "Lm = .03 ; \t\t#[m]\n", "Lsf = .003 ; \t\t#[m]\n", "km = .5 ; \t\t#[W/m.K]\n", "ksf = .3; \t\t#[W/m.K]\n", "q = 700.; \t\t#[W/m^3] Metabolic heat generation rate\n", "#calculations\n", "\n", "Rtotair = (Lsf/ksf + 1/(hair + hr))/A;\n", "Rtotwater = (Lsf/ksf + 1/(hwater+hr))/A;\n", "#please correct this in the textbook. \n", "m = math.pow((w*pb*cb/km),.5);\n", "Theta = -q/(w*pb*cb);\n", "\n", "Tiair = (Tsurr*math.sinh(m*Lm) + km*A*m*Rtotair*(Theta + (Tc + q/(w*pb*cb))*math.cosh(m*Lm)))/(math.sinh(m*Lm)+km*A*m*Rtotair*math.cosh(m*Lm));\n", "qair = (Tiair - Tsurr)/Rtotair;\n", "\n", "Tiwater = (Tsurr*math.sinh(m*Lm) + km*A*m*Rtotwater*(Theta + (Tc + q/(w*pb*cb))*math.cosh(m*Lm)))/(math.sinh(m*Lm)+km*A*m*Rtotwater*math.cosh(m*Lm));\n", "qwater = (Tiwater - Tsurr)/Rtotwater;\n", "#results\n", "\n", "print '%s %.2f %s' %(\"\\n\\n For Air \\n Temp excess Ti = \",Tiair-273,\" degC \")\n", "print '%s %.2f %s %.2f %s %.2f %s' %(\"and Heat loss rate =\",qair,\" W \\n\\n For Water \\n Temp excess Ti = \",Tiwater-273,\" degC and Heat loss rate =\",qwater,\"W \");\n", "#END" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "\n", " For Air \n", " Temp excess Ti = 34.77 degC \n", "and Heat loss rate = 141.99 W \n", "\n", " For Water \n", " Temp excess Ti = 28.25 degC and Heat loss rate = 514.35 W \n" ] } ], "prompt_number": 23 } ], "metadata": {} } ] }